
On Training Implicit Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

This paper focuses on the principles of training implicit models of infinite layers.1

Specifically, previous works employ the implicit differentiation and solve the exact2

gradient for the backward propagation. However, is it necessary to compute such3

an exact gradient (which is usually quite expensive) for training? To this end,4

we propose a novel gradient estimate for these implicit models, named phantom5

gradient, that 1) forgoes the costly approximation of the exact gradient; and 2)6

provides an update direction (empirically) preferable to the implicit model training.7

We theoretically analyze the condition under which a descent direction of the loss8

landscape could be found, and provide two specific instantiations of the phantom9

gradient based on unrolling and the Neumann series. Experiments on large-scale10

vision tasks demonstrate that these lightweight phantom gradients significantly11

accelerate the backward passes in training implicit models (roughly 1.7× speedup),12

and even boost the performance over approaches based on the exact gradient.13

1 Introduction14

Conventional neural networks are typically constructed by explicitly stacking multiple linear and15

non-linear operators in a feed-forward manner. Recently, the implicitly-defined models [1, 2, 3, 4, 5]16

have attracted increasing attentions and are able to match the state-of-the-art level results by explicit17

models on several vision [4, 5] and natural language processing [3] tasks. Specifically, these works18

treat the evolution of the intermediate hidden states as a certain form of dynamical system, such as19

fixed-point equations [3, 4, 5] or an ordinary differential equation (ODE) flow [1, 2], which represents20

infinite latent states. The forward passes of implicit models are therefore formulated as solving21

these underlying dynamics, by either black-box ODE solvers [1, 2] or root-finding algorithms [3, 4].22

As for the backward passes, however, directly differentiating through the forward pass trajectories23

could induce a heavy memory overhead [6, 7]. To this end, researchers have developed several24

approaches based on the implicit differentiation, such as solving a Jacobian-based linear fixed-point25

equation for the backward pass of deep equilibrium (DEQ) models [3], which eventually makes26

the backpropagation trajectories independent of the forward pass ones, allowing one to train these27

implicit models with essentially constant memory consumption (as we only need to store the final28

output and the layer itself, without any intermediate states).29

However, in order to estimate the exact gradient promised by the implicit differentiation, these30

implicit models still have to rely on black-box solvers (e.g., ODE solvers or root-solving algorithms),31

whose iterative nature usually makes the gradient computation very costly in practice (e.g., over 3032

steps for large-scale DEQ models). In this work, we investigate the question of whether an accurate33

gradient estimate is necessary for training implicit models. We found that a first-order oracle that34

produces good “gradient estimates” is enough to efficiently and effectively train the model, without35

the need to precisely (and laboriously) compute the exact gradient, as in prior works [3, 4, 8, 9].36

As an application of our principle, we develop a framework in which a balanced trade-off is made37

between the precision and conditioning of the gradient estimate. Specifically, we name our gradient38

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



estimate as the phantom gradient, and provide the general condition under which the phantom39

gradient can provide a descent direction of the loss landscape. We further propose two instantiations40

of the phantom gradient in the context of DEQ models, which are based on the the simple fixed-point41

unrolling and the Neumann series analysis. Importantly, we show that our proposed instantiations42

satisfy the descent condition, and the stochastic gradient descent (SGD) algorithm based on the43

phantom gradient enjoys a sound convergence property as long as the relevant hyperparameters44

(e.g., the damping factor) are wisely selected. Note that our proposed method only directly affects,45

and thus accelerates, the backward formulation of these implicit models, with the forward pass46

formulation (i.e., the root-solving process) and inference-time behavior mostly intact.47

We conduct an extensive set of synthetic, ablation, and large-scale experiments to both analyze the48

theoretical properties of the phantom gradient and validate its performance on large-scale tasks, such49

as CIFAR-10 [10] and 224× 224 ImageNet [11] classification tasks. Overall, our results suggest that:50

1) the phantom gradient estimates a descent direction; 2) it is applicable to large-scale tasks and is51

capable of achieving a strong performance that is comparable with or better than when using exact52

gradients; and 3) it significantly shortens the training time needed for implicit models, by a factor53

of 1.4 ∼ 1.7×. We believe these theoretical and empirical results provide strong evidence for the54

effectiveness of training implicit models with the inexact and lightweight phantom gradient.55

2 Method56

2.1 Inspection of Implicit Differentiation57

In this work, we primarily focus on the formulation of root-solving-based implicit models, represented58

by the DEQ models [3]. Specifically, given a non-linear layer F , the output of the implicit model is59

characterized as the solution h∗ to the following fixed-point equation:60

h∗ = F(h∗, z), (1)

where z ∈ Rdu+dθ is the union of the module’s input u ∈ Rdu and parameters θ ∈ Rdθ , i.e., z> =61

[u>,θ>]. Here, u is usually the projection of the original data point x ∈ Rdx , e.g., u =M(x). In62

this section, we assume F is a contractive mapping w.r.t. h so that its Lipschitz constant Lh w.r.t. h63

is less than one (i.e., Lh < 1), a setting that has been analyzed in numerous prior works [12, 13, 14].64

To perform backpropagation through the module induced by Eq. (1), we need to calculate the Jacobian65

matrix of h∗ w.r.t. the projected input (as well as parameters) z. By Implicit Function Theorem,66

∂h∗

∂z
=
∂F
∂z

∣∣∣∣
h∗

(
I − ∂F

∂h

∣∣∣∣
h∗

)−1
(2)

The fixed point h∗ of Eq. (1) is then passed to a post-processing function G to predict ỹ = G(h∗). In67

the generic learning scenario, the training objective is to minimize the following expected loss:68

R(θ) = E(x,y)∼P [L(ỹ(x,θ),y)] , (3)

where y is the groundtruth corresponding to the training example x, and P is the data distribution.69

Here, we omit the parameters of G, because given the output h∗ of the implicit module F , training the70

post-processing part G is the same as training explicit neural networks. The most crucial component71

is the gradient of the loss function L w.r.t. the input vector z> = [u>,θ>], which is used to train72

both the implicit module F and the input projection moduleM. Using Eq. (2) with the condition73

h = h∗, we have74

∂L
∂u

=
∂F
∂u

(
I − ∂F

∂h

)−1
∂L
∂h

,
∂L
∂θ

=
∂F
∂θ

(
I − ∂F

∂h

)−1
∂L
∂h

. (4)

The gradients in Eq. (4) are symmetric w.r.t. u and θ. Without loss of generality, we only discuss the75

gradient w.r.t. θ in the following sections.76

The most intriguing part lies in the Jacobian-inverse term, i.e., (I − ∂F/∂h)−1. Because of the77

inverse operation, a natural question arises from the numerical aspect. Is it well-conditioned? If the78

absolute value of the eigenvalue of ∂F/∂h is close to 1, the Jacobian-inverse will be numerically79

unstable. This spurs us to rethink the necessity of the Jacobian-inverse term in the standard implicit80

2



differentiation. Note that the Jacobian-inverse is calculated to update model parameters with their81

gradients, but the exact gradient is not always optimal in model training. For example, previous82

research has instead used a moderate gradient noise as a regularization approach [15], which have83

been shown to play a central role in escaping poor local minima and improving generalization ability84

[16, 17, 18]. Moreover, as computing the inverse of a large matrix (e.g., ∂F/∂h is more than85

105 × 105 on ImageNet) is intractable, prior works [3] proposes to iteratively solve a linear system86

involving a Jacobian-vector product instead, which makes the actual backward pass slow.87

These observations motivate us to design an inexact, but theoretically sound and practically efficient88

gradient for training implicit models. Here, suppose the Jacobian ∂h∗/∂θ is replaced with a matrix89

A, and the corresponding phantom gradient is defined as90

∂̂L
∂θ

:= A
∂L
∂h

. (5)

Next, we give the general condition on A so that a descent property of the phantom gradient can91

be guaranteed (Sec. 2.2), and provide two concrete instantiations ofA based on either fixed-point92

unrolling or the Neumann series (Sec. 2.3).93

2.2 General Condition on the Phantom Gradient94

The following theorem formulates a sufficient condition that the phantom gradient gives a descent95

direction of the loss landscape. Please refer to the appendix for the proof.96

Theorem 1. Suppose the exact gradient and the phantom gradient are given by Eq. (4) and Eq. (5),97

respectively. Let σmax and σmin be the maximal and minimal singular value of ∂F/∂θ. If98 ∥∥∥∥A(I − ∂F
∂h

)
− ∂F
∂θ

∥∥∥∥ ≤ σ2
min

σmax
, (6)

then the phantom gradient provides a descent direction of the function L, i.e.,99 〈
∂̂L
∂θ

,
∂L
∂θ

〉
≥ 0. (7)

100

Remark 1. Suppose only the (I − ∂F/∂h)−1 term is replaced with a matrix D, namely, A =101

(∂F/∂θ)D. Then, the condition in (6) can be reduced into102 ∥∥∥∥D(I − ∂F
∂h

)
− I

∥∥∥∥ ≤ 1

κ2
, (8)

where κ is the condition number of ∂F/∂θ. The derivation can be found in the appendix.103

Remark 2. The singular value σ and the condition number κ of ∂F/∂θ make it tricky to ensure104

the condition in (6) or (8). However, with J = ∂F/∂θ, Θ = J>J is exactly the neural tangent105

kernel (NTK) [19] corresponding to the module F . If F is a multi-layer neural network, its NTK Θ106

converges in probability to a scalar matrix in the infinite-width limit, i.e.,107

Θ
P−→ sI, for some s ∈ R+, as width→∞. (9)

This conclusion holds both at initialization and during the training process [19, Theorem 1 & 2]1,108

which implies that if F is sufficiently wide, all singular values of J and thus its condition number κ109

are close to 1 in the entire training stage. This property makes the threshold in (6) and (8) computable.110

2.3 Instantiations of the Phantom Gradient111

In this section, we present two practical instantiations of the phantom gradient. We also verify that112

the general condition in Theorem 1 can be satisfied if the hyperparameters in our instantiations are113

wisely selected.114

1A concrete bound of the approximation error for finite-width networks can be found in [20, Theorem 3.1 &
3.2].

3



Suppose we hope to differentiate through an implicit dynamic, e.g., either a root-solving process or115

an optimization problem. Previous solutions towards this include differentiating through the unrolled116

steps of the dynamics [21] and using the Neumann series [7]. In our case, if we solve the root of117

Eq. (1) via fixed-point iteration:118

ht+1 = F(ht, z), t = 0, 1, · · · , T − 1, (10)

then by differentiating through the unrolled steps of Eq. (10), we have119

∂hT
∂θ

=

T−1∑
t=0

∂F
∂θ

∣∣∣∣
ht

T−1∏
s=t+1

∂F
∂h

∣∣∣∣
hs

. (11)

Besides, the Neumann series of the Jacobian-inverse (I − ∂F/∂h)−1 is120

I +
∂F
∂h

+

(
∂F
∂h

)2

+

(
∂F
∂h

)3

+ · · · . (12)

Notably, computing the Jacobian ∂h∗/∂θ using the Neumann series in (12) is equivalent to differen-121

tiating through the unrolled steps of Eq. (10) at the exact solution point h∗ and taking the limit of122

infinite steps [7].123

Without altering the root of Eq. (1), we consider a damped variant of the fixed-point iteration:124

ht+1 = λF(ht, z) + (1− λ)ht, t = 0, 1, · · · , T − 1. (13)

Differentiating through the unrolled steps of Eq. (13), Eq. (11) is adapted as125

∂hT
∂θ

= λ

T−1∑
t=0

∂F
∂θ

∣∣∣∣
ht

T−1∏
s=t+1

(
λ
∂F
∂h

∣∣∣∣
hs

+ (1− λ) I

)
. (14)

The Neumann series of (I − ∂F/∂h)−1 is correspondingly adapted as126

λ
(
I +B +B2 +B3 + · · ·

)
, where B = λ

∂F
∂h

+ (1− λ)I. (15)

The next theorem shows that under mild conditions, the Jacobian in Eq. (14) converges to the exact127

Jacobian and the Neumann series in (15) converges to the Jacobian-inverse (I − ∂F/∂h)−1.128

Theorem 2. Suppose the matrix ∂F/∂h is a contractive mapping. Then,129

(i) the Neumann series in (15) converges to the Jacobian-inverse (I − ∂F/∂h)−1; and130

(ii) if the function F is continuously differentiable w.r.t. both h and θ, the sequence in Eq. (14)131

converges to the exact Jacobian ∂h∗/∂θ as T →∞, i.e.,132

lim
T→∞

∂hT
∂θ

=
∂F
∂θ

∣∣∣∣
h∗

(
I − ∂F

∂h

∣∣∣∣
h∗

)−1
. (16)

However, as discussed in Sec. 2.1, it is unnecessary to compute the exact gradient with infinite133

terms. In the following context, we introduced two instantiations of the phantom gradient based on a134

finite-term truncation of Eq. (14) or (15).135

Unrolling-based Phantom Gradient. In the unrolling form, the matrixA is defined as136

Aunr
k,λ = λ

k−1∑
t=0

∂F
∂θ

∣∣∣∣
ht

k−1∏
s=t+1

(
λ
∂F
∂h

∣∣∣∣
hs

+ (1− λ) I

)
. (17)

Neumann-series-based Phantom Gradient. In the Neumann form, the matrixA is defined as137

Aneu
k,λ = λ

∂F
∂θ

∣∣∣∣
h∗

(
I +B +B2 + · · ·+Bk−1) , where B = λ

∂F
∂h

∣∣∣∣
h∗

+ (1− λ)I. (18)

4



According to Theorem 2, the matrixA defined by either Eq. (17) or Eq. (18) converges to the exact138

Jacobian ∂h∗/∂θ as k →∞ for any λ ∈ (0, 1]. Therefore, by Theorem 2, the condition in (6) can139

be satisfied if a sufficiently large step k is selected, since140 ∥∥∥∥A(I − ∂F
∂h

)
− ∂F
∂θ

∥∥∥∥ ≤ (1 + Lh)

∥∥∥∥∥A− ∂F
∂θ

(
I − ∂F

∂h

)−1∥∥∥∥∥ . (19)

Next, we characterize the impact of the two hyperparameters, i.e., k and λ, on the precision and141

conditioning ofA. Take the Neumann-series-based phantom gradient (Eq. (18)) as an example.142

(i) On the precision of the phantom gradient,143

• a large k makes the gradient estimate more accurate, as higher order terms of the144

Neumann series are included; while145

• a small λ slows down the convergence of the Neumann series because of the larger146

norm ofB with the decrease of λ.147

(ii) On the conditioning of the phantom gradient,148

• a large k impairs the conditioning of A since the condition number of Bk grows149

exponentially as k increases; while150

• a small λ helps maintain a small condition number ofA because the singular values of151

∂F/∂h are “smoothed” by the identity matrix.152

In a word, a large k is preferable for a more accurate A, while a small λ contributes to the well-153

conditioning of A. Practically, these hyperparameters should be selected in consideration of a154

balanced trade-off between the precision and conditioning ofA. See Sec. 3 for experimental results.155

2.4 Convergence Theory156

In this section, we provide convergence guarantee of the SGD algorithm using the phantom gradient.157

We prove that under mild conditions, if the approximation error of the phantom gradient is sufficiently158

small, the SGD algorithm converges to an ε-approximate stationary point in the expectation sense.159

Please refer to the appendix for the proof, where we also discuss the feasibility of our assumptions.160

Theorem 3. Suppose the loss functionR in Eq. (3) is `-smooth, lower-bounded, and has bounded161

gradient almost surely in the training process. Besides, assume the gradient in Eq. (4) is an162

unbiased estimator of∇R(θ) with a bounded covariance. If the phantom gradient in Eq. (5) is an163

ε-approximation to the gradient in Eq. (4), i.e.,164 ∥∥∥∥∥ ∂̂L∂θ − ∂L
∂θ

∥∥∥∥∥ ≤ ε, almost surely, (20)

then using Eq. (5) as a stochastic first-order oracle with a step size of ητ = O(1/
√
τ) to update θ165

with gradient descent, it follows after T iterations that166

E

[∑T
τ=1 ητ‖∇R(θτ )‖2∑T

τ=1 ητ

]
≤ O

(
ε+

log T√
T

)
. (21)

167

Remark 3. Consider the condition in (20):168 ∥∥∥∥∥ ∂̂L∂θ − ∂L
∂θ

∥∥∥∥∥ ≤
∥∥∥∥∥A− ∂F

∂θ

(
I − ∂F

∂h

)−1∥∥∥∥∥
∥∥∥∥∂L∂h

∥∥∥∥ . (22)

Suppose the norm of ∂L/∂h are almost-surely bounded. By Theorem 2, the condition in (20) can be169

guaranteed as long as a sufficiently large k is selected.170

3 Experiments171

In this section, we aim to answer the following questions via empirical results: (1) Does the phantom172

gradient form a descent direction in the practical scenario? (2) What is the difference between the173

5



0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0

1

2

3

4

5

6

7

8

De
ns

ity

k = 1
k = 2
k = 3
k = 4
k = 5

0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0

2

4

6

8

10

12

14

16

0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0

1

2

3

4

5

6

7

8

0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0

2

4

6

8

10

12

14

16

(a) Neumann-series-based phantom gradient (b) Unrolling-based phantom gradient

λ = 0.5 λ = 1.0 λ = 0.5 λ = 1.0

Figure 1: Cosine similarity between the phantom and the exact gradients in the synthetic setting.

phantom gradients in the unrolling form and in the Neumann form? (3) How is the phantom gradient174

influenced by the hyperparameters k and λ? (4) How about the memory and computation cost of175

the phantom gradient compared with implicit differentiation? (5) Can the phantom gradient work at176

large-scale settings?177

We have provided some theoretical analysis and intuitions to (1), (2), and (3) in Sec. 2.3. Now we178

answer (1) and (2) and demonstrate the performance curves under different hyperparameters k and λ179

on the CIFAR-10 dataset [10]. Besides, we also study other factors that have potential influences180

on the training process of the state-of-the-art implicit models [3, 4]. For (4) and (5), we conduct181

experiments on the large-scale datasets, including the CIFAR-10 and ImageNet [22] datasets.182

We start by introducing two settings of experiments. On the CIFAR-10 dataset, we first use the183

MDEQ-Tiny [4] model (170K parameters) as the backbone model in an ablation setting. Additionally,184

we adopt a single-layer neural network with spectral normalization [23] as the function F and the185

fixed-point iteration as solver of h∗, which is the synthetic setting. Besides, the unrolling-based and186

Neumann-series-based phantom gradients are abbreviated to UPG and NPG, respectively.187

Precision of the Phantom Gradient. The precision of the phantom gradient is measured by its188

angle (or cosine similarity) against the exact gradient. We discuss its precision in both the synthetic189

setting and the ablation setting.190

In the synthetic setting, the function F is restricted to be a contractive mapping. Specifically, we191

directly set the Lipschitz constant of F as Lh = 0.9, and use 100 fixed-point iterations to solve192

the root h∗ of Eq. (1) until the relative error satisfies ‖h−F(h, z)‖/‖h‖ < 10−5. Here, the exact193

gradient is estimated by backpropagation through those fix point iterations, and cross-validated by194

implicit differentiation solved with 20 iterations of the Broyden’s method [24]. In our experiment, the195

cosine similarity between these two gradient estimates consistently succeeds 0.9999, indicating the196

gradient estimate is quite accurate. The cosine similarity between the phantom gradient and the exact197

gradient is shown in Fig. 1. It can be seen that the cosine similarity tends to increase as k grows, and198

that a small λ tends to slows down the convergence of the phantom gradient, allowing it to explore in199

a wider range with regard to its angle against the exact gradient.200

(a) Neumann-series-based phantom gradient (b) Unrolling-based phantom gradient

Figure 2: Cosine similarity between the phantom gradient and the exact gradient in the real scenario.
The x-axis corresponds to the cosine similarity, and the y-axis to the training steps. This figure
characterizes the evolution of the phantom gradient’s precision during the training process.

6



In the ablation setting, the precision of the phantom gradient during the training process is shown in201

Fig. 2. The model is trained by implicit differentiation under its official schedule2. It can be seen that202

in real scenarios, the phantom gradient still provides a descent direction, as indicated by the large203

cosine similarity against the exact gradient.204

To Pretrain, or not to Pretrain? To understand the components of training implicit models205

via implicit differentiation, we first show a detailed ablation study of the baseline models. All206

performances are based on 6 independent runs in the ablation setting, and the average and best207

accuracy are reported in Tab. 1.208

Table 1: Ablation settings on CIFAR-10.

Method Acc(%)
MDEQ-Tiny + Implicit 85.0(85.3)
w/o Pretraining 82.3(84.6)
w/o Dropout 83.7(84.0)
Adam→ SGD 84.4(84.8)
SGD w/o Pretrainig 81.9(85.6)
UPG (A5,0.5, w/o Dropout) 85.8(86.6)
NPG (A5,0.5, w/o Dropout) 85.6(86.1)
UPG (A9,0.5, w/ Dropout) 86.1(87.3)

The MDEQ model employs a pretraining stage in209

which the model F is unrolled as a recurrent net-210

work. We study the impacts of the pretraining stage,211

the Dropout [25] operation, and the optimizer, re-212

spectively. It can be seen that the unrolled pretrain-213

ing stabilizes the training of the MDEQ model. Re-214

moving the pretraining stage leads to a large perfor-215

mance drop and apparent training instability among216

different runs because the solver cannot obtain an217

accurate fixed point h∗ when the model is not ad-218

equately trained. This also suggests that the MDEQ219

model is a strong baseline for our method to com-220

pare with.221

However, pretraining is not always indispensable222

for training implicit models. It introduces a hyperparameter that how many steps should be used in223

pretraining. In the later paragraph, we discuss that how the unrolling-based phantom gradient can224

circumvent this issue.225

Trade-offs between Unrolling and Neumann. For an exact fixed point h∗, i.e., h∗ = F(h∗, z),226

there is no difference between the unrolling-based phantom gradient and Neumann-series-based227

one. However, when the numerical error exists in solving h∗, i.e., ‖h∗ −F(h∗, z)‖ > 0, phantom228

gradients in the two forms can have different behaviors. As in Fig. 1, the unrolling-based phantom229

gradient demonstrates greater robustness and higher tolerance to numerical errors in the backward230

computation.231

Table 2: Complexity comparison. Mem
means memory cost. K � k ≈ 1, where K
corresponds to the solver’s steps and k denotes
the unrolling/Neumann steps.

Method Time Mem Peak Mem
Implicit O(K) O(1) O(k)
UPG O(k) O(k) O(k)
NPG O(k) O(1) O(1)

We note that a particular benefit of the unrolling-232

based phantom gradient is its ability to automati-233

cally switch between the pretraining and training234

stages for the MDEQ model. When the model is235

not sufficiently trained and the solver possibly con-236

verges poorly (see [4]), the unrolling-based phantom237

gradient defines a forward computational graph that238

is essentially equivalent to a shallow recurrent net-239

work. In this stage, the phantom gradient serves as240

a backpropagation through time (BPTT) algorithm241

and hence behaves as in the pretraining stage. Then, as training progresses, the solver becomes more242

stable and converges to the fixed point h∗ better. This makes the unrolling-based phantom gradient243

behave more like the Neumann-series-based counterpart. Therefore, the unrolled pretraining is244

gradually transited into the regular training based on implicit differentiation, and the hyperparameter245

tuning of pretraining steps can be waived. We argue that such an ability to adaptively switch training246

stages is crucial to the implicit training protocol, which is also supported by the performance gain in247

Tab. 1.248

Although the unrolling-based phantom gradient requires higher memory than implicit differentiation249

or the Neumann-series-based one, it does not surpass the peak memory usage in the entire training250

process of implicit differentiation due to the pretraining stage. In the ablation setting, the MDEQ251

[4] model employs a 10-layer unrolling for pretraining, which actually consumes double memory252

compared with a 5-step unrolling scheme (e.g.,A5,0.5 in Tab. 1).253

2Code available at https://github.com/locuslab/mdeq.

7

https://github.com/locuslab/mdeq


1 2 3 4 5 6 7 8 9
k

79

80

81

82

83

84

85

86

Ac
c.

(%
)

= 1.0
= 0.9
= 0.5
= 0.1

1 2 3 4 5 6 7 8 9
k

65

70

75

80

85

Unrolling
Neumann

(a) Impact of λ and k (b) NPG v.s. UPG

Figure 3: Ablation studies on (a) the hyperparameters λ and k, and (b) two forms of phantom gradient.

The performance curves in Fig. 3 further validates the advantages of the unrolling-based phantom254

gradient over the Neumann-series-based one and shows the influences of λ and k. In Tab. 2, we255

also demonstrate the time and memory complexity for implicit differentiation and the two forms of256

phantom gradient. In the following paragraph, we adopt the unrolling-based phantom gradient in the257

large-scale experiments.258

Phantom Gradient at Scale. We conduct large-scale experiments to verify the advantages of the259

phantom gradient on CIFAR-10 and ImageNet classification benchmark. The results are illustrated260

in Tab. 3. Our method matches or surpasses the implicit differentiation training protocol on the261

state-of-the-art implicit models with a visible reduction in the training time and comparable or less262

peak memory usage.263

Table 3: Large-scale experiments on CIFAR-10 and ImageNet classifications. Using phantom
gradients, we are able to achieve comparable or better performance in these high-dimensional settings,
while being much faster at training.

Task Method Params Acc(%) Speed Peak Mem
CIFAR-10 MDEQ + Implicit 10M 93.8 1× 1×
CIFAR-10 MDEQ + UPGA5,0.5 10M 95.0 1.4× 0.5×
ImageNet MDEQ + Implicit 18M 75.3 1× 1×
ImageNet MDEQ + UPGA5,0.5 18M 75.1 1.7× 1×

4 Related Work264

Implicit Models. Implicit models generalize the recursive forward/backward rules of neural net-265

works and characterize their internal mechanism by some pre-specified dynamics. Based on the266

dynamics, the implicit models can be broadly categorized into three classes: ODE-based [1, 2], root-267

solving-based [3, 4, 8, 5], and optimization-based [26, 27, 28, 29] implicit models. The ODE-based268

implicit models [1, 2] treat the iterative update rules of residual networks as the Euler discretization269

of an ODE, which could be solved by any black-box ODE solver. The gradient of the differential270

equation is calculated using the adjoint method [30], in which the adjoint state is obtained by solv-271

ing another ODE. The root-solving-based implicit models [3, 4, 8, 5] characterize layers of neural272

networks by the process of fixed-point equation solving. The equations are solved by either the273

black-box root-finding solver [3, 4] or the fixed-point iteration [5]. The optimization-based implicit274

models [26, 27, 28, 29] leverage the optimization programs as layers of neural networks. Previous275

work has studied differentiable layers of quadratic programming [26], submodular optimization276

[27], and maximum satisfiability (MAXSAT) problems [28]. As for the backward passes, implicit277

differentiation is applied to the problem-defining equations of the root-solving-based models [3, 4] or278

the KKT conditions of the optimization-based models [26]. As such, the gradient can be obtained by279

solving a linear system.280

In this work, we focus on the root-solving-based implicit models. We differ from previous work in281

that we look into the theoretical aspect of the gradient-based algorithm in training implicit models. We282

show that besides the precision of the gradient estimate, its condition is also of great significance for283

8



the training stability. With these considerations, we show that implicit models of the same architecture284

could enjoy faster convergence and better generalization ability in practical applications.285

Non-End-to-End Optimization in Deep Learning. Non-end-to-end optimization aims to replace286

the standard gradient-based training of deep architectures with modular or weakly modular training287

without the entire forward and backward passes. Currently, there are mainly three research directions288

in this field, namely, the auxiliary variable methods [31, 32, 33, 34, 35, 36, 37], target propagation289

[38, 39, 40], and synthetic gradient [41, 42, 43]. The auxiliary variable methods [31, 32, 33, 34,290

35, 36, 37] formulate the optimization of neural networks as constrained optimization problems, in291

which the layer-wise activations are considered as trainable auxiliary variables. Then, the equality292

constraints are relaxed as penalty terms added to the objectives so that the parameters and auxiliary293

variables can be divided into blocks and thus optimized in parallel. The target propagation method294

[38, 39, 40] trains each module by having its activations regress to the pre-assigned targets, which are295

propagated backwards from the downstream modules. Specifically, the auto-encoder architecture is296

used to reconstruct targets at each layer. Finally, the synthetic gradient method [41, 42, 43] estimates297

the local gradient of neural networks using auxiliary models, and employ the synthetic gradient in298

place of the exact gradient to perform parameter update. In this way, the forward and backward299

passes are decoupled and can be executed in an asynchronous manner.300

Our work is in line with the non-end-to-end optimization research since we also aims to decouple301

the forward and backward passes of neural networks. However, we show that finding a reasonable302

“target” or a precise gradient estimate is not always the first principle in training deep architectures.303

Our paper paves a path that an inexact but well-conditioned gradient estimate can contribute to both304

training and generalization of implicit models.305

Differentiation through Implicit Dynamics. Differentiation through certain implicit dynamics is306

an important aspect in a wide range of research fields, including bilevel optimization [21, 7], meta-307

learning [44, 45, 46], and sensitivity analysis [47]. Since the gradient (or Jacobian) usually cannot308

be computed analytically, researchers have to implicitly differentiate the dynamics at the converged309

point. The formula of the gradient typically contains a term of Jacobian-inverse (or Hessian-inverse),310

which is computationally prohibitive for large-scale models. (See Eq. (2) in our case.) Herein, several311

techniques have been developed to approximate the matrix inverse in the previous literature.312

An intuitive solution is to differentiate through the unrolled steps of a numerical solver of the dynamics313

[48, 49, 6]. In particular, if a single step is unrolled, it reduces to the well-known one-step gradient314

[50, 44, 51, 46, 52], in which the Jacobian-inverse is simply approximated by an identity matrix.315

On the contrary, unrolling a small number of steps may induce a bias [7], while the memory and316

computational cost grows linearly as the number of unrolled steps increases. Towards this issue,317

Shaban et al. [21] propose to truncate the long-term dependencies and differentiate through only the318

last L steps. Furthermore, if the dynamics has converged to a stationary point, the approximation319

in Shaban et al. [21] is exactly the Neumann approximation of the Jacobian-inverse with the first L320

terms. Based on this, Lorraine et al. [7] choose to directly use the truncated Neumann series as an321

approximation of the Jacobian-inverse. Besides the unrolling-based methods, optimization-based322

approaches [53, 45] have also been studied in this field. Since the Jacobian-inverse-vector product323

can be viewed as solution of a linear system, algorithms like the conjugate gradient method can be324

used to solve it.325

5 Conclusion326

In this work, we question the necessity of rigorously estimating the exact gradient for training implicit327

models. To back up our claim, we systematically analyze the general condition of a gradient estimate328

so that the implicit models can be guaranteed to converge to an approximate stationary point of329

the loss function. Specifically, we give a sufficient condition under which a first-order oracle could330

always find a descent direction of the loss landscape in the training process. Moreover, we introduce331

two instantiations of the proposed phantom gradient, based on either the fixed-point unrolling or the332

Neumann series. The proposed method shows 1.4 ∼ 1.7× accelerations with comparable or better333

performances on large-scale benchmarks. Overall, this paper provides an interesting and practical334

perspective on training implicit models with theoretical guarantees.335

9



References336

[1] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural Ordinary337

Differential Equations. In Neural Information Processing Systems (NeurIPS), 2018. 1, 8338

[2] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented Neural ODEs. In Neural339

Information Processing Systems (NeurIPS), 2019. 1, 8340

[3] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models. In Neural341

Information Processing Systems (NeurIPS), 2019. 1, 2, 3, 6, 8342

[4] Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Multiscale Deep Equilibrium Models. In343

Neural Information Processing Systems (NeurIPS), pages 5238–5250, 2020. 1, 6, 7, 8344

[5] Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley J. Osher, and Wotao Yin.345

Fixed Point Networks: Implicit Depth Models with Jacobian-Free Backprop. arXiv preprint346

arXiv:2103.12803, 2021. 1, 8347

[6] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and348

Reverse Gradient-Based Hyperparameter Optimization. In International Conference on Machine349

Learning (ICML), pages 1165–1173, 2017. 1, 9350

[7] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing Millions of Hyperparameters351

by Implicit Differentiation. In International Conference on Artificial Intelligence and Statistics352

(AISTATS), pages 1540–1552, 2020. 1, 4, 9353

[8] Ezra Winston and J. Zico Kolter. Monotone operator equilibrium networks. In Neural Informa-354

tion Processing Systems (NeurIPS), pages 10718–10728, 2020. 1, 8355

[9] Cheng Lu, Jianfei Chen, Chongxuan Li, Qiuhao Wang, and Jun Zhu. Implicit normalizing flows.356

In International Conference on Learning Representations (ICLR), 2021. 1357

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning Multiple Layers of Features from Tiny358

Images. Technical report, Citeseer, 2009. 2, 6359

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale360

hierarchical image database. In CVPR, pages 248–255. Ieee, 2009. 2361

[12] Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel Mckenzie, S. Osher, and W. Yin. Fixed362

point networks: Implicit depth models with jacobian-free backprop. ArXiv, abs/2103.12803,363

2021. 2364

[13] Chirag Pabbaraju, Ezra Winston, and J. Zico Kolter. Estimating lipschitz constants of monotone365

deep equilibrium models. In International Conference on Learning Representations (ICLR),366

2021. 2367

[14] Max Revay, Ruigang Wang, and Ian R Manchester. Lipschitz bounded equilibrium networks.368

arXiv:2010.01732, 2020. 2369

[15] Xavier Gastaldi. Shake-Shake regularization of 3-branch residual networks. In International370

Conference on Learning Representations Workshop Track, 2017. 3371

[16] Guozhong An. The Effects of Adding Noise During Backpropagation Training on a Generaliza-372

tion Performance. Neural Computation, 8(3):643–674, 1996. 3373

[17] Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The Anisotropic Noise in374

Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization375

Effects. In International Conference on Machine Learning (ICML), pages 7654–7663, 2019. 3376

[18] Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, and Zhanxing Zhu.377

On the Noisy Gradient Descent that Generalizes as SGD. In International Conference on378

Machine Learning (ICML), pages 10367–10376, 2020. 3379

[19] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence380

and Generalization in Neural Networks. In Neural Information Processing Systems (NeurIPS),381

pages 8571–8580, 2018. 3382

10



[20] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.383

On Exact Computation with an Infinitely Wide Neural Net. In Neural Information Processing384

Systems (NeurIPS), pages 8139–8148, 2019. 3385

[21] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated Back-386

propagation for Bilevel Optimization. In International Conference on Artificial Intelligence and387

Statistics (AISTATS), pages 1723–1732, 2019. 4, 9388

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng389

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.390

ImageNet Large Scale Visual Recognition Challenge. International Journal on Computer Vision391

(IJCV), 115(3):211–252, 2015. 6392

[23] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normaliza-393

tion for Generative Adversarial Networks. In International Conference on Learning Represen-394

tations (ICLR), 2018. 6395

[24] Charles G Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations.396

Mathematics of computation, 19(92):577–593, 1965. 6397

[25] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhut-398

dinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv399

preprint arXiv:1207.0580, 2012. 7400

[26] Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimization as a Layer in Neural401

Networks. In International Conference on Machine Learning (ICML), pages 136–145, 2017. 8402

[27] Josip Djolonga and Andreas Krause. Differentiable Learning of Submodular Models. Neural403

Information Processing Systems (NeurIPS), pages 1013–1023, 2017. 8404

[28] Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. SATNet: Bridging deep learning405

and logical reasoning using a differentiable satisfiability solver. In International Conference on406

Machine Learning (ICML), pages 6545–6554, 2019. 8407

[29] Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differentiation408

of Blackbox Combinatorial Solvers. In International Conference on Learning Representations409

(ICLR), 2020. 8410

[30] VG Boltyanskiy, Revaz V Gamkrelidze, YEF Mishchenko, and LS Pontryagin. Mathematical411

theory of optimal processes. 1962. 8412

[31] Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply nested systems.413

In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 10–19,414

2014. 9415

[32] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein.416

Training Neural Networks Without Gradients: A Scalable ADMM Approach. In International417

Conference on Machine Learning (ICML), pages 2722–2731, 2016. 9418

[33] Ziming Zhang, Yuting Chen, and Venkatesh Saligrama. Efficient Training of Very Deep Neural419

Networks for Supervised Hashing. In IEEE Conference on Computer Vision and Pattern420

Recognition (CVPR), pages 1487–1495, 2016. 9421

[34] Ziming Zhang and Matthew Brand. Convergent Block Coordinate Descent for Training422

Tikhonov Regularized Deep Neural Networks. In Neural Information Processing Systems423

(NeurIPS), 2017. 9424

[35] Jinshan Zeng, Shikang Ouyang, Tim Tsz-Kit Lau, Shaobo Lin, and Yuan Yao. Global con-425

vergence in deep learning with variable splitting via the Kurdyka-łojasiewicz property. arXiv426

preprint arXiv:1803.00225, 2018. 9427

[36] Jia Li, Cong Fang, and Zhouchen Lin. Lifted Proximal Operator Machines. In Association for428

the Advancement of Artificial Intelligence (AAAI), pages 4181–4188, 2019. 9429

11



[37] Fangda Gu, Armin Askari, and Laurent El Ghaoui. Fenchel Lifted Networks: A Lagrange430

Relaxation of Neural Network Training. In International Conference on Artificial Intelligence431

and Statistics (AISTATS), pages 3362–3371, 2020. 9432

[38] Yoshua Bengio. How Auto-Encoders Could Provide Credit Assignment in Deep Networks via433

Target Propagation. arXiv preprint arXiv:1407.7906, 2014. 9434

[39] Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference Target Propa-435

gation. In International Conference on Learning Representations (ICLR), page 498–515, 2015.436

9437

[40] Alexander Meulemans, Francesco Carzaniga, Johan Suykens, João Sacramento, and Benjamin F.438

Grewe. A Theoretical Framework for Target Propagation. In Neural Information Processing439

Systems (NeurIPS), pages 20024–20036, 2020. 9440

[41] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves,441

David Silver, and Koray Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gradients.442

In International Conference on Machine Learning (ICML), pages 1627–1635, 2017. 9443

[42] Wojciech Marian Czarnecki, Grzegorz Świrszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals,444

and Koray Kavukcuoglu. Understanding Synthetic Gradients and Decoupled Neural Interfaces.445

In International Conference on Machine Learning (ICML), pages 904–912, 2017. 9446

[43] Benjamin James Lansdell, Prashanth Ravi Prakash, and Konrad Paul Kording. Learning to447

solve the credit assignment problem. In International Conference on Learning Representations448

(ICLR), 2020. 9449

[44] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast450

Adaptation of Deep Networks. In International Conference on Machine Learning (ICML),451

pages 1126–1135, 2017. 9452

[45] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-Learning with453

Implicit Gradients. In Neural Information Processing Systems (NeurIPS), 2019. 9454

[46] Xin-Yu Zhang, Taihong Xiao, Haolin Jia, Ming-Ming Cheng, and Ming-Hsuan Yang. Semi-455

Supervised Learning with Meta-Gradient. In International Conference on Artificial Intelligence456

and Statistics (AISTATS), pages 73–81, 2021. 9457

[47] J Frédéric Bonnans and Alexander Shapiro. Perturbation analysis of optimization problems.458

Springer Science & Business Media, 2013. 9459

[48] Justin Domke. Generic Methods for Optimization-Based Modeling. In International Conference460

on Artificial Intelligence and Statistics (AISTATS), pages 318–326, 2012. 9461

[49] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based Hyperparameter462

Optimization through Reversible Learning. In International Conference on Machine Learning463

(ICML), pages 2113–2122, 2015. 9464

[50] Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable Gradient-Based465

Tuning of Continuous Regularization Hyperparameters. In International Conference on Machine466

Learning (ICML), pages 2952–2960, 2016. 9467

[51] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search.468

International Conference on Learning Representations (ICLR), 2018. 9469

[52] Zhengyang Geng, Meng-Hao Guo, Hongxu Chen, Xia Li, Ke Wei, and Zhouchen Lin. Is470

Attention Better Than Matrix Decomposition? In International Conference on Learning471

Representations (ICLR), 2021. 9472

[53] Fabian Pedregosa. Hyperparameter Optimization with Approximate Gradient. In International473

Conference on Machine Learning (ICML), pages 737–746, 2016. 9474

12



Checklist475

1. For all authors...476

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s477

contributions and scope? [Yes]478

(b) Did you describe the limitations of your work? [No]479

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Not480

applicable.481

(d) Have you read the ethics review guidelines and ensured that your paper conforms to482

them? [Yes]483

2. If you are including theoretical results...484

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See the485

assumptions in Theorem 1 to 3.486

(b) Did you include complete proofs of all theoretical results? [Yes] See the appendix.487

3. If you ran experiments...488

(a) Did you include the code, data, and instructions needed to reproduce the main experi-489

mental results (either in the supplemental material or as a URL)? [Yes]490

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they491

were chosen)? [Yes]492

(c) Did you report error bars (e.g., with respect to the random seed after running experi-493

ments multiple times)? [Yes]494

(d) Did you include the total amount of compute and the type of resources used (e.g., type495

of GPUs, internal cluster, or cloud provider)? [Yes]496

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...497

(a) If your work uses existing assets, did you cite the creators? [Yes] See Sec. 4.498

(b) Did you mention the license of the assets? [Yes]499

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]500

See supplemental materials.501

(d) Did you discuss whether and how consent was obtained from people whose data you’re502

using/curating? [N/A]503

(e) Did you discuss whether the data you are using/curating contains personally identifiable504

information or offensive content? [N/A]505

5. If you used crowdsourcing or conducted research with human subjects...506

(a) Did you include the full text of instructions given to participants and screenshots, if507

applicable? [N/A]508

(b) Did you describe any potential participant risks, with links to Institutional Review509

Board (IRB) approvals, if applicable? [N/A]510

(c) Did you include the estimated hourly wage paid to participants and the total amount511

spent on participant compensation? [N/A]512

13


