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A Algorithm of Phantom Gradients1

The following PyTorch-style [1] pseudo code describes the implementation of phantom gradients in2

both the unrolling form (see Alg. 1) and the Neumann form (see Alg. 2). To implement phantom3

gradients with TensorFlow [2], replace the no_grad context manager with the stop_gradient4

operator.5

The unrolling-based phantom gradient is computed by the automatic differentiation engine, while6

the Neumann-series-based phantom gradient is given by Alg. 3. A special reminder is that, for a7

trained model, removing the unrolling steps in the test stage will not cause the performance decay but8

accelerate the inference instead. After training, even increasing the unrolling steps k to 20 in the test9

stage can not further improve the performance. This implies that the final results are fully obtained10

by the implicit model rather than the unrolling steps.11

Algorithm 1 Unrolling-based phantom gradient, PyTorch-style

# solver: the solver to find h∗, e.g., the Broyden solver in MDEQ.
# func: the explicit function F that defines the implicit model.
# z: the input variables z to solve h∗ = F(h∗, z)
# h: the solution h∗ of the implicit models.
# training: a bool variable that indicates training or inference.
# k: the unrolling step k.
# lambda_: the damping factor λ.

# a plain forward pass using Pytorch
# calculate the phantom gradient by automatic differentiation
# input: z & output: h
def forward(z):

with torch.no_grad():
h = solver(func, z)

# define the computational graph for the backward pass.
# only used in the training stage
if training:

for _ in range(k):
h = (1 - lambda_) * h + lambda_ * func(h, z)

return h
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Algorithm 2 Neumann-series-based Phantom Gradient, Pytorch-style

# solver: the solver to find h∗, e.g., the Broyden solver in MDEQ.
# func: the explicit function F that defines the implicit model.
# grad(a, b, c): the function to compute the Jacobian-vector product (∂a/∂b) c
# z: the input variables z to solve h∗ = F(h∗, z)
# h: the output h∗ of the implicit model.
# k: the unrolling step k.
# lambda_: the damping factor λ.

# a plain forward pass using Pytorch
# input: z & output: h
def forward(z):

with torch.no_grad():
h = solver(func, z)

return h

# phantom gradient for the backward pass
# input: dl/ dh & output: dl / dz
def phantom_grad(g):

# forward pass for automatic differentiation
f = (1 - lambda_) * h + lambda_ * func(h, z)

g_hat = g
for _ in range(k-1):

# compute Jacobian-vector product with automatic differentiation
g_hat = g + grad(f, h, g_hat)

# compute Jacobian-vector product to obtain dl / dz
g_hat = grad(f, z, g_hat)
return g_hat

Algorithm 3 Neumann-series-based phantom gradient with O(1) memory
1: Input ∂L/∂h, F , h∗, k, λ.
2: Initialize ĝ = g = ∂L/∂h;
3: f ← (1− λ)h∗ + λF(h∗, z)
4: for i = 1, 2, · · · , k − 1 do
5: ĝ ← g + (∂f/∂h) ĝ; . Compute Jacobian-vector product with automatic differentiation
6: end for
7: ĝ ← (∂f/∂z) ĝ . Compute Jacobian-vector product to obtain the phantom gradient w.r.t. z
8: return ĝ.

B Proof of Theorems12

Theorem 1. Suppose the exact gradient and the phantom gradient are given by Eq. (4) and Eq. (5),13

respectively. Let σmax and σmin be the maximal and minimal singular value of ∂F/∂θ. If14 ∥∥∥∥A(I − ∂F
∂h

)
− ∂F
∂θ

∥∥∥∥ ≤ σ2
min

σmax
, (A-1)

then the phantom gradient provides a descent direction of the function L, i.e.,15 〈
∂̂L
∂θ

,
∂L
∂θ

〉
≥ 0. (A-2)

16
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Proof. Denote J = ∂F/∂θ, v = ∂L/∂h, and u = (I − ∂F/∂h)−1 v. Let17

E = A

(
I − ∂F

∂h

)
− ∂F
∂θ

, (A-3)

and we have ‖E‖ ≤ σ2
min/σmax. Then,18 〈

∂̂L
∂θ

,
∂L
∂θ

〉
= v>A>J

(
I − ∂F

∂h

)−1
v = u>

(
I − ∂F

∂h

)>
A>Ju = u> (J +E)

>
Ju

≥ ‖Ju‖2 − ‖E‖‖J‖‖u‖2 ≥
(
σ2

min − σmax‖E‖
)
‖u‖2 ≥ 0,

(A-4)

which concludes the proof.19

Proof of Remerk 1. SupposeA = (∂F/∂θ)D and the condition in Eq. (8). Then,20 ∥∥∥∥A(I − ∂F
∂h

)
− ∂F
∂θ

∥∥∥∥ ≤ ∥∥∥∥∂F∂θ
∥∥∥∥∥∥∥∥D(I − ∂F

∂h

)
− I

∥∥∥∥ ≤ σmax ·
1

κ2
=
σ2

min

σmax
, (A-5)

indicating the condition in Eq. (6) is satisfied.21

Theorem 2. Suppose the matrix ∂F/∂h is a contractive mapping. Then,22

(i) the Neumann series in (15) converges to the Jacobian-inverse (I − ∂F/∂h)−1; and23

(ii) if the function F is continuously differentiable w.r.t. both h and θ, the sequence in Eq. (14)24

converges to the exact Jacobian ∂h∗/∂θ as T →∞, i.e.,25

lim
T→∞

∂hT
∂θ

=
∂F
∂θ

∣∣∣∣
h∗

(
I − ∂F

∂h

∣∣∣∣
h∗

)−1
. (A-6)

Proof. (i) Since ‖∂F/∂h‖ < 1,26

‖B‖ ≤ λ
∥∥∥∥∂F∂h

∥∥∥∥+ (1− λ) ‖I‖ < 1. (A-7)

LetBk =
∑k−1
t=0 B

t, and for each p ∈ N+, we have27

‖Bk+p −Bk‖ =

∥∥∥∥∥
k+p−1∑
t=k

Bt

∥∥∥∥∥ ≤ ‖B‖k
∥∥∥∥∥
p−1∑
t=0

Bt

∥∥∥∥∥ ≤ ‖B‖k
p−1∑
t=0

‖B‖t < ‖B‖k

1− ‖B‖
. (A-8)

By the Cauchy’s convergence test, the sequence {Bk} is convergent. Since28

(I −B)Bk = I −Bk → I, as k →∞, (A-9)

it follows thatBk → (I −B)
−1, as k →∞. Therefore,29

λ

∞∑
t=0

Bt = λ (I −B)
−1

=

(
I − ∂F

∂h

)−1
. (A-10)

(ii) LetH(h, z) = λF(h, z) + (1− λ)h, and30

∂H
∂h

= λ
∂F
∂h

+ (1− λ)I. (A-11)

Similar to Eq. (A-7), ∂H/∂h is also a contractive mapping. By the Banach Fixed Point Theorem [3],31

the sequence {ht} converges to an exact fixed point h∗ ofH, which is also a fixed point of F .32

Denote33

Ut =
∂F
∂θ

∣∣∣∣
ht

, Vt = λ
∂F
∂h

∣∣∣∣
ht

+ (1− λ) I. (A-12)
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Since the function F is continuously differentiable w.r.t. both h and θ, we have34

lim
t→∞

Ut =
∂F
∂θ

∣∣∣∣
h∗

= U∞, lim
t→∞

Vt = λ
∂F
∂h

∣∣∣∣
h∗

+ (1− λ) I = V∞. (A-13)

According to the conclusion in (i), we have35

∂F
∂θ

∣∣∣∣
h∗

(
I − ∂F

∂h

∣∣∣∣
h∗

)−1
= λU∞

∞∑
t=0

V t
∞. (A-14)

Comparing Eq. (14) with Eq. (A-14), we have36 ∥∥∥∥∥∂hT∂θ − ∂F
∂θ

∣∣∣∣
h∗

(
I − ∂F

∂h

∣∣∣∣
h∗

)−1∥∥∥∥∥ = λ

∥∥∥∥∥
T−1∑
t=0

Ut

T−1∏
s=t+1

Vs −U∞
∞∑
t=0

V t
∞

∥∥∥∥∥
≤λ


∥∥∥∥∥
T−2∑
t=0

Ut

(
T−1∏
s=t+1

Vs − V T−t−1
∞

)∥∥∥∥∥︸ ︷︷ ︸
∆1

+

∥∥∥∥∥
T−1∑
t=0

(Ut −U∞)V T−t−1
∞

∥∥∥∥∥︸ ︷︷ ︸
∆2

+

∥∥∥∥∥U∞
∞∑
t=T

V t
∞

∥∥∥∥∥︸ ︷︷ ︸
∆3

 .

(A-15)
In the following context, we prove Eq. (A-6) by showing that ∆1, ∆2, and ∆3 can be arbitrarily37

small when T is sufficiently large.38

Preparations. For any ε > 0, since Ut → U∞ and Vt → V∞ as t→∞, there exists N ∈ N+ s.t.39

‖Ut −U∞‖ < ε, ‖Vt − V∞‖ < ε, ∀t > N. (A-16)
Since ∂H/∂h is a contractive mapping, there exists γ ∈ (0, 1) s.t.40

‖Vt‖ ≤ γ, ‖V∞‖ ≤ γ. (A-17)
Besides, since ∂F/∂θ is a continuous function and {ht} is a convergent sequence, it follows that41

{ht} forms a compact set and that ∂F/∂θ is bounded on {ht}. Therefore, there exists M > 0, s.t.42

‖Ut‖ ≤M, t = 0, 1, 2, · · · . (A-18)
Taking t→∞, we have ‖U∞‖ ≤M .43

For ∆1. For t > N , consider44 ∥∥∥∥∥Ut
(

T−1∏
s=t+1

Vs − V T−t−1
∞

)∥∥∥∥∥ ≤ ‖Ut‖
T−1∑
s=t+1

∥∥Vt+1Vt+2 · · ·VsV T−s−1
∞ − Vt+1Vt+2 · · ·Vs−1V T−s

∞
∥∥

≤ ‖Ut‖
T−1∑
s=t+1

‖Vt+1‖ ‖Vt+2‖ · · · ‖Vs−1‖ ‖Vs − V∞‖ ‖V∞‖T−s−1

≤M(T − t− 1)γT−t−2ε,
(A-19)

and for t ≤ N , we simply have45 ∥∥∥∥∥Ut
(

T−1∏
s=t+1

Vs − V T−t−1
∞

)∥∥∥∥∥ ≤ ‖Ut‖
(

T−1∏
s=t+1

‖Vs‖+ ‖V∞‖T−t−1
)
≤ 2MγT−t−1. (A-20)

Therefore, when T > N + 2, ∆1 can be bounded as follows:46

∆1 ≤

(
N∑
t=0

+

T−2∑
t=N+1

)∥∥∥∥∥Ut
(

T−1∏
s=t+1

Vs − V T−t−1
∞

)∥∥∥∥∥
≤ 2M

N∑
t=0

γT−t−1 +Mε

T−2∑
t=N+1

(T − t− 1)γT−t−2

≤ 2MγT−N−1
1− γN+1

1− γ
+

(
1− γT−N−2

(1− γ)2
− (T −N − 2)γT−N−2

1− γ

)
Mε

≤ 2M

1− γ
γT−N−1 +

M

(1− γ)2
ε.

(A-21)
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Since M/(1 − γ)2 is a constant and γT−N−1 → 0 as T → ∞, ∆1 can be arbitrarily small for a47

sufficiently large T .48

For ∆2. Consider49 ∥∥(Ut −U∞)V T−t−1
∞

∥∥ ≤ ‖Ut −U∞‖ ‖V∞‖T−t−1 ≤ {γT−t−1ε, when t ≥ N ;

2MγT−t−1 when t < N.
(A-22)

Therefore, when T > N + 2, ∆2 can be bounded as follows:50

∆2 ≤

(
N∑
t=0

+

T−1∑
t=N+1

)∥∥(Ut −U∞)V T−t−1
∞

∥∥
≤ 2M

N∑
t=0

γT−t−1 + ε

T−1∑
t=N+1

γT−t−1

≤ 2M

1− γ
γT−N−1 +

ε

1− γ
.

(A-23)

Since 1/(1 − γ) is a constant and γT−N−1 → 0 as T → ∞, ∆2 can be arbitrarily small for a51

sufficiently large T .52

For ∆3. As t→∞, we have53 ∥∥∥∥∥U∞
∞∑
t=T

V t
∞

∥∥∥∥∥ ≤ ‖U∞‖ ‖V∞‖T ∥∥∥(I − V∞)
−1
∥∥∥ ≤M · γT · 1

1− γ
→ 0. (A-24)

As a result, the conclusion in Eq. (A-6) is proved.54

Theorem 3. Suppose the loss functionR in Eq. (3) is `-smooth, lower-bounded, and has bounded55

gradient almost surely in the training process. Besides, assume the gradient in Eq. (4) is an56

unbiased estimator of ∇R(θ) with a bounded covariance. If the phantom gradient in Eq. (5) is an57

ε-approximation to the gradient in Eq. (4), i.e.,58 ∥∥∥∥∥ ∂̂L∂θ − ∂L
∂θ

∥∥∥∥∥ ≤ ε, almost surely, (A-25)

then using Eq. (5) as a stochastic first-order oracle with a step size of ητ = O(1/
√
τ) to update θ59

with gradient descent, it follows after T iterations that60

E

[∑T
τ=1 ητ‖∇R(θτ )‖2∑T

τ=1 ητ

]
≤ O

(
ε+

log T√
T

)
. (A-26)

61

Proof. Let ∂̂Lτ∂θ be the phantom gradient at the τ th iteration. By `-smoothness ofR, we have62

R(θτ+1) ≤ R(θτ ) + 〈∇R(θτ ),θτ+1 − θτ 〉+
`

2
‖θτ+1 − θτ‖2

= R(θτ )− ητ

〈
∇R(θτ ),

∂̂Lτ
∂θ

〉
+
`η2τ
2

∥∥∥∥∥ ∂̂Lτ∂θ

∥∥∥∥∥
2

.

(A-27)

Let63

eτ =
∂L
∂θ

∣∣∣∣
θ=θτ

− ∂̂Lτ
∂θ

(A-28)

be the approximation error at the τ th iteration. Taking expectation w.r.t. the first τ iterations, we have64

E1∼τ [R(θτ+1)] = E1∼τ−1 [Eτ [R(θτ+1) | 1 ∼ τ − 1]] = E1∼τ−1 [Eτ [R(θτ+1) |θτ ]] , (A-29)

where the first equality comes from the law of total expectation, while the second from the fact65

that the stochasticity of the first τ − 1 steps is totally captured by the value θτ . Consider the inner66
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expectation in Eq. (A-29), and we omit the condition on θτ when no ambiguity is made. Note that in67

the following derivation, all expectations and variances are conditioned on θτ :68

Eτ [R(θτ+1)] ≤ Eτ

R(θτ )− ητ 〈∇R(θτ ), ∂̂Lτ
∂θ

〉
+
`η2τ
2

∥∥∥∥∥ ∂̂Lτ∂θ

∥∥∥∥∥
2


= R(θτ )− ητ

〈
∇R(θτ ),Eτ

[
∂̂Lτ
∂θ

]〉
+
`η2τ
2

Eτ

∥∥∥∥∥ ∂̂Lτ∂θ

∥∥∥∥∥
2
 ,

(A-30)

where69

Eτ

[
∂̂Lτ
∂θ

]
= Eτ

[
∂L
∂θ

∣∣∣∣
θ=θτ

− eτ

]
= ∇R(θτ )− Eτ [eτ ] , (A-31)

and70

Eτ

∥∥∥∥∥ ∂̂Lτ∂θ

∥∥∥∥∥
2
 =

∥∥∥∥∥Eτ
[
∂̂Lτ
∂θ

]∥∥∥∥∥
2

+ tr

(
Covτ

(
∂̂Lτ
∂θ

))
. (A-32)

Suppose ‖∇R(θτ )‖ ≤ G almost surely, and then we have71 ∥∥∥∥∥Eτ
[
∂̂Lτ
∂θ

]∥∥∥∥∥
2

= ‖∇R(θτ )− Eτ [eτ ]‖2 ≤ (G+ ε)2. (A-33)

Moreover, by the properties of covariance,72

tr

(
Covτ

(
∂̂Lτ
∂θ

))
= tr

(
Covτ

(
∂L
∂θ

∣∣∣∣
θ=θτ

− eτ

))

= tr

(
Covτ

(
∂L
∂θ

∣∣∣∣
θ=θτ

))
+ tr (Covτ (eτ ))− 2 tr

(
Covτ

(
∂L
∂θ

∣∣∣∣
θ=θτ

, eτ

))

≤ 2 tr

(
Covτ

(
∂L
∂θ

∣∣∣∣
θ=θτ

))
+ 2 tr (Covτ (eτ )) ,

(A-34)

where the last inequility comes from73

|tr (Cov (a, b))| ≤
∑
i

|Cov (ai, bi)| ≤
∑
i

√
Var (ai)Var (bi) ≤

∑
i

Var (ai) + Var (bi)

2

=
1

2
(tr (Cov (a)) + tr (Cov (b))) .

(A-35)

By the Popoviciu’s inequality on variances [4], the second term in (A-34) can be bounded by dθ ε2,74

i.e.,75

tr (Covτ (eτ )) ≤ dθ ε2, (A-36)

where dθ denotes the dimension of θ. Finally, since the gradient estimator ∂L/∂θ has a bounded76

covariance, there exists M > 0, s.t.77

tr

(
Covτ

(
∂L
∂θ

∣∣∣∣
θ=θτ

))
≤M, almost surely. (A-37)

Combining (A-30), (A-31), (A-32), (A-33), (A-34), (A-37), we have78

Eτ [R(θτ+1)] ≤ R(θτ )− ητ ‖∇R(θτ )‖2 + ητ 〈∇R(θτ ),Eτ [eτ ]〉+Kη2τ ,

≤ R(θτ )− ητ ‖∇R(θτ )‖2 + ητ ‖∇R(θτ )‖ ‖Eτ [eτ ]‖+Kη2τ

≤ R(θτ )− ητ ‖∇R(θτ )‖2 + ητGε+Kη2τ ,

(A-38)
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where K = `
(
(G+ ε)2 + 2M + 2dθ ε

2
)
/2 is a constant. Substitute (A-38) into Eq. (A-29), and it79

becomes80

E1∼τ [R(θτ+1)] ≤ E1∼τ−1 [R(θτ )]− ητE1∼τ−1

[
‖∇R(θτ )‖2

]
+ ητGε+Kη2τ . (A-39)

By taking a summation over the first T steps,81

E1∼T

[
T∑
τ=1

ητ ‖∇R(θτ )‖2
]
≤ R(θ1)− E1∼T [R(θT+1)] +Gε

T∑
τ=1

ητ +K

T∑
τ=1

η2τ

≤ R(θ1)−m+Gε

T∑
τ=1

ητ +K

T∑
τ=1

η2τ ,

(A-40)

where m = infθR(θ) sinceR is lower-bounded. Dividing a factor of
∑T
τ=1 ητ , we have82

E1∼T

[∑T
τ=1 ητ‖∇R(θτ )‖2∑T

τ=1 ητ

]
≤ Gε+ R(θ1)−m∑T

τ=1 ητ
+K

∑T
τ=1 η

2
τ∑T

τ=1 ητ
. (A-41)

Since ητ = O(1/
√
T ), it follows that83

T∑
τ=1

ητ = O
(√

T
)
,

∑T
τ=1 η

2
τ∑T

τ=1 ητ
= O

(
log T√
T

)
. (A-42)

Combining (A-41) and Eq. (A-42) concludes the proof.84

Remark 4. The assumption thatR has almost-surely bounded gradient at {θτ}Tτ=0 is reasonable.85

Because of the norm-based regularization, e.g., weight decay, we can assume θ is almost surely86

optimized within a compact set in the parameter space. If we further assume R is continuously87

differentiable, the almost-sure boundedness of ‖∇R‖ within the compact set follows its continuity.88

Remark 5. We justify the assumption that the gradient in Eq. (4) has a bounded covariance. For89

the SGD algorithm, the stochasticity of Eq. (4) comes from the random sampling of the training90

example (or the training mini-batch) from the dataset. Since there are finite samples in the training91

set, the covariance of Eq. (4) remains finite. Moreover, as Theorem 2 only considers a finite training92

schedule, i.e., T steps, the possible combination of the selected sample at each step is still finite (even93

though its number grows exponentially). Therefore, it is reasonable to assume the gradient in Eq. (4)94

has a bounded covariance.95

C Implementation Details96

C.1 Synthetic Settings97

For the synthetic setting, the following model is used:98

h∗ = F (h∗ + u) (A-43)

where F is an 1-layer convolutional network with spectral normalization [5], and u,h∗ ∈ RB×C×N .99

The loss L is given by the mean squared error between h∗ and y. We choose C = 128, N = 32, and100

randomly sample 50000 data pairs (u,y) to compute the gradient ∂L/∂u.101

We generate a symmetric weight matrix for the network and constrain the Lipschitz constant Lh102

to a given level with spectral normalization. For the visualization in the main paper, we adopt103

Lh = 0.9. For the additional visualization on the stability of the solver in Fig. 1, we choose Lh from104

{0.9, 0.99, 0.999, 0.9999}.105

To solve h∗, we employ the fixed-point iteration as the solver. For the synthetic setting shown106

in the main paper, we use 100 fixed-point iterations to obtain h∗ that satisfies the relative error107

‖h∗ − F(h∗,u)‖/‖h∗‖ ≤ 10−5. For the visualization in Fig. 1, we also apply 100 fixed-point108

iterations for each Lh.109
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C.2 Ablation Settings110

For the ablation settings, we use the original MDEQ-Tiny [6] model (170K parameters) on the CIFAR-111

10 [7] classification benchmark without any architecture modification. Therefore, the performance112

gain upon state-of-the-art methods is due to the improved training efficiency thanks to the proposed113

phantom gradient.114

The experiments are conducted without data augmentation as in [6]. The training schedule, batch115

size, cosine learning rate annealing strategy, and other hyperparameters are kept unchanged for all116

ablation experiments. We also follow the official training protocol of MDEQ1 to reproduce its results.117
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Figure 1: Visualization of gradient solver under different Lh.

For the training protocol without pretraining, we substitute the unrolled pretraining stage by implicit118

differentiation. For the training protocol without Dropout, we remove the variational Dropout from119

the model. We also try the SGD optimizer with a regular hyperparameter setting of learning rate 0.1120

and weight decay 0.0001.121

We train the MDEQ model with two types of phantom gradient using the SGD optimizer with a122

learning rate of 0.1, a weight decay of 0.0001, and other hyperparameters unchanged from the original123

setting. The model is trained without shallow-layer pretraining, suggesting an O(k) or O(1) peak124

1Code available at https://github.com/locuslab/mdeq.
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memory usage in the unrolling form or the Neumann form, as presented in the main paper. In both125

cases, the damped fixed-point iteration starts at the solution ĥ∗ obtained by the Broyden’s method.126

C.3 Large-Scale Experiments127

For large-scale experiments, we adopt the MDEQ model (10M parameters) and MDEQ-Small model128

(18M parameters) on the CIFAR-10 [7] and ImageNet [8] benchmarks, respectively. To train MDEQ129

on CIFAR-10, we employ the unrolling-based phantom gradient with λ = 0.5 and k = 5, i.e.,A5,0.5.130

Besides, we use the SGD optimizer with a learning rate of 0.1 and a weight decay 0.0001, and131

keep other experimental setting unchanged, including the number of training epochs, batch size, the132

learning rate annealing strategy, and etc. On the ImageNet dataset, we follow the practice of [6] to133

pretrain the model for the same number of epochs. Afterwards, the unrolling-based phantom gradient134

(i.e.,A5,0.5) is used to train the model for the rest training schedule.135

D Additional Analysis on the Gradient Solver136

To illustrate the vulnerability the gradient solver for implicit differentiation in the ill-conditioned137

cases, we provide the optimization dynamics in Fig. 1 and its comparison with the phantom gradient138

in the synthetic setting. We plot the optimization objective ‖(I − ∂F/∂h)g − ∂L/∂h‖, the relative139

error ‖(I − ∂F/∂h)g − ∂L/∂h‖/‖g‖, the cosine similarity between the solved gradient g and the140

exact gradient, and the L1 norm of the gradient. Here, in the optimization-based context, g is the141

solution of the backward linear system solved by the Broyden solver.142

Fig. 1 shows that the gradient solver may diverge in ill-conditioned situations. It can be seen that143

the phantom gradient demonstrates much better stability especially in the extremely ill-conditioned144

cases. On the contrary, the optimization step does not necessarily lead to the solved gradient being145

more aligned to the exact gradient, as indicated by the cosine similarity, and its angle may oscillate in146

the great range. Besides, the norm of the solved gradient also tends to explode in the optimization147

process, while the phantom gradient maintains a moderate norm throughout.148
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