
Under review as a conference paper at ICLR 2022

Optimization Inspired Multi-Branch Equilib-
rium Models

Anonymous authors
Paper under double-blind review

Abstract

Works have shown the strong connections between some implicit models
and optimization problems. However, explorations on such relationships are
limited. Most works pay attention to some common mathematical properties,
such as sparsity. In this work, we propose a new type of implicit model
inspired by the designing of the systems’ hidden objective functions, called
the Multi-branch Optimization induced Equilibrium networks (MOptEqs).
The model architecture is designed based on modelling the hidden objective
function for the multi-resolution recognition task. Furthermore, we also
propose a new training strategy inspired by our understandings of the hidden
objective function. In this manner, the proposed model can better utilize
the hierarchical patterns for recognition tasks and retain the abilities for
interpreting the whole structure as trying to obtain the minima of the
problem’s goal. Comparing with the state-of-the-art models, our MOptEqs
not only enjoys better explainability but are also superior to MDEQ with
less parameter consumption and better performance on practical tasks.
Furthermore, we also implement various experiments to demonstrate the
effectiveness of our new methods and explore the applicability of the model’s
hidden objective function.

1 Introduction

Whereas Deep Neural Networks (DNNs) have achieved great success in many real-world
tasks such as computer vision and neural language process, the limited interpretability of
DNNs greatly hinders their further development.

However, many traditional machine learning methods, e.g.,matrix recovery (Zhang et al.,
2018b; 2015; Liu & Li, 2016), subspace clustering (You et al., 2016), image deblurring (Liu
et al., 2014) and so on, can be interpreted into minimizing the following objective functions:

min
Z,E

f(Z) + g(E), s.t. X = AZ + BE.

where A ∈ Rm×d1 , B ∈ Rm×d2 , X ∈ Rm×n, and f(·) and g(·) are convex functions designed
by the modelling of their properties. For this count, the interpretability of such methods is
much better than DNNs. Furthermore, these methods can also enjoy state-of-the-art and
robust performance on these tasks. We call such interpretability these methods enjoy as
"mathematical interpretability", i.e., whether the whole network structure can be summarized
as a compact mathematical model that can be mathematically analyzed.

Except for these methods, the Optimization Induced Equilibrium Networks (OptEqs) pro-
posed by Xie et al. (2021) recover its whole system for recognition to an optimization problem.
The forward propagation for OptEqs tries to solve Eqn.1 to get output y, z∗ ∈ Rd for input
x ∈ Rdin . We call the front part of Eqn.1 as OptEqs’ equilibrium equation, which is the
central part for equilibrium models. And its forward procedure can be regarded as solving
the hidden objective functions shown as Eqn.2,

z∗ = W>σ(Wz∗ +Ug(x) + b), y = Wcz
∗, (1)

min
z
G(z; g(x)) = min

z

[
1> f(W−1>z)−

〈
Ug(x) + b,W−1>z

〉
+

1

2
‖W−1>z‖2 − 1

2
‖z‖2

]
. (2)

1

Under review as a conference paper at ICLR 2022

W,U,Wc are learnable weights, g is the convolution layers projecting input x from real-world
domain to feature space like other neural architectures, and f is the penalty for the outputs.

Although the interpretability for OptEqs is good, it still remains some weaknesses worth
exploring. First, although OptEqs performs better than some implicit models, these models
only consider a single view (or resolution) of the input in their implicit parts. We call these
models single-view implicit models in the following. However, nearly all the state-of-the-art
pattern recognition systems (Lee et al., 2009b; Wang et al., 2019a; Huang et al., 2017; He
et al., 2016; Burt & Adelson, 1987) benefit from the multi-layer or multi-resolution feature
extractors in domains like computer vision and audio processing. Secondly, new modules
induced by the objective function they proposed are limited, which mainly consider the
math properties of the output features like sparsity, but whether these properties can benefit
image recognition tasks is unexplored.

Besides OptEqs, MDEQ (Bai et al., 2020) constructs its equilibrium equation z∗ = F(z∗;x)
and block F with the inspiration of explicit models especially HRNet Wang et al. (2019a).
Then they solve the equilibrium equation by the accelerated algorithm for output z∗. Although
it shows the state-of-the-art performance with efficient memory cost as other implicit models,
such strategies will make the model lose "interpretability" since the MDEQ is a black box
because its output is solved in an implicit way (root-finding method), which makes analysis
on its features of intermediate layers almost impossible. Furthermore, its complicated
structure also hinders its analysis from mathematical systems. More efficient blocks with
good interpretability still needs exploring.

Motivated by the limitations of the above models, we would like to design a multi-scale DEQ
structure with state-of-the-art performance and preserve mathematical interpretability from
the inspiration of OptEqs and multi-scale models. The contributions for our work are listed
below:

• We propose a multi-branch implicit model, called Multi-branch OptEqs (MOptEqs),
which efficiently utilizes different scales inputs with better performance and smaller
model size. Furthermore, it still retains its connection to an optimization problem.

• We propose some properties modelled as new terms for the model’s hidden objective
function from our analysis on the relationships between branches and their hierarchi-
cal dependencies. With new problem’s formulation, we obtain the fusion module in
our MOptEqs, called Hierarchical Heritage and Diversity Module (HH&D Module).

• Apart from the new module design, we also propose the Perturbation Enhanced
training strategy (PE) for our MOptEqs from our analysis on the model’s hidden
objective function. The new strategy cannot only enhance the performance of our
MOptEqs, but also improve the robustness of our models.

1.1 Related Works

Implicit Models. Nearly all modern deep learning approaches use explicit models, which
provide an explicit computation graph for the forward propagation. In contrast, the compu-
tation graphs for implicit models are "flexible" or can be assumed as having "infinite" depth.
For example, Neural ODEs (Chen et al., 2018; Massaroli et al., 2020) encode their neural
architectures by a differential system with learnable parameters. Then the implicit ODE
solvers they used is equivalent to a continuous ResNet taking infinitesimal steps. Furthermore,
the training process of Neural ODEs can be depicted as finding a differential system of a
certain type (like heat equations) by updating its learnable parameters which demonstrate
that Neural ODE also enjoy interpretability to a certain extent.

Moreover, DEQ (Bai et al., 2019; Winston & Kolter, 2020) is another class of implicit models.
The central part of DEQ is the designation of the equilibrium equations z∗ = F(z∗;x) and
block F . Its forward procedure is trying to solve the equilibrium equations with input x to
get the equilibrium state z∗ as output by accelerated algorithms. Since the z∗ is fixed given
F and x, its inference can be regarded as forwarding an explicit network stacked by the same
block F for infinite times. For example, DEQ chooses their F by one set of Conv+ReLU

2

Under review as a conference paper at ICLR 2022

while MDEQ constructs an HRNet-like block as theirs. However, no evidence shows that the
best block constructions in explicit models can perform the best in the DEQ scheme. The
construction of DEQ blocks or equilibrium equations is an open question worth exploring.
Furthermore, most DEQ blocks do not have any mathematical insights (like the diffusion
process in Neural ODE) and perform totally a black box with limited interpretability.

Since implicit models usually adopt accelerated root-finding algorithms for their forward
outputs and backward gradients, they enjoy the advantages of constant and more efficient
memory costs compared with DNNs. Due to the above advantages, the design of implicit
models draws much attention these days (Ghaoui et al., 2019; Gould et al., 2019). Apart
from the models illustrated above, many kinds of other implicit models have been proposed,
including differentiable physics engines (Qiao et al., 2020; de Avila Belbute-Peres et al., 2018),
logical structure learning (Wang et al., 2019b) and implicit neural blocks (Li et al., 2020).

Model Interpretaiblity. Many researchers nowadays are trying to make their proposed
method more interpretable. Although there are many kinds of approaches to achieve this goal,
we marginally divide them into two parts: "Empirical" and "Mathematical" interpretability.
Many works, such as (Zhang et al., 2018a; Zhang & Zhu, 2018; Bau et al., 2018), attempt
to empirically disassemble the black box by characterizing some statistical or structural
information like the outputs and gradients of neural networks’ middle layers. However, these
works cannot be directly implemented on DEQ models since implicit ones do not have explicit
depths like DNNs, which makes analyzing such models by dissecting each layer’s behavior
almost impossible. Apart from that, researchers (Djolonga & Krause, 2017; Amos & Kolter,
2017; Xie et al., 2019; Chan et al., 2020) also managed to understand the neural architecture
by linking it to a mathematical problem. In this way, researchers can analyze the black box
by its corresponding mathematical problem. Furthermore, new components can be proposed
due to the analysis of these problems. Our model aims to design a new DEQ architecture
with proper mathematical interpretability. Compared with the former works, our model can
deal with the classification tasks with better performances with novel components.

2 Multi-Branch Optimized Induced Equilirium Models

2.1 The proposed architecture for the Multi-Branch OptEqs

Inspired by OptEqs, we first design an objective function for our tasks to solve and then
use its first-order stationary conditions as MOptEqs’ equilibrium equation. The base of our
function is formed by summarizing several objective functions of different scales defined
for OptEqs (Details are stated in Appendix.A.1). However, such a model can not obtain
satisfying results since these branches are independent. For this count, we need to design
some terms describing the dependencies of each branch in the hidden objective function, as
shown in the following paragraphs. Then we can obtain the equilibrium equations for our
MOptEqs and our MOptEqs’ block F by analyzing the first-order stationary condition of
our designed optimization problem.

Hierarchical Heritage Modeling. State-of-the-art explicit models for image tasks are
explicitly structured into sequential stages and process different resolutions hierarchically (He
et al., 2016; Shelhamer et al., 2017; Lee et al., 2009a), which implies that features should be
extracted hierarchically. In other words, the posterior branches should inherit from their
prior ones, which we call such property hierarchical heritage. In our work, we are going
to formulate such correlation of neighbouring branches in the hidden objective function by
adding the following inner-product term into its origin:

H(zi, zj) = z>i Pi:jzj (3)
where zi ∈ Rdi , zj ∈ Rdj ,Pi:j ∈ Rsi×sj denotes the Average Downsample (its transpose can
be regarded as a weighted nearest upsample) or Identity matrix suited to the shape of zi and
zj (i < j or j = 1, i = L). This term only estimate the summation for the similarity of i-th
and j-th branch’s channels with the same channel index, which we call them corresponding
channels, as shown in the above equation.

When zi and zj are similar, the inner product will be large. Otherwise, the result will
become small, which implies that the relationship of corresponding channels is weak. In this

3

Under review as a conference paper at ICLR 2022

way, we can ensure the similarity of corresponding channels of the near branches. Except for
the relations between different branches’ corresponding channels, the relationships between
dis-corresponding channels are explored in the following section.

Diversity Modeling. In addition to the hierarchical relations for corresponding channels,
works (Pang et al., 2019; Amada et al., 2021) have shown enhancing the diversities between
branches can also improve the model’s improvements. For this account, we also consider
making different branches extract various features to improve the representation abilities of
different branches. To achieve such a goal, we add a diversity term in the objective function
Eqn.(4) if we assume that i < j,

D(zi, zj) =
C∑

k1=1

C∑
k2=1
k2 6=k1

|vec−1(zi)
(k1)>vec−1(Pi:jzj)

(k2)|, (4)

where vec−1 is the inverse vectorization operator convert the vectorized feature zi ∈ Rdi×1

to a matrix in R
di
C ×C with C channels and vec−1(zi)

(k) ∈ R
di
C ×1 denotes the k-th channel

of i-th branch in practice. Since we have already considered the relationships between the
corresponding channels in the hierarchical term, we only tries to estimate the diversities of
dis-corresponding channels of the i-th and j-th branches in this term. As the diversity term
goes small, the diversities between the branches become stronger.

The architecture of MOptEqs and its hidden problem. With the two terms we
proposed, we can reformulate the hidden objective for our problem by replacing the L2 norm
with our new modelling as follows:

min
z1,...,zL

G(z1, ..., zL; g(x)) = min
z1,...,zL

L∑
i=1

[
1>f(W−1>

i zi)−
〈
Uig(x) + bi,W

−1>
i z

〉
+

1

2
(λD(zi, zi+1) + ‖W−1>zi‖2 −H(zi, zi+1))

]
.

(5)

g(x) is the input feature for the raw input x, λ > 0 is a hyperparameter and zi ∈ Rdi×1 are
the final outputs of MOptEqs. We can choose f to constrain zi on our demand and will
influence model’s activation function. If we choose f(x) = I{x ≥ 0} to ensure the outputs
to be positive, then the activation function is ReLU. We set D(zL, zL+1) = D(zL, z1) and
H(zL, zL+1) = H(zL, z1) when i = L to complete the loop. The two terms we added tries to
make the corresponding channels of different branches correlated by maximizing the H term
and enhancing the diversities of different branches by minimizing D term. We note that H
and D are not conflict since they are handling different pairs of channels for branches.

As the following proposition shows, we finally get the equilibrium equations (Eqn.(6)) for
our MOptEqs by calculating the first-order stationary conditions ∇ziG = 0 for problem G.

Proposition 1 The proposed multi-branch structure induced by Eqn(5) can be depicted as
solving the equilibrium points z̃∗ := [z>∗1 , ..., z>∗L]> ∈ R

∑L
i=1 di for the following equations:

z̃ = W̃>σ(W̃h(z̃) + Ũg(x) + b̃)

where W̃ =

W1

. . .
WL

 ,Ũ = [U>1 , ...,U
>
L]
>, b̃ = [b>1 , ...,b

>
L]
>.

(6)

And h(z̃) = [h1(z1, zL, z2)>, .., hi(zi, zi−1, zi+1)>, .., hL(zL, zL−1, z1)>]> and each hi is de-
fined as the mapping from Rdi × Rdi+1 × Rdi−1 to Rdi ,

h(zi, zi−1, zi+1) =
1

2
(Pi:i+1zi+1 +P>i−1:izi−1)

− λ

2
vec(vec−1(Pi:i+1zi+1)sign[Mi:i+1 − diag(Mi:i+1)])

− λ

2
vec(vec−1(P>i−1:izi−1)sign[M>i−1:i − diag(Mi−1:i)]),

Mi:i+1 =vec−1(Pi:i+1zi+1)
>vec−1(zi),

Mi−1:i =vec−1(zi)
>vec−1(P>i−1:izi−1).

4

Under review as a conference paper at ICLR 2022

𝑧ଵ ∈ ℝ
ௗభ

…

𝑧୐ ∈ ℝ
ௗಽ

HHD
Module

HHD
Module

HHD
Module

HHD
Module

𝑧ଵ

𝑧ଶ

𝑧ଷ

𝑧௅

𝑧ଶ ∈ ℝ
ௗమ

𝑧ଷ ∈ ℝ
ௗయ

𝑧௣ଶ

𝑧௣ଵ

𝑧௣ଷ

𝑧௣௅

…

𝑾୐
ୃ𝝈(𝑾𝑳𝒛𝑳 +𝑼𝑳𝒈(𝒙) + 𝒃𝑳)

𝑾𝟑
ୃ𝝈(𝑾𝟑𝒛𝟑 +𝑼𝟑𝒈(𝒙) + 𝒃𝟑)

𝑾𝟐
ୃ𝝈(𝑾𝟐𝒛𝟐 +𝑼𝟐𝒈(𝒙) + 𝒃𝟐)

𝑾𝟏
ୃ𝝈(𝑾𝟏𝒛𝟏 +𝑼𝟏𝒈(𝒙) + 𝒃𝟏)

(a) MOptEqs’ structure.

×
1

2
(ℝ஼×ு೔ௐ೔)

𝑃௜ିଵ:௜
ୃ 𝑧௜ିଵ ∈ ℝௗ೔ 𝑧୧ିଵ′

𝑧௜ ∈ ℝௗ೔

𝑃௜:௜ାଵ𝑧௜ାଵ ∈ ℝௗ೔ 𝑧୧ାଵ′

𝑧୧′𝑧୧ିଵ′
ୃ SIGN

𝑧୧′𝑧୧ାଵ′
ୃ SIGN

RD

RD

𝑧୧′ 𝑧௣௜ ∈ ℝௗ೔

(ℝ஼×ு೔శభௐ೔శభ)

(ℝ஼×ு೔షభௐ೔షభ)
reshape

reshape

reshape

reshape

−λ

−λ

(b) HH&D’s structure (zpi = hi(zi, zi−1, zi+1)).

Figure 1: The structure of the MOptEqs and HH&D Module. Dotted lines in the figure
denotes the upsampling, downsampling or identity operators to suit the size of each branch,
⊗ denotes multiplication operator, ⊕ denotes addition operator, RD operator processes a
matrix by removing its diagonal, SIGN operator convert each element of a matrix to its sign
and the di = CHiWi with C is the channel number and Hi,Wi are the height and width of
the feature map.

The equilibrium points for the above formula are also the first-order stationary points for the
optimization problem Eqn(5).

The proof of the proposition is listed in Appendix.A.3. In this manner, we obtain the
proposed architecture MOptEqs, its forward propagation is equivalent to find the equilibrium
points of Eqn(6), and such process can also be regarded as solving the stationary points of
the optimization problem (5). The whole structure is also shown in Figure.1 (a) and we also
draw figures to illustrate the practical process of hi (HH&D) on its right (Figure.1 (b)). We
also evaluate the effectiveness of such modelling in Section. 3.2’s experiments.

2.2 The proposed Training Strategy for MOptEqs

Researches (Kong et al., 2020; Xie et al., 2020; Tang et al., 2021) have discovered that small
perturbations can enhance the generalization abilities and varieties of branches for neural
architectures. Most efficient works use adversarial perturbations based on gradients (Xie
& Yuille, 2020) for such a trick. However, such a strategy will slow the training process
since they need at least one more back-propagation in each training step for perturbations,
which is time-consuming. Unlike these methods, we can acquire more computation efficient
perturbations because our models can be formulated as minimizing an objective function
we designed. Then we can replace the maximum problem (details in Appendix.A.2) for
adversarial perturbation with maximizing our architecture’s hidden objective function G,
since we assume MOptEq’s performance will go worse if G(z; g(x)) changes a lot at g(x)’s
neighborhoods since the forward propagation of MOptEqs is minimization G(z; g(x)).

Assumption 1 For a well trained OptEqs with its objective function denoted as G(z; g(x))
and a natural sample x which can be correctly classified. If an input perturbation ‖δ‖∞ ≤ ε
can cause one of the following changes:

|G(z′∗; g(x)− δ)−G(z∗; g(x))| ≥ L1ε,

‖z′∗ − z∗‖2 ≥ L2ε.

with L1, L2 > 1, it may lead the OptEqs to the wrong results with high probability.

For the second part of the assumption, it’s common sense and widely used in the analysis
of adversarial robustness (Zhang et al., 2021; Li et al., 2020). With the above assumption,
we can generate the perturbations by maximizing the objective function G(z; g(x)) for our
MOptEqs. Since our MOptEqs can be regarded as a kind of "implicit" ensembling that
parallels several equilibrium models, we decide to inject the perturbations acquired for the
prior branch to the posterior one, like boosting to enhance the performance.

5

Under review as a conference paper at ICLR 2022

Then the hidden objective function of MOptEqs with G(z; g(x)) is shown as follows,

min
z1,...,zL

G(z1, ...,zL; g(x)) = min
z1,...,zL

L∑
i=1

[
1>f(W−1>

i zi)−
〈
Ui(g(x)− δi−1) + bi,W

−1>
i z

〉
+

1

2

(
λD(zi, zi+1) + ‖W−1>zi‖2 −H(zi, zi+1)

)]
,

s.t. δi = argmax
‖δi‖∞≤ε

1>f(W−1>
i zi)−

〈
Ui(g(x)− δi) + bi,W

−1>
i zi

〉
for i ∈ [1,L].

where δ0 = 0. And the problem becomes a bilevel optimization problem. The solution to the
lower-level problem is δi = εsign(U>i W

−1>
i zi). Since the perturbation can be obtained by

feeding the output of the activation layer σ(Wz + Ug(x) + b) to the transposed convolution
layer with weight Ui, we call it reconstructed perturbation. Compared with the adversarial
perturbations based on gradients, our perturbations can be acquired directly by matrix-vector
multiplication instead of iteratively built by gradients. For this account, such a process
does not require much computation cost. Following the above steps, we obtain a harmful
perturbed direction for the prior branches and then added them to their posterior branches.
We note that our perturbation is added to the input feature g(x) instead of the raw input.

Proposition 2 For a natural sample x and a well trained OptEqs

z∗ = W>σ(Wz∗ + Ug(x) + b)

with its hidden objective function denoted as G(z; g(x)), for g′(x) = g(x) − δ and δ =

εsign(U>i W
−1>
i zi), which obeys the constraint ‖δ‖∞ ≤ ε. z′∗ and z∗ are defined as follows:

z′∗ = argmin
z

G(z; g′(x)),

z∗ = argmin
z

G(z; g(x)).

If the ‖W‖2, ‖U‖2 ≤ 1 and 1
N ‖U

>W−1>z∗‖1 � ε, where N is the element number of g(x),
then

max
{
G(z′∗; g(x)− δ)−G(z∗; g(x)),

√
Nε‖z′∗ − z∗‖2

}
≥ 1

2

{
ε‖U>W−1>z∗‖1 −Nε2

}
.

The proposition demonstrates if we choose the perturbed direction to be εsign(U>W−1>z),
at least one of the changes for the G or z∗ will be around ε‖U>W−1>z∗‖1 and implies each
branch may perform bad on the perturbed data according to our assumptions. With the
experiments in Section.3.2, we can conclude that our reconstructed perturbation is useful
and our assumption is reasonable. Like boosting strategy, we can feed the perturbed data for
the prior branch to its posterior branch to enhance the performance; we call such method as
the Perturbation Enhanced training strategy (PE). Following experiments also show
that PE can indeed enhance the performance of our MOptEqs.

2.3 Model Optimization and Forward Convergence

Forward Propagation and Implicit Differentiation. Like other equilibrium models, the
forward propagation procedure is solving the given equilibrium functions Eqn. 7. For this
count, our model also enjoys the constant memory cost advantages as other DEQs. In our
work, run root-finding algorithms to solve the roots z̃∗ = [z∗1, ...z

∗
L] of the following problem

to reach the equilibrium states, which is the same as MDEQ (shown in Appendix.A.5):
∇z̃G(z1, ..., zL; g(x)) = 0. (7)

As for the backward propagation, we also adopt the implicit differentiation method widely
used in (Bai et al., 2020; 2019; Chen et al., 2018). Instead of tracing the gradients during the
forward propagation, the implicit differentiation method directly backpropagates through
the equilibrium state using the Jacobian of Tθ = ∇z̃G+ z̃ at z̃∗. For a given loss l = L(z̃∗,y)
(where y is the target) and the gradients can be written as

∂l

∂(·) =
∂l

∂z̃∗
(I− JTθ |z̃

∗)−1 ∂Tθ
∂(·) . (8)

6

Under review as a conference paper at ICLR 2022

Model Model Size Accuracy

Neural ODEs 172K 53.7%
Aug. Neural ODEs 172K 60.6%

Single-tire MonDEQ 854K 82.5%
Deep OptEqs1 199K 87.4%

Parallel-OptEqs 193K 87.4%
POptEqs(sum) 193K 88.4%
POptEqs(conv) 276K 88.9%

MOptEqs (w/o PE) 193K 89.1%
MOptEqs 193K 89.5%

(a) Comparison of the models with single-scales

Model Model Size Accuracy

ResNet-18 10M 92.9± 0.2%

MonDEQ 1M 89.7%
MDEQ 2.53M 92.6± 0.2%
MDEQ 10M 93.8± 0.3%

MOptEqs 0.48M 92.9± 0.2%
MOptEqs 1.9M 94.0± 0.1%
MOptEqs 8.1M 94.6%

(b) Comparison of the models with
multiple-scales. MonDEQ here is the

multi-tired monotone DEQ.

Table 1: Evaluation on CIFAR-10 for different models. "Parallel-OptEqs"(POptEqs) means
our model is built without utilizing HH&D fusion (Stated in Appendix.A.1), which is formed
by paralleling several OptEqs with the method stated in the brackets for fusion. "w/o PE"
means MOptEqs is trained without our PE training strategy.

And the calculation of ∂l
∂z̃∗ (I − JTθ |z̃∗)−1 is equivalent to solve root m for the following

equation:

m(I− JTθ |z̃∗) +
∂l

∂z̃∗
= 0. (9)

As for the root-finding algorithm, we can use Broyden method (Broyden, 1965), Anderson
Method (Anderson, 1965; Bai et al., 2021) or other root-finding methods to solve Eqn(7) for
the equilibrium state and Eqn(9) for the backward gradient.

Forward Convergence. Like other implicit models, we need to make some constraints on
parameters in order to make the whole MOptEqs TΘ(z̃;x) (z̃ here is {zi}Li=1) be a contractive
mapping. For the MOptEqs without considering HH&D (Eqn.10), the models can easily
converge with ‖Wi‖2 ≤ ζ < 1. But since we use the HH&D module, we need to choose
proper λ to ensure the convergence, around or less than 1

C will be appropriate, which does
not need ζ to be too small. We also conduct experiments to verify the convergence in Fig.4
in Appendix. A.7.

3 Experimental Results

In this section, we conduct experiments for the image classification tasks on CIFAR-10,CIFAR-
100 Krizhevsky et al. (2009) and ImageNette implemented on the PyTorch (Paszke et al., 2017)
platform to demonstrate the effectiveness of our model. Details are listed in Appendix..A.6.

3.1 Comparison of Prior Implicit Models

In this part, we decide to verify the superiority of MOptEqs in two aspects. First, we build
the single-scale MOptEqs and compare the empirical results with other single-scale implicit
models. And then we compare the experimental results with prior implicit models that utilize
the multi-scale inputs like MDEQs, the state-of-the-art implicit model with multi-resolution.

Implicit Models with Single View. In this part, we compare our MOptEqs with other
single-view implicit models with comparable model sizes. Like OptEqs who uses three blocks
for their experiment, we first construct our small MOptEqs with three branches whose outputs
share the same size and the channel number C = 32. Results in Table.1 (a) demonstrates
that our MOptEqs structure can even enhance the performance for recognition tasks under
the single-view cases. Compared to the multi-branch model without fusion (POptEqs), our
MOptEqs’ HH&D can efficiently utilize the relationships between different branches and
lead the model to better performance. Our superiority also holds compared with former
multi branches fusion methods: "sum" (non-parametric module) and "conv" (parametric
module). Meanwhile, we can also conclude the effectiveness of our perturbation enhanced
training strategy from the table since its performance is the best.

7

Under review as a conference paper at ICLR 2022

Model Model Size Accuracy

MDEQ 2.6M 70.8± 0.2%
11M 72.4± 0.2%

MOptEqs 1.9M 73.4± 0.2%
MOptEqs 8.1M 74.7%

(a) Evaluation on CIFAR-100 for models.

Model Model Size Accuracy

MDEQ 2.5M 90.5± 0.2%
10M 91.3± 0.3%

MOptEqs 1.9M 92.1± 0.2%
MOptEqs 10M 92.4%

(b) Evaluation on Imagenette for models.

Table 2: Evaluation on CIFAR-100 and ImageNette for MDEQ and MOptEqs.

Implicit Models with Multiple Scales. Moreover, we conduct experiments compared
with other models which handling multi-scale inputs. Like MDEQ, we construct our MOptEqs
with four branches with resolution size equals to 32,16,8,4. Other details can be found in
Appendix.A.6. From Table.1 (b) and as shown in Table.2 (a), one can see that our MOptEqs
not only outperforms the widely used explicit model ResNet-18 (He et al., 2016), but also
shows better performance compared with MDEQ with fewer parameters on CIFAR, which is
one of the best models. The empirical results for the multi-scale models further verify the
superiority of MOptEqs and its training strategy.

Apart from experiments on small images, we also conduct experiments on ImageNette, which
is a subset of 10 classes from ImageNet. Compared with MDEQ, our MOptEqs consistently
perform better shown in Table.2 (b). Nevertheless, as one can see from the results, the
difference between MDEQ and our model becomes much bigger in the CIFAR-100 and
Imagenette with the same training hyper-parameters. Such a phenomenon demonstrates
that the performance of our model is much more stable than MDEQ. Apart from these
experiments, we also conducted ablation studies for our models in the following section.

3.2 The comprehensive understanding of MOptEqs

0 20 40 60 80 100
Sample Index

0.1

0.2

0.3

0.4

0.5

0.6
Average H
Average D

(a) MOptEqs.

0 20 40 60 80 100
Sample Index

-0.4

-0.2

0

0.2

0.4

0.6

Average H
Average D

(b) POptEqs.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0.15

0.30

0.45

0.60

0.75

(c) MOptEqs.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0.15

0.30

0.45

0.60

0.75

(d) POptEqs.

Figure 2: Visualization of the channels correlations for the MOptEqs and POptEqs.

Visualization of the impact for the HH&D module. In this section, we try to estimate
the effect of our HH&D module. We finish experiments in this part using three-branch
MOptEqs with 16 channels for each branch to make the visualization more clear.

We tries to verify our HH&D module’s effect in two aspects. First, we plot scatter figures for

the values of
∑L
i=1

∑
j∈N(i)D(zi,zj)

L(C2−C) (denoted as Average D) and
∑L
i=1

∑
j∈N(i)H(zi,zj)

LC (denoted
as Average H) for 100 randomly chosen samples (N (i) denotes neighboring branch of the
i-th branch). Since the hidden optimization problem is to maximizing H while minimizing
D, we find that our MOptEqs (Figure.2(a)) can induce the output features to reach such
goal compared with POptEqs (MOptEqs without HH&D) (Figure.2(b)).

Furthermore, we also plot heatmaps of the first two branches’ correlation score
(|vec−1(z2)vec−1(z1)>| ∈ R16×16) for a randomly chosen sample shown in Figure.2(c)(d).
One can see that MOptEqs’ heatmap (Fig.2(c)) is more likely to be a diagonal matrix
while heatmap Fig.2(d) for POptEqs looks random. The heatmap shows that our HH&D
can induce the model to perform as our demand, which means corresponding channels for
adjacent branches can be more correlated, while the dis-corresponding channels are unrelated
due to our architecture design. The visualizations and former results on different datasets
verify the effectiveness of our modelling and our HH&D modules’ design.

8

Under review as a conference paper at ICLR 2022

0 0.1 0.2 0.3
Perturbation Size

70

75

80

85

T
es

t
A

cc
u

ra
cy

Reconstruct Perturbation
Uniform Perturbation
Binomial Perturbation

(a)

3 4 5 6 7 8 9 10
PGD iteration

30

35

40

45

50

55

60

T
es

t
A

cc
u

ra
cy

MOptEq trained w/o PE
MOptEq (ε=0.1)
MOptEq (ε=0.25)
MOptEq (ε=0.5)

(b)

10-4 10-3 10-2 10-1
82

83

84

85

86

87

88

89

T
es

t
A

cc
u

ra
cy

MOptEqs w/o HHD trained by augmented Loss
MOptEqs w/o PE baseline

(c)

Figure 3: (a) Test accuracy changes with respect to the perturbation size for different
perturbed directions. (b) Test Accuracy for small MOptEqs (w. and w/o. PE) under PGD
attack with different inner iterations. (c) Plot of the accuracies for the small MOptEqs
without HH&D trained by the extended loss with respect to various γ.

Evaluation of the reconstructed perturbation. We compare our perturbation with
randomly generated ones in a one-branch well-trained MOptEqs to validate its effectiveness.
We first feed a natural sample x to the model and acquire output z for x and generate our
reconstructed perturbation using such output and then feed it to the model. Furthermore,
we add the perturbations generated by Binomial distribution (P(δi = ε) = P(δi = −ε) = 0.5)
and Uniform distribution U [−ε, ε] to input features g(x) for comparison. The result of each
distribution is averaged for five trials. Figure.3(a) shows our perturbation generated by
maximizing G is much more effective, which validates the effectiveness of our reconstructed
perturbations and the rationality of our assumptions and analysis in Section.2.2.

Robustness of our MOptEqs trained by PE strategy. In addition to improving the
generalization abilities for models as shown in Sec.3.1, perturbations with proper size may
also enhance the robustness of our MOptEqs, shown in Figure.3(b). We conduct experiments
on small MOptEqs (the same setting as Sec.3.1’s single-view model). Our perturbation
enhanced training strategy goes stronger as ε increases. The figure shows that accuracy for
the model trained naturally drops quicker than trained by PE strategy. Overall, trained with
appropriate reconstructed perturbation can partly improve the robustness of our MOptEqs.

MOptEqs vs. adding Regularizers in training loss. Apart from our HH&D modules,
adding D and H to the training loss is one of the most popular methods for obtaining outputs
with certain properties. In order to demonstrate the superiority of our module empirically,
we conduct experiments for our MOptEqs trained by cross-entropy and POptEqs (MOptEqs
(w/o. HH&D)) trained by the cross-entropy loss adding γ

∑L
i=1(H(zi, zi+1)− λD(zi, zi+1))

as regularizers (we call it augmented loss). Then we drew its test accuracy for different γ
trained by the augmented loss (λ is the same as ours) shown in Figure.3(c).

With proper γ, POptEqs trained by additional loss can perform better than γ = 0. Such
phenomenon demonstrates the effectiveness of our HH&D Modelling. Furthermore, the figure
demonstrates the superiority of our model since the traditional method is consistently worse
than ours. We left some other explorations for our model in the Appendix due to the space
limit.

4 Conclusion

We introduce the multi-branch optimization induced equilibrium models (MOptEqs), a
new extension of OptEqs that can utilize multiscale information for recognition tasks and
retain its ability to recover to an optimization problem whose solution is equivalent to the
equilibrium states of our model. The model architecture is designed based on modelling the
hidden objective function for the multi-resolution recognition task. Furthermore, we also
propose a new training strategy inspired by our understandings of the hidden optimization
problem. The empirical results show the advantages of our proposed methods. The success
of our HH&D module and PE training strategy demonstrates the deep link between the
optimization problem and neural architecture and may motivate further explorations.

9

Under review as a conference paper at ICLR 2022

References
Takuma Amada, Kazuya Kakizaki, Toshinori Araki, Seng Pei Liew, Joseph Keshet, and
Jun Furukawa. Adversarial robustness for face recognition: How to introduce ensemble
diversity among feature extractors? 2021.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Donald G. M. Anderson. Iterative procedures for nonlinear integral equations. Journal of the
ACM, 12(4):547–560, 1965. doi: 10.1145/321296.321305. URL http://dblp.uni-trier.
de/db/journals/jacm/jacm12.html#Anderson65.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pp. 688–699, 2019.

Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Multiscale deep equilibrium models. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Stabilizing equilibrium models by jacobian
regularization. CoRR, abs/2106.14342, 2021. URL https://arxiv.org/abs/2106.14342.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T.
Freeman, and Antonio Torralba. GAN dissection: Visualizing and understanding generative
adversarial networks. CoRR, abs/1811.10597, 2018. URL http://arxiv.org/abs/1811.
10597.

Charles G Broyden. A class of methods for solving nonlinear simultaneous equations.
Mathematics of computation, 19(92):577–593, 1965.

Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code. In
Readings in computer vision, pp. 671–679. Elsevier, 1987.

Kwan Ho Ryan Chan, Yaodong Yu, Chong You, Haozhi Qi, John Wright, and Yi Ma. Deep
networks from the principle of rate reduction. arXiv preprint arXiv:2010.14765, 2020.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 6572–6583, 2018.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico
Kolter. End-to-end differentiable physics for learning and control. Advances in neural
information processing systems, 31:7178–7189, 2018.

Josip Djolonga and Andreas Krause. Differentiable learning of submodular models. Advances
in Neural Information Processing Systems, 30:1013–1023, 2017.

Zhengyang Geng, Meng-Hao Guo, Hongxu Chen, Xia Li, Ke Wei, and Zhouchen Lin. Is
attention better than matrix decomposition? In International Conference on Learning
Representations, 2021.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, and Armin Askari. Implicit deep learning.
CoRR, abs/1908.06315, 2019.

Stephen Gould, Richard Hartley, and Dylan Campbell. Deep declarative networks: A new
hope. CoRR, abs/1909.04866, 2019.

10

http://dblp.uni-trier.de/db/journals/jacm/jacm12.html#Anderson65
http://dblp.uni-trier.de/db/journals/jacm/jacm12.html#Anderson65
https://arxiv.org/abs/2106.14342
http://arxiv.org/abs/1811.10597
http://arxiv.org/abs/1811.10597

Under review as a conference paper at ICLR 2022

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society,
2016. doi: 10.1109/CVPR.2016.90.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 2261–2269.
IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.243.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin
Taylor, and Tom Goldstein. Flag: Adversarial data augmentation for graph neural networks.
arXiv preprint arXiv:2010.09891, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In Proceedings
of the 26th annual international conference on machine learning, pp. 609–616, 2009a.

Honglak Lee, Roger B. Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional
deep belief networks for scalable unsupervised learning of hierarchical representations. In
Andrea Pohoreckyj Danyluk, Léon Bottou, and Michael L. Littman (eds.), Proceedings of the
26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec,
Canada, June 14-18, 2009, volume 382 of ACM International Conference Proceeding Series,
pp. 609–616. ACM, 2009b. doi: 10.1145/1553374.1553453.

Jia Li, Cong Fang, and Zhouchen Lin. Lifted proximal operator machines. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pp. 4181–4188, 2019.

Mingjie Li, Lingshen He, and Zhouchen Lin. Implicit euler skip connections: Enhancing
adversarial robustness via numerical stability. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research, pp. 5874–5883. PMLR, 2020.

Guangcan Liu and Ping Li. Low-rank matrix completion in the presence of high coherence.
IEEE Transactions on Signal Processing, 64(21):5623–5633, 2016.

Guangcan Liu, Shiyu Chang, and Yi Ma. Blind image deblurring using spectral properties of
convolution operators. IEEE Transactions on image processing, 23(12):5047–5056, 2014.

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama.
Dissecting neural odes. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

Michael C Mozer. A focused back-propagation algorithm for temporal pattern recognition.
Complex systems, 3(4):349–381, 1989.

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness
via promoting ensemble diversity. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pp. 4970–4979. PMLR, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS-W, 2017.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming Lin. Scalable differentiable physics
for learning and control. In International Conference on Machine Learning, pp. 7847–7856.
PMLR, 2020.

11

Under review as a conference paper at ICLR 2022

Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39(4):640–651, 2017.
doi: 10.1109/TPAMI.2016.2572683.

Shiyu Tang, Ruihao Gong, Yan Wang, Aishan Liu, Jiakai Wang, Xinyun Chen, Fengwei Yu,
Xianglong Liu, Dawn Song, Alan Yuille, et al. Robustart: Benchmarking robustness on
architecture design and training techniques. arXiv preprint arXiv:2109.05211, 2021.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu,
Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep high-resolution
representation learning for visual recognition. CoRR, abs/1908.07919, 2019a.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning
and logical reasoning using a differentiable satisfiability solver. In International Conference
on Machine Learning, pp. 6545–6554. PMLR, 2019b.

Ezra Winston and J. Zico Kolter. Monotone operator equilibrium networks. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

Cihang Xie and Alan L. Yuille. Intriguing properties of adversarial training at scale. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and Quoc V Le.
Adversarial examples improve image recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 819–828, 2020.

Xingyu Xie, Jianlong Wu, Guangcan Liu, Zhisheng Zhong, and Zhouchen Lin. Differentiable
linearized admm. In International Conference on Machine Learning, pp. 6902–6911. PMLR,
2019.

Xingyu Xie, Jianlong Wu, Guangcan Liu, Zhisheng Zhong, and Zhouchen Lin. Optimization
induced deep equilibrium networks. arXiv preprint arXiv:2105.13228, 2021.

Chong You, Daniel Robinson, and René Vidal. Scalable sparse subspace clustering by
orthogonal matching pursuit. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3918–3927, 2016.

Bohang Zhang, Tianle Cai, Zhou Lu, Di He, and Liwei Wang. Towards certifying l infinity)
robustness using neural networks with l infinity-dist neurons. CoRR, abs/2102.05363,
2021.

Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Edward Y Chang. Exact recoverability
of robust pca via outlier pursuit with tight recovery bounds. In Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

Quanshi Zhang and Song-Chun Zhu. Visual interpretability for deep learning: a survey.
arXiv preprint arXiv:1802.00614, 2018.

Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neu-
ral networks. In 2018 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 8827–8836.
Computer Vision Foundation / IEEE Computer Society, 2018a. doi: 10.1109/CVPR.
2018.00920. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_
Interpretable_Convolutional_Neural_CVPR_2018_paper.html.

Xiao Zhang, Lingxiao Wang, Yaodong Yu, and Quanquan Gu. A primal-dual analysis of
global optimality in nonconvex low-rank matrix recovery. In International conference on
machine learning, pp. 5862–5871. PMLR, 2018b.

12

http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Interpretable_Convolutional_Neural_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Interpretable_Convolutional_Neural_CVPR_2018_paper.html

Under review as a conference paper at ICLR 2022

A Appendix

A.1 Paralleling Multi-Branch OptEqs

Experiments show that even a simple one-layer OptEqs module enjoys impressive generaliza-
tion abilities. If we view a simple one-layer OptEqs module as a powerful feature generator,
we can use an "ensemble" scheme on the DEQs by paralleling several DEQ modules. Then we
get the multi-branch implicit structure (formulated as Eqn.10), which is capable of utilizing
samples of multi-resolution but also retains the capability of recovering to an optimization
problem.

z∗1 = W>
1 σ(W1z

∗
1 + U1g(x) + b1),

......

z∗L = W>
Lσ(WLz

∗
L + ULg(x) + bL),

(10)

where z∗i denotes the equilibrium outputs of i-th branch, we call this structure Parallel-
OptEqs (POptEqs). Like (Xie et al., 2021) stated for OptEqs, the POptEqs can also be
depicted as solving the following problem (Eqn.11) if Wi is invertible and σ(·) is activation
function,

min
z1,...,zL

G(z1, ..., zL; g(x)) = min
z1,...,zL

L∑
i=1

[
1>f(W−1>

i zi)−
〈
Uig(x) + bi,W

−1>
i z

〉
+

1

2
‖W−1>

i zi‖2 −
1

2
‖zi‖2

]
,

(11)

where g(x) is the input feature with raw input x, zi ∈ Rdi×1 and f added for the activation
function. For example f is the positive orthant f(x) = I{x ≥ 0} if we use ReLU activation,
since (I + ∂f)−1 is the ReLU activation function, other activation functions can be found in
Li et al. (2019).The calculation of the above structure (Eqn.10) is equivalent to solving the
stationary points ∇ziG = 0.

A.2 Adversarial Perturbations.

Adversarial perturbations aim to cheat well-trained neural networks with small or unnoticeable
changes on natural images. The adversarial perturbations can be obtained by solving the
following maximum problem for input xnat and label y:

max
δ∈C

L(fNN (xnat + δ); y),

where C is the feasible set of δ in case the change is too large and usually chosen to be
an l-infinite ball. Due to the neural network is a non-convex function for δ, obtaining the
perturbation is not easy. The most popular method is the PGD-k method which solves the
above problem by implementing the projected gradient method by k times. Although the
performance of such a method is satisfactory in most cases, it makes the whole training
procedure k + 1 times slower than the origin. In our work, we replace the above objective
function with our model’s hidden objective function. Since the hidden optimization problem is
convex with respect to the perturbation, we can get the perturbation much easier. Moreover,
such perturbation can also enhance the generalization abilities, as shown in the experiments.

A.3 Proofs for Proposition.1

In this section, we are going to prove that the equilibrium equation Eqn.1 is also the first
order stationary points for the optimization problem 5.

13

Under review as a conference paper at ICLR 2022

Proof 1 The equilibrium equations Eqn.1 in the proposition can be separated into different
branches as follows:

z1 = W>
1 σ (W1h1 (z1, zL, z2) + U1g(x) + b1) ,

......

zi = W>
i σ (Wihi (zi, zi−1, zi+1) + Uig(x) + bi) ,

......

zL = W>
Lσ (WLhL (zL, zL−1, z1) + ULg(x) + bL) ,

(12)

where hi : Rdi × Rdi+1 × Rdi−1 → Rdi can be defined as:

hi(zi, zi−1, zi+1) =
1

2
(Pi:i+1zi+1 + P>i−1:izi−1)

− λ

2
vec

(
vec−1(Pi:i+1zi+1)sign [Mi:i+1 − diag(Mi:i+1)]

)
− λ

2
vec(vec−1

(
P>i−1:izi−1)sign

[
M>i−1:i − diag(Mi−1:i)

])
,

(13)

where
Mi:i+1 = vec−1(Pi:i+1zi+1)>vec−1(zi).

First, we need to prove that

h(zi, zi−1, zi+1) = −1

2
∇zi

L∑
i=1

[λD(zi, zi+1)−H(zi, zi+1)] (14)

The derivatives for the right term can be divided as the derivatives for H and D:

∇zi

L∑
k=1

H(zk, zk+1) = ∇zi

L∑
k=1

z>k Pk:k+1zk+1

= ∇zi(z
>
i Pi:i+1zi+1 + z>i−1Pi−1:izi)

= Pi:i+1zi+1 + P>i−1:izi−1

which is the first term of hi. Then we are going to calculate the derivatives for D:

∇zi

L∑
k=1

D(zk, zk+1) = ∇zi

L∑
k=1

c∑
k1=1

c∑
k2 6=k1

|vec−1(zk)(k1)>vec−1(Pk:k+1zk+1)(k2)|

= ∇zi

 c∑
k1=1

c∑
k2 6=k1

|vec−1(zi)
(k1)>vec−1(Pi:i+1zi+1)(k2)|

+

c∑
k1=1

c∑
k2 6=k1

|vec−1(zi−1)(k1)>vec−1(Pi−1:izi)
(k2)|


= vec

∇vec−1(zi)

 c∑
k1=1

c∑
k2 6=k1

|vec−1(zi)
(k1)>vec−1(Pi:i+1zi+1)(k2)|

+

c∑
k1=1

c∑
k2 6=k1

|vec−1(zi−1)(k1)>vec−1(Pi−1:izi)
(k2)|


with the following equation holds for the sampling matrix Pi−1:i and sampling is done for
each channel independently:

vec−1(zi−1)(k1)>vec−1(Pi−1:izi)
(k2) = vec−1(P>i−1:izi−1)(k1)>vec−1(zi)

(k2)

14

Under review as a conference paper at ICLR 2022

The equation can be formulated as:

∇zi

1

2

L∑
k=1

D(zk, zk+1) = vec

∇vec−1(zi)

 c∑
k1=1

c∑
k2 6=k1

|vec−1(zi)
(k1)>vec−1(Pi:i+1zi+1)(k2)|

+

c∑
k1=1

c∑
k2 6=k1

|vec−1(P>i−1:izi−1)(k1)>vec−1(zi)
(k2)|


Since

∇vec−1(zi)

c∑
k1=1

c∑
k2 6=k1

|vec−1(zi)
(k1)>vec−1(Pi:i+1zi+1)(k2)|

=

∇vec−1(zi)(1)

 c∑
k1=1

c∑
k2 6=k1

|vec−1(zi)
(k1)>vec−1(Pi:i+1zi+1)(k2)|

 , ...,∇vec−1(zi)(C)(...)


=

 L∑
k2 6=1

sign(vec−1(zi)
(1)>vec−1(Pi:i+1zi+1)(k2))vec−1(Pi:i+1zi+1)(k2),

...,

L∑
k2 6=C

sign(vec−1(zi)
(C)>vec−1(Pi:i+1zi+1)(k2))vec−1(Pi:i+1zi+1)(k2)


=vec−1(Pi:i+1zi+1)sign[vec−1(Pi:i+1zi+1)>vec−1(zi)− diag(vec−1(Pi:i+1zi+1)>vec−1(zi))]

=vec−1(Pi:i+1zi+1)sign[Mi:i+1 − diag(Mi:i+1)],

In the same manner, we can get,

∇vec−1(zi)

c∑
k1=1

c∑
k2 6=k1

|vec−1(P>i−1:izi−1)(k1)>vec−1(zi)
(k2)|

=vec−1(P>i−1:izi−1)sign[M>i−1:i − diag(Mi−1:i)]

Taking all the terms together, we’ve proved the correctness of Eqn.14. Then we can proved
the relationships between Eqn.12 and the first-order stationary points for Eqn.5. Take zi for
an example:

0 = ∇zi

L∑
i=1

[
1>f(W−1>

i zi)−
〈
Uig(x) + bi,W

−1>
i z

〉
+

1

2

(
λD(zi, zi+1) + ‖W−1>zi‖2 −H(zi, zi+1)

)]
0 = W−1

i (I + ∂f)(W−1>
i zi)−W−1

i (Uig(x) + bi)− h(zi, zi−1, zi+1)

Then we can get the equilibrium equation:

zi = W>
i σ(Wihi(zi, zi−1, zi+1) + Uig(x) + bi),

the proof is the same for all i. In this manner, we proved the relations between the structure
and the optimization problems. The proof for the proposition is complete.

A.4 Proofs for Proposition.2

Proof 2 From the preliminaries above, the difference between G(z′∗; g(x)−δ) and G(z∗; g(x))
with δ = εSIGN(U>W−1>z∗) is as follows:

G(z′∗; g(x)− δ)−G(z∗; g(x)) = G(z′∗; g(x))−G(z∗; g(x)) +
〈
εsign(U>W−1>z∗),U>W−1>z′∗

〉
Since z∗ is the minimizer of G at g(x), the above function can be converted as follows:

G(z′∗; g(x)− δ)−G(z∗; g(x)) ≥
〈
εsign(U>W−1>z∗),U>W−1>z′∗

〉
= ε‖U>W−1>z∗‖1 −

〈
εsign(U>W−1>z∗),U>W−1>(z∗ − z′∗)

〉
15

Under review as a conference paper at ICLR 2022

From the structure of OptEqs, we can get:

εSIGN(U>W−1>z∗)>U>W−1>(z∗ − z′∗)

≤ε‖U>W−1>(z∗ − z′∗)‖1
≤
√
Nε‖U>W−1>(z∗ − z′∗)‖2

≤
√
Nε‖U>

(
σ(Wz∗ + Ug(x) + b)− σ(Wz′∗ + U(g(x)− δ) + b)

)
‖2

≤
√
Nε‖σ(Wz∗ + Ug(x) + b)− σ(Wz′∗ + U(g(x)− δ) + b)‖2

≤
√
Nε‖Wz∗ + Ug(x) + b−Wz′∗ −U(g(x)− δ)− b‖2

≤
√
Nε‖W(z∗ − z′∗) + Uδ‖2

≤
√
Nε‖W(z∗ − z′∗)‖2 +

√
Nε‖Uδ‖2

≤
√
Nε‖z′∗ − z∗‖2 +Nε2

The inequality is acquired because of the Lipshitzness of common activation function (ReLU
and Leacky ReLU) and the bounds on weight matrices. With the above results, we can get:

G(z′∗; g(x)− δ)−G(z∗; g(x)) ≥ ε‖U>W−1>z∗‖1 −
√
Nε‖z′∗ − z∗‖2 −Nε2

Then we can obtain the proposition:

max
{
G(z′∗; g(x)− δ)−G(z∗; g(x)),

√
Nε‖z′∗ − z∗‖2

}
≥ 1

2

{
ε‖U>W−1>z∗‖1 −Nε2

}

The proofs are similar when considering the HH&D modules.

A.5 Forward Process of our MOptEqs’ implicit part.

The forward propagation is illustrated as follows:

Algorithm 1: Forward Process of our MOptEqs’ implicit part.
Require: Input x, initial points {zi}Li=1, perturbation size ε, δ0 = 0, maximum
perturbation size ε.

Ensure: Equilibrium points{zi}Li=1
Calculate the input feature g(x).
The calculation of ∇z̃G(z̃; g(x)) = 0 is the same as finding the equilibrium points

Tθ = ∇z̃G+ z̃ = z̃

.
Use Broyden (Broyden, 1965) or Anderson Method (Anderson, 1965) or others to find
roots of the following equation like MDEQ:

Tθ(z̃; g(x)) = z̃

return z̃ = {z∗i }Li=1

And the calculation of Tθ is shown as follows:

16

Under review as a conference paper at ICLR 2022

Algorithm 2: The Calculation of Tθ = ∇z̃G+ z̃ at (z̃, g(x)).
Require: Input feature g(x), initial points {zi}Li=1, perturbation size ε, δ0 = 0, maximum
perturbation size ε.

Ensure: Output Tθ = ∇z̃G(z̃; g(x)) + z̃
for i ∈ RANGE(1, L) do
k1, k2 ← neighbor of i in L-loop
Calculate zpi by hi (Shown in Fig.1 (b)):
zpi ← hi(zi, zi−1, zi+1)

if Use PE Method then
yi ← σ(Wizpi + Ui(g(x)− δi−1) + bi)
δi ← εSIGN(U>i yi)

else
yi ← σ(Wizpi + Uig(x) + bi)

end if
zi ←W>

i yi
end for
return {z∗i }Li=1

A.6 Experiments details of MOptEqs for the experiments Classification.

A.6.1 CIFAR-10

For classification tasks of single-view models, we set the channel number of each branch to 32,
λ = 0.01 and perturbation size ε = 0.1 for the small MOptEqs with three branches for the
single-view comparison as OptEqs. The batch size is set to be 128 for all the experiments.

As for the multi-scale models’ comparison, we use four branches with each branch take inputs
with resolutions equals 32, 16, 8, 4 like MDEQ, the output channel number for each branch
is 256 for MOptEqs with 1.9M learnable parameters. At the same time, we set the channel
number to be 128 for MOptEqs with 0.48M learnable parameters. And we set λ = 0.001 and
perturbation size ε = 0.1 for the experiments.

We use the widely used SGD algorithm for training procedure. We set weight decay to be
0.001 and the initial learning rate start from 0.1 and decay by 0.1 at 100, 150, 175-th epoch
with 200 epochs in total like others. We use the standard data augmentation for all the
experiments.

Our implementation for small MDEQ only changes the channel number of MDEQ’s 10M
model to obtain the comparable size with our model, without changing the training settings
and its hyper-parameters.

A.6.2 CIFAR-100

Except for CIFAR-10, we also finish the experiments on CIFAR-100 classification2 to further
verify our model’s effectiveness. The model we used is the same as the models used in
the multi-scale comparison, only changing the output from 10 to 100 for classification.
MDEQ with 11M parameter is the same model as (Bai et al., 2020) proposed for CIFAR-10
experiment with only changing the output from 10 to 100 for CIFAR-100. Moreover, the
hyper-parameter setting is also the same as (Bai et al., 2020) proposed in the paper.

We use the widely used SGD algorithm for training procedure. We set weight decay to be
0.001 and the initial learning rate start from 0.1 and decay by 0.1 at 100, 150, 175-th epoch
with 200 epochs in total like others. We use the standard data augmentation for all the
experiments.

2https://www.cs.toronto.edu/ kriz/cifar.html

17

Under review as a conference paper at ICLR 2022

0 5010 20 30 40
Iteration Numbers

10-4

10-2

100

R
el

at
iv

e
E

rr
o

r

λ=0.005
λ=0.01
λ=0.1

(a) Plot of small MOptEqs’ convergence
with respect to different λ.

0 5010 20 30 40
Iteration Numbers

10-6

10-4

10-2

100

R
el

at
iv

e
E

rr
o

r

(b) Plot of multi-scale
MOptEqs’ (λ = 0.001) convergence.

Figure 4: The convergent iterations’ of our forward root-finding procedure used for our
MOptEqs (λ = 0.001) forward propagation. Relative error is defined as ‖T

j+1−T j‖2
‖T j‖2 .

A.6.3 ImageNette

Besides the classification for images with small size, we also conduct the experiments on the
Imagenette3, which is a subset of 10 classes from ImageNet4 with 9469 training photos and
its test set consists of 3925 images. Furthermore, we use the full-size version of Imagenette5
further to verify the superiority of our models on large-scale images. The model architecture
for our MOptEqs and MDEQ (for comparison) is the same as the ones used in the multi-scale
models’ comparison for CIFAR-10 except adding two downsampling layers in the head of
models to downsample the input size from 256 to 64. As for the hyper-parameters, we only
change the weight decay to be 5e − 5, batch size to be 32 and extend the whole training
epochs to 200 with 100-th, 150-th, 175-th for the learning rate decay for all the models. All
the hyper-parameters for both MOptEqs and MDEQs are hardly changed during all the
datasets.

A.7 Convergence validation for our MOptEqs.

As shown in Figure.4(a), the Anderson method can quickly find the equilibrium points for our
small MOptEq used for single-view comparison. From the figure, one can see that MOptEqs
with proper λ (around or smaller than 1

C , around 0.03 in this circumstance) can ensure the
whole mappings be contractive. But too large λ will make the model hard to converge or
even fail.

Apart from plotting the convergent iterations’ of our forward root-finding procedure for the
small MOptEqs (shown in Figure.4 (a)), we also draw figures to show the convergence of the
forward propagation for our multi-scale MOptEqs (λ = 0.001) used in the imagenette and
CIFAR experiments as Figure.4 (b) shown. We use the pre-trained model on Imagenette
whose prediction accuracy is reported in the above sections. One can see that our multi-scale
MOptEqs can also quickly converge to the equilibrium points as we expected.

A.8 Ablation Studies on the impact of D and H part

In this section, we analyzed the influence of our D and H term for a single-branch MOptEq
model trained without PE method shown in Table. 3. We set λ = 0.02 for the experiment.
From the table, one can see that the contribution of the H term is slightly higher than
the diversity term. But considering both two terms can significantly improve the results
comparing with MOptEqs without considering these two terms.

3https://github.com/fastai/imagenette/
4https://www.image-net.org/
5https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz

18

Under review as a conference paper at ICLR 2022

Model Natural Accuracy

MOptEqs 89.1%

- D 88.6%
- H 88.4%
- D,H 87.4%

Table 3: Evaluation on MOptEqs trained with and without considering D and H part.

A.9 Experiments on the ImageNet

Except CIFAR and Imagenette, we also conducted experiments on ImageNet with 13M
parameters shown as below:

Model Model Size Natural Accuracy

ResNet 13M 70.3%
HR-Net 13M 72.3%
MOptEqs 13M 72.5%

Table 4: Evaluation on MOptEqs on ImageNet.

From the results, one can see that our model can achieve the satisfying performance on
ImageNet compared with the state-of-the-art models.

A.10 PE method and robustness

From the above experiments, one can see that the PE method may also improve the robustness
of our MOptEqs. In this section, we conduct experiments to see whether the PE methods
can further enhance the robustness of MOptEqs when we use adversarial training methods
on these models. We finish comparisons of PGD-3 training for the single-view MOptEq
with or without PE, and the result is shown as follows: From the table, we can conclude

Model Natural Accuracy PGD-20 Accuracy(ε = 8
255)

PGD-3 w/o PE 78.60% 37.18%
PGD-3 w. PE 78.40% 38.05%

Table 5: Evaluation on MOptEqs trained by PGD-3 with and without PE method.

that our PE method can improve the robustness of our MOptEqs model trained by the
adversarial training method. Such advantages also demonstrate the superiority of our models’
mathematical interpretability since the PE method is acquired based on the model’s hidden
optimization problem.

A.11 Other Training methods: Fixed Point method and One-step gradients

A.11.1 Methods

Since our model is not so complicated, we can use the fixed point method for L iteration for
the forward propagation. While for the back propagation, we can use BPTT (Mozer, 1989)
and (Geng et al., 2021) proposed method, which only backward the final forward iterations
using the chain rule:

∂L
∂(·)

=
∂L
∂T LΘ

∂T LΘ
∂(·)

where θ ∈ Θ are the learnable parameters for the implicit models, T LΘ denotes the output z
for the L-th fixed-point iteration. Since the back-propagation of such a strategy is similar

19

Under review as a conference paper at ICLR 2022

to backwards only a single layer of DNN module without the calculation of root-finding
algorithm for the Jacobian in the implicit differentiation, the computational cost is much
less than the implicit method. However, the gradient approximated by such a method is
not accurate and may cause the performance drop. However, as we illustrated below, such
a method can be regarded as a trade-off if the computational resources of training are not
enough.

A.11.2 Empirical Results and Computational Efficiency of One-stpe
Gradient

We take the ImageNette dataset as an example, the training memory cost, forward time,
and test accuracy are shown as follows (each batch contains 32 images and is finished on 2 x
GTX 1080Ti for 200 epochs):

Model Memory/Batch Infer Time/Batch Total Time Accuracy

MDEQ 8GB 1.06s 9h 91.42%
MOptEq(one step) 3GB 0.26s 3h 91.21%

Table 6: The comparison of the computational cost of MDEQ and our MOptEqs (trained by
one-step gradient).

The results shows that the one-step gradient methods can save a lot computation resources
while with slightly drop on the performance.

20

	Introduction
	Related Works

	Multi-Branch Optimized Induced Equilirium Models
	The proposed architecture for the Multi-Branch OptEqs
	The proposed Training Strategy for MOptEqs
	Model Optimization and Forward Convergence

	Experimental Results
	Comparison of Prior Implicit Models
	The comprehensive understanding of MOptEqs

	Conclusion
	Appendix
	Paralleling Multi-Branch OptEqs
	Adversarial Perturbations.
	Proofs for Proposition.1
	Proofs for Proposition.2
	Forward Process of our MOptEqs' implicit part.
	Experiments details of MOptEqs for the experiments Classification.
	CIFAR-10
	CIFAR-100
	ImageNette

	Convergence validation for our MOptEqs.
	Ablation Studies on the impact of D and H part
	Experiments on the ImageNet
	PE method and robustness
	Other Training methods: Fixed Point method and One-step gradients
	Methods
	Empirical Results and Computational Efficiency of One-stpe Gradient

