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Short Papers1

Towards Understanding Convergence and Generalization of AdamW2

Pan Zhou , Xingyu Xie , Zhouchen Lin , Fellow, IEEE, and Shuicheng Yan , Fellow, IEEE3

Abstract—AdamW modifies Adam by adding a decoupled weight decay4
to decay network weights per training iteration. For adaptive algorithms,5
this decoupled weight decay does not affect specific optimization steps,6
and differs from the widely used �2-regularizer which changes optimiza-7
tion steps via changing the first- and second-order gradient moments.8
Despite its great practical success, for AdamW, its convergence behavior9
and generalization improvement over Adam and �2-regularized Adam10
(�2-Adam) remain absent yet. To solve this issue, we prove the conver-11
gence of AdamW and justify its generalization advantages over Adam12
and �2-Adam. Specifically, AdamW provably converges but minimizes a13
dynamically regularized loss that combines vanilla loss and a dynamical14
regularization induced by decoupled weight decay, thus yielding different15
behaviors with Adam and �2-Adam. Moreover, on both general nonconvex16
problems and PŁ-conditioned problems, we establish stochastic gradient17
complexity of AdamW to find a stationary point. Such complexity is also18
applicable to Adam and �2-Adam, and improves their previously known19
complexity, especially for over-parametrized networks. Besides, we prove20
that AdamW enjoys smaller generalization errors than Adam and �2-Adam21
from the Bayesian posterior aspect. This result, for the first time, explicitly22
reveals the benefits of decoupled weight decay in AdamW. Experimental23
results validate our theory.24

Index Terms—Adaptive gradient algorithms, analysis of AdamW,25
convergence of AdamW, generalization of AdamW.26

I. INTRODUCTION27

Adaptive gradient algorithms, e.g., Adam [1], have become the28

most popular optimizers to train deep networks because of their faster29

convergence speed than SGD [2], with many successful applications30

in computer vision [3], [4] and natural language processing [5], etc.31

Similar to the precondition in the second-order algorithms [6], adaptive32

algorithms precondition the landscape curvature of loss objective to33
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adjust the learning rate for each gradient coordinate. This precondition 34

often helps these adaptive algorithms achieve faster convergence speed 35

than their non-adaptive counterparts, e.g., SGD which uses a single 36

learning rate for all gradient coordinates. Unfortunately, this precon- 37

dition also brings negative effect. That is, adaptive algorithms usually 38

suffer from worse generalization performance than SGD [7], [8], [9], 39

[10]. 40

As a leading adaptive gradient approach, AdamW [11] greatly 41

improves the generalization performance of adaptive algorithms on 42

vision transformers (ViTs) [12] and CNNs [13], [14]. The core of 43

AdamW is a decoupled weight decay. Specifically, AdamW uses an 44

exponential moving average to estimate the first-order moment mk 45

and second-order moment nk like Adam, and then updates network 46

weights xk+1=xk−ηmk/
√
nk+δ−ηλkxk with a learning rate η, a 47

weight decay parameter λk, and a small constant δ. One can observe that 48

AdamW decouples the weight decay from the optimization steps w.r.t. 49

the loss function, since the weight decay is always −ηλkxk no matter 50

what the loss and optimization step are. This decoupled weight decay 51

becomes �2-regularization for SGD, but differs from �2-regularization 52

for adaptive algorithms. Thanks to its effectiveness, AdamW has been 53

widely used in network training. But there remain many mysteries about 54

AdamW yet. Firstly, it is not clear whether AdamW can theoretically 55

converge or not, and if yes, what convergence rate it can achieve. More- 56

over, for the generalization superiority of AdamW over the widely used 57

Adam and �2-regularized Adam (�2-Adam), the theoretical reasons are 58

rarely investigated though heavily desired. 59

Contributions: To resolve these issues, we provide a new viewpoint 60

to understand the convergence and generalization behaviors of AdamW. 61

Particularly, we theoretically prove the convergence of AdamW, and 62

also justify its superior generalization to (�2)-Adam. Our main contri- 63

butions are highlighted below. 64

Firstly, we prove that AdamW can converge but minimizes a dynam- 65

ically regularized loss that combines the vanilla loss and a dynamical 66

regularization induced by the decoupled weight decay. Interestingly, 67

this dynamical regularization differs from the commonly used �2- 68

regularization, and thus yields the different behaviors between AdamW 69

and �2-Adam. For convergence speed, on general nonconvex problems, 70

AdamW finds an ε-accurate first-order stationary point within stochastic 71

gradient complexity O(c2.5∞ ε−4) when using constant learning rate 72

and O(c1.25∞ ε−4 log( 1
ε
)) with decaying learning rate, where c∞ is the 73

�∞-norm upper bound of stochastic gradient. When ignoring logarithm 74

terms, both complexities match the lower complexity bound O(ε−4) 75

in [15]. These complexities are applicable to Adam and �2-Adam, 76

and improve their previously known complexities O(c∞
√
dε−4) and 77

O(c∞
√
dε−4 log( 1

ε
)) when respectively using constant and decaying 78

learning rate [16], [17], [18], as c∞ is often much smaller than the net- 79

work parameter dimension d. On PŁ-conditioned nonconvex problems, 80

our established complexity of AdamW also enjoys similar advantages. 81

Next, we theoretically show the benefits of the decoupled weight 82

decay in AdamW to the generalization performance from the Bayesian 83
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posterior aspect. Specifically, we show that a proper decoupled weight84

decay λk > 0 helps AdamW achieve smaller generalization error, in-85

dicating the superiority of AdamW over vanilla Adam that corresponds86

to λk = 0. We further analyze �2- regularized Adam, and observe87

that AdamW often enjoys smaller generalization error bound than88

�2-regularized Adam. To our best knowledge, this work is the first89

one that explicitly shows the superiority of AdamW over Adam and its90

�2-regularized version.91

II. RELATED WORK92

Convergence Analysis: Adaptive gradient algorithms, e.g., Adam,93

have become the default optimizers in deep learning because of their fast94

convergence speed. Accordingly, many works investigate their conver-95

gence to deepen their understanding. On convex problems, Adam-type96

algorithms, e.g., Adam and AMSGrad [19], enjoy the regret O(
√
T )97

under the online learning setting with training iteration number T .98

For nonconvex problems, Adam-type algorithms have the stochastic99

gradient complexity O(c∞
√
dε−4) to find an ε-accurate stationary100

point [18], [20]. RMSProp and Padam [17] are proved to have the101

complexity O(
√
c∞dε−4) [16], and Adabelief [21] has O(c62ε

−4) com-102

plexity, where c2 is the �2-norm upper bound of stochastic gradient.103

But the convergence behaviors of AdamW remains unclear, though it104

is the dominant optimizer for vision transformers [12] and CNNs [13].105

Generalization Analysis: Most works, e.g., [22], [23], [24], analyze106

the generalization of an algorithm through studying its stochastic differ-107

ential equations (SDEs) because of the similar convergence behaviors108

of an algorithm and its SDE. For instance, by formulating SGD into109

Brownian- or Lévy-driven SDEs, SGD always provably tends to con-110

verge to flat minima and thus enjoys good generalization [9], [24]. Re-111

cently, for weight decay, the works [25], [26], [27] intuitively claim that112

for layers followed by normalizations, e.g., BatchNormalization [28],113

weight decay increases the effective learning rate by reducing the scale114

of the network weights, and higher learning rates give larger gradient115

noise which often acts a stochastic regularizer. But Zhou et al. [29]116

argued the benefits of weight decay to the layers without normal-117

ization, e.g., fully-connected networks, and further empirically found118

the regularization effects of weight decay to the last fully-connected119

layer of a network. Unfortunately, none of them explicitly show the120

generalization benefits of weight decay in AdamW. Here we borrow121

the aforementioned SDE tool and PAC Bayesian framework [30] to122

explicitly analyze the generalization effects of decoupled weight decay123

of AdamW and also its superiority over �2-Adam.124

III. NOTATION AND PRELIMINARILY125

AdamW & �2-Adam: We first briefly recall the steps of AdamW,126

Adam and �2-Adam to solve the stochastic nonconvex problem:127

minx∈Rd F (x) := Eξ∼D[f(x, ξ)], (1)

where loss f is differentiable and nonconvex, sample ξ is drawn from128

a distribution D. To solve problem (1), at the k-th iteration, AdamW129

estimates the current gradient ∇F (xk) as the minibatch gradient gk=130
1
b

∑b
i=1∇f(xk; ξi), and updates the variable x with three constants131

β1 ∈ [0, 1], β2 ∈ [0, 1] and δ > 0:132

mk = (1− β1)mk + β1gk, nk = (1− β2)nk + β2g
2
k,

xk+1 = xk − ηmk/
√

nk+δ − ηλkxk, (2)

where m0=g0, n0=g2
0, and all operations (e.g., product, division)133

involved vectors are element-wise. Here we allow λk to evolve along134

iteration number k, as in practice, an evolving λk often shows better135

performance than a fixed one [4], [31], [32], [33]. See detailed AdamW136

in Algorithm 1 of Appendix B, available online. AdamW differs from 137

vanilla Adam in the third step of (2). Specifically, AdamW decou- 138

ples weight decay from the optimization steps, as weight decay is 139

always −ηλkxk no matter what the loss and optimization step are. 140

But �2-Adam adds a conventional weight decay λkxk into the gradient 141

estimation gk=
1
b

∑b
i=1∇f(xk; ξi)+λkxk, then updates mk and nk 142

in (2), andxk+1 = xk − ηmk/
√
nk+δ. The decoupled weight decay 143

in AdamW often achieves better generalization than �2-Adam on many 144

networks, e.g., [12], [14]. 145

Analysis Assumptions: Here we introduce necessary assumptions for 146

analysis, which are commonly used in [1], [8], [19], [34], [35], [36]. 147

Assumption 1 (L-smoothness): The function f(·, ·) is L-smooth 148

w.r.t. the parameter, if ∃L > 0, for ∀x1,x2 and ξ ∼ D, we have 149

‖∇f(x1, ζ)−∇f(x2, ζ)‖2 ≤ L ‖x1 − x2‖2 .
Assumption 2 (Gradient assumption): The gradient estimation gk 150

is unbiased, and its magnitude and variance are bounded: 151

E[gk] = ∇F (xk), ‖gk‖∞ ≤ c∞, E[‖∇F (xk)− gk‖22] ≤ σ2.

When a nonconvex problem satisfies Assumptions 1 and 2, the lower 152

bound of the stochastic gradient complexity (a.k.a. IFO complexity) to 153

find an ε-accurate first-order stationary point is Ω(ε−4) [15]. Next, we 154

introduce Polyak-Łojasiewicz (PŁ) condition which is widely used in 155

deep network analysis, since as observed or proved in [37], [38], [39], 156

[40], deep neural networks often satisfy PŁ condition at least around a 157

local minimum. 158

Assumption 3 (PŁ Condition): Let x∗ ∈argminxF (x). We say 159

a function F (x) satisfies μ-PŁ condition if it satisfies 2μ(F (x)− 160

F (x∗))≤‖∇F (x)‖22 (∀x), where μ is a universal constant. 161

IV. CONVERGENCE ANALYSIS 162

Here we first use a specific least square problem to compare the 163

convergence behavior of AdamW and �2-Adam. Next, we study the 164

convergence of AdamW on general nonconvex problems and show its 165

performance improvement on PŁ-conditioned problems. 166

A. Results on Specific Least Square Problems 167

Here we first use a specific least square problem (3) to analyze the 168

different convergence performance of AdamW and �2-Adam: 169

minx∈R F (x) := Eξ∼N (0,1)
1

2
‖ax− ξ‖22, (3)

where a �= 0 is a constant. Then we state our main results in Theorem 1 170

whose proof can be found in Appendix G.1, available online. 171

Theorem 1: Suppose that stochastic gradient gk is unbiased, 172

E[‖gk‖2] ≤ τ , and E‖x0 − x∗‖2 ≤ Δ. Then with learning rate ηk = 173

O( 1
k
) and λk = λ = O(

√
k), the sequence {xk} generated by AdamW 174

obeys: 175

E[‖xk − x∗‖2] ≤
(
1− 1/

√
k
) 3˜k

2
Λ+

τ

k
1
2+α

,

where α>0, Λ=η0+Δ. With learning rate ηk=O( 1√
k
) and λk=λ= 176

O(
√
k), the sequence {xk} generated by �2-Adam obeys: 177

E[‖xk − x∗‖2] ≤
(
1− 1/

√
k
) k

2
Λ+

2τ

k
1
2

.

Theorem 1 shows that AdamW enjoys a faster convergence speed 178

than �2-Adam on the least square problem in (3). Specifically, the 179

first convergence term (1− 1/
√
k)

3˜k
2 Λ in AdamW converges much 180

faster than the corresponding term (1− 1/
√
k)

k
2 Λ in �2-Adam. For 181
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the second term τ

k
1
2
+α

in AdamW, it improves the corresponding term182

in �2-Adam by a factor of 2˜kα (α > 0). This comparison shows the183

superiority of AdamW over �2-Adam, and thus partially explains their184

different convergence behaviors.185

B. Results on Nonconvex Problems186

Now we move on to the general and also PŁ conditioned nonconvex187

problems. We first define a dynamic surrogate function Fk(x) at the188

k-th iteration which is indeed the combination of the vanilla loss F (x)189

in Eq. (1) and a dynamic regularization λ
2
‖x‖2vk

:190

Fk(x) = F (x) +
λk

2
‖x‖2vk

= Eζ [f(θ; ζ)] +
λk

2
‖x‖2vk

, (4)

where vk=
√
nk + δ and ‖x‖vk

=
√〈x,vk � x〉 with element-wise191

product �. To minimize (4), one can approximate vanilla loss F (x) by192

its Taylor expansion, and compute xk+1:193

xk+1≈argminxF (xk)+〈∇F (xk),x− xk〉+ 1

2η
‖x− xk‖2vk

+
λk

2
‖x‖2vk

=
1

1 + λkη
(xk − η∇F (xk)/vk) .

Then considering η is very small in practice, one can approximate194
1

1+λkη
≈1−λkη, and the factor λkη

2 for the term F (xk)/vk is too195

small and can be ignored compared with η. Finally, in stochastic196

setting, one can use the gradient estimationmk to estimate full gradient197

∇F (xk), and thus achieves xk+1 = (1− λkη)xk − ηmk/vk which198

accords with the update (2) of AdamW. From this process, one can199

also observe that the dynamic regularizer λ
2
‖x‖2vk

is induced by the200

decoupled weight decay −λkηxk in AdamW. In the following, we201

will show that AdamW indeed minimizes the dynamic function Fk(x)202

instead of the vanilla loss F (x).203

C. Results on General Nonconvex Problems204

Following many works which analyze adaptive gradient algo-205

rithms [16], [18], [21], [41], [42], we first provide the convergence206

results of AdamW by using a constant learning rate η.207

Theorem 2: Suppose that Assumptions 1 and 2 hold. Let208

x∗ ∈argminxF (x), Δ=F (x0)−F (x∗), η≤ δ1.25bε2

6(c2∞+δ)0.75σ2˜L
, β1≤209

δ0.5bε2

3(c2∞+δ)0.5σ2 and β2∈(0, 1) for all iterations, and λk = λ(1− β2c
2∞

δ
)k210

with a constant λ. After T =O(max( c
2.5∞ LΔσ2

δ1.25bε4
, c2∞σ4

δb2ε4
)) iterations, the211

sequence {xk}Tk=0 of AdamW in (2) obeys212

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖22

]
≤ε2, 1

T

T−1∑
k=0

E
[
‖xk − xk+1‖2vk

]
≤ η2ε2

4
,

1

T

T−1∑
k=0

E
[
‖mk−∇F (xk)‖22

]
≤8ε2. (5)

Moreover, the total stochastic gradient complexity to achieve (5) is213

O(max( c
2.5∞ LΔσ2

δ1.25ε4
, c2∞σ4

δbε4
)).214

See its proof in Appendix G.2, available online. Theorem 2215

shows the convergence of AdamW on the nonconvex problems.216

WithinT = O(max( c
2.5∞ LΔσ2

δ1.25bε4
, c2∞σ4

δb2ε4
)) iterations, the average gradient217

1
T

∑T−1
k=0 E[‖∇Fk(xk)‖22] is smaller than ε2, indicating the conver-218

gence of AdamW. Now we show small ‖∇Fk(xk)‖2 guarantees small219

‖∇F (xk)‖2 in Corollary 1 with proof in Appendix G.3, available 220

online. 221

Corollary 1: Assume that ‖vk‖2 ≤ ρ′‖∇F (xk)‖2 with a con- 222

stant ρ′ > 0, and 1 > λkρ
′‖xk‖∞. We have ‖∇F (xk)‖2 ≤ 223

1
1−λkρ

′‖xk‖∞ ‖∇Fk(xk)‖2. 224

The assumptions in Corollary 1 are mild. As nk is the moving 225

average of stochastic square version of full gradient ∇F (xk), one 226

can assume ‖nk‖2≤ρ‖∇F (xk)‖22, especially for the late training 227

phase where xk is updated very slowly. Indeed, this assumption is 228

validated in Adam analysis works, e.g., [9]. Specifically, since δ is 229

extremely small invk =
√
nk+δ, one can find a constantρ′ ≈ ρ so that 230

‖vk‖2≤‖∇F (xk)‖2. For assumption 1>λkρ
′‖xk‖∞, it is mild, since 231

a) λk is often very small in practice, e.g., 10−4, and b) the magnitude 232

‖xk‖∞ of network parameter is not large as observed and proved 233

in [43] because of the auto-adaptive tradeoff among the parameter 234

magnitude at different layers. Also, we empirically find ‖xk‖∞≈8.0 235

in the well-trained ViT-small across different training epoch numbers. 236

Indeed, for ρ′, Zhou et al. [9] empirically finds it around 1.0 on CNNs 237

(see their Fig. 2). 238

The second inequality in (5) guarantees the small distance between 239

two neighboring solutionsxk andxk+1, also showing the good conver- 240

gence behaviors of AdamW. The last inequality in Eq. (5) reveals that 241

the exponential moving average (EMA) mk of all historical stochastic 242

gradient is close to the full gradient ∇F (xk) and explains the success 243

of EMA gradient estimation. 244

Besides, in Theorem 2, to find an ε-accurate first-order station- 245

ary point (ε-ASP), the stochastic gradient complexity of AdamW is 246

O(c2.5∞ ε−4) which matches the lower bound Ω(ε−4) in [15] (up to 247

constant factors). Moreover, AdamW enjoys lower complexity than Ad- 248

abelief [21] of O(c62ε
−4) and LAMB [44] of O(c2

√
dε−4), especially 249

on over-parameterized networks, where c2 upper bounds the �2-norm 250

of stochastic gradient. This is because for the d-dimensional gradient, 251

its �∞-norm c∞ is often much smaller than its �2-norm c2, and can be 252√
d× smaller for the best case. Appendix D, available online, discusses 253

the proof technique differences among ours and the above works. One 254

can extend the results in Theorem 2 to �2-Adam. See the proof of 255

Corollary 2 in Appendix G.4, available online. 256

Corollary 2: With the same parameter settings in Theorem 2, to 257

achieve (5), the total stochastic gradient complexity of Adam and �2- 258

Adam is O(max( c
2.5∞ LΔσ2

δ1.25ε4
, c2∞σ4

δbε4
)). 259

Corollary 2 shows that the complexity of Adam and �2-Adam is 260

O(c2.5∞ ε−4), and is superior than the previously known complexity 261

O(c∞
√
dε−4) of Adam-type optimizers analyzed in [16], [17], [18], 262

e.g., (�2-)Adam, AdaGrad [34], AdaBound [8]. Though sharing the 263

same complexity with Adam and �2-Adam, AdamW separates the 264

�2-regularizer with the loss objective via the decoupled weight decay 265

whose generalization benefits have been validated empirically in many 266

works, e.g., [12], and theoretically in our Section V. 267

Now we investigate the convergence performance of AdamW when 268

using a decayed learning rate ηk. Compared with the constant learning 269

rate, this decay strategy is more widely used in practice, but is rarely 270

investigated in other optimization analysis (e.g., [16], [21], [44]) except 271

for [18]. Theorem 2 states our main results. 272

Theorem 3: Suppose that Assumptions 1 and 2 hold. Let 273

ηk=
γδ0.75

2(c2∞+δ)0.25L
√
k+1

, β1˜k=
γ√
k+1

, β2˜k=β2 ∈ (0, 1) with γ = 274

max(1, c0.25∞ L0.5Δ0.5

δ0.125σ
), and λk = λ(1− β2c

2∞
δ

)k with a constant λ 275

for the k-th training iteration. To achieve the results in (5) with η 276

replaced by η1, the stochastic gradient complexity of AdamW in (2) is 277

O(max( c
1.25∞ L0.5Δ0.5σ

δ0.625ε4
log( 1

ε
), c∞σ2

δ0.5ε4
log( 1

ε
))). 278

See its proof in Appendix G.5, available online. Theorem 3 shows 279

that with decaying learning rate ηk=
1√
k+1

, AdamW converges and 280
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shares almost the same results in Theorem 2 where it uses constant281

learning rate. To achieve ε-ASP, the complexity of AdamW with de-282

caying learning rate isO(max( c
1.25∞ L0.5Δ0.5σ

δ0.625ε4
log( 1

ε
), c∞σ2

δ0.5ε4
log( 1

ε
)))283

and slightly differs from the oneO(max( c
2.5∞ LΔσ2

δ1.25ε4
, c2∞σ4

δbε4
)) of AdamW284

using constant learning rate. By comparing each complexity term,285

decaying learning rate respectively improves the constant one by286

factors c1.25∞ L0.5Δ0.5σ

δ0.625
log−1( 1

ε
) and c2∞σ2

δ0.5
log−1( 1

ε
). Consider that287

c1.25∞ L0.5Δ0.5σ

δ0.625
and c∞σ2

δ0.5
are often large than log( 1

ε
), as the �1-288

norm upper bound c∞ of stochastic gradient is often not small and289

δ is very small, e.g., 10−4 by default, decaying learning rate is su-290

perior than constant one which accords with the practical observa-291

tions. When 1) λk=0 or 2) the loss F (x) is a �2-regularized loss,292

Theorem 3 still holds. So the stochastic complexity in Theorem 3293

is applicable to �2-Adam. Guo et al. [18] proved the complex-294

ityO(max( c
2.5∞ L2σ2

δ2.5ε4
log( 1

ε
), c2∞σ4

δ2ε4
log( 1

ε
))) of Adam-type algorithms,295

e.g., Adam and �2-Adam, with decaying learning rate, which but is296

inferior than the complexity in this work, since as aforementioned, δ is297

often very small.298

D. Results on PŁ-Conditioned Nonconvex Problems299

In this work, we are also particularly interested in the nonconvex300

problems under PŁ condition, since as observed or proved in [37], [38],301

deep learning models often satisfy PŁ condition at least around a local302

minimum. For this special nonconvex problem, we follow [18], and303

divide the whole optimization into K stages. Specifically, for constant304

learning rate setting, AdamW uses learning rate ηk in the whole k-th305

stage; while for decayed learning rate setting, it uses a decayed ηki
for306

the k-th stage which satisfies ηki
< ηkj

if i > j, where ηki
denotes307

the learning rate of the i-th iteration of the k-th stage. Moreover, for308

both learning rate settings, at the k-th stage, AdamW is allowed to309

runTk iterations for achieving E[Fk(xk)− Fk(x∗)] ≤ εk, wherex∗ ∈310

argminxF (x), xk is the output of the k-stage and εk = 1
2k

[F0(x0)−311

F0(x∗)] denotes the optimization accuracy. See detailed Algorithm 2312

in Appendix B, available online. At below, we provide the convergence313

results of AdamW under both settings of constant or decayed learning314

rate in Theorem 4 with proof in Appendix G.6, available online.315

Theorem 4: Suppose Assumptions 1 and 2 hold, and x∗ ∈316

argminxF (x). Assume the loss Fk(xk) in (4) and Fk(x∗) satisfy317

the PŁ condition in Assumption 3.318

1) For constant learning rate setting, assume a constant learning rate319

ηk≤ δ1.25μbεk
12(c2∞+δ)0.75σ2˜L

, constant β1˜k≤ δ0.5μbεk
6(c2∞+δ)0.5σ2 , β2˜k∈(0,1) and320

λk=λ(1− β2c
2∞

δ
)k at the k-th stage. We have:321

1.1) For the k-th stage, AdamW runs at most Tk=322

O(max( c2.5∞ Lσ2

μ2δ1.25bεk
, c2∞σ2

μδbεk
)) iterations to achieve E[Fk(xk)323

−Fk(x∗)] ≤ εk, where the output xk is uniformly randomly324

selected from the sequence {xki
}Tk
i=1 at the k-th stage.325

1.2) For K stages, the total stochastic complexity is326

O(max( c2.5∞ Lσ2

μ2δ1.25ε
, c2∞σ2

μδε
)) to achieve327

min1≤k≤K E [Fk(xk)− Fk(x∗)] ≤ ε. (6)

2) For decaying learning rate setting, let ηki
≤ γδ0.75

2(c2∞+δ)0.25L
√
i+1

,328

β1ki
≤ γ√

i+1
, β2ki

=β2˜k∈(0, 1), λki
=λ(1− β2c

2∞
δ

)i at the i-th itera-329

tion of the k-th stage with γ=max(1,
(c2∞+δ)0.125L0.5b0.5ε0.5

k
δ0.125σ

).330

2.1) For the k-th stage, AdamW runs at most Tk = O( c2.5∞ Lσ2

μ2δ1.25bε
) 331

iterations to achieve E[Fk(xk)−Fk(x∗)]≤εk, where the out- 332

put xk is randomly selected from the sequence {xki
}Tk
i=1 at 333

the k-th stage according to the distribution { ηki∑Tk

j=1
ηkj

}Tk
i=1. 334

2.2) The total complexity is O( c2.5∞ Lσ2

μ2δ1.25ε
) to achieve (6). 335

Theorem 4 shows that AdamW can converge under both constant and 336

decaying learning rate settings. Moreover, by comparison, to achieve 337

ε-ASP in (6), the decaying learning rate has the total complexity 338

O( c2.5∞ Lσ2

μ2δ1.25ε
), and could be better than the constant learning rate whose 339

complexity isO(max( c2.5∞ Lσ2

μ2δ1.25ε
, c2∞σ2

μδε
)). It should be also noted that the 340

complexity of AdamW on this special nonconvex problems (i.e. with 341

PŁ condition) enjoys lower complexity than the one on the general 342

nonconvex problems, since PŁ condition ensures a convexity-alike 343

landscape of the loss objective and thus can be optimized faster. 344

V. GENERALIZATION ANALYSIS 345

A. Generalization Results 346

Analysis on hypothesis posterior: As shown in the classical 347

PACBayesian framework [30], [45] there is strong relations between 348

the generalization error bound and the hypothesis posterior learned 349

by an algorithm. So we first analyze the hypothesis posterior learned 350

by AdamW, and then investigate the generalization error of AdamW. 351

Specifically, following [9], [22], [23], [24], [46], we study the corre- 352

sponding stochastic differential equations (SDEs) of an algorithm to 353

investigate its posterior and generalization behaviors because of the 354

similar convergence behaviors of an algorithm and its SDE. Firstly, the 355

updating rule of AdamW can be formulated as 356

xt+1 = xt − ηQt∇F (xt)− ηλxt + ηQtut, (7)

where ut=∇F (xt)−mt is gradient noise, Qt=diag(n
− 1

2
t ) is a 357

diagonal matrix. In (7), the small δ in (2) is ignored for convenience 358

which does not affect our following results. Then following [23], [47], 359

[48], we assume the gradient noise ut obeys Gaussian distribution 360

N (0,Cxt) because of the Central Limit theory. Accordingly, one can 361

write the SDE of AdamW as 362

dxt = −Qt∇F (xt)dt− λxtdt+Qt (2Σt)
1
2 dζt,

where dζt∼N (0, Idt) and Σt=
η
2
Cxt . Here Cxt is defined as 363

Cxt =
1

b

[
1

n

∑n

i=1
∇f(xt; ζi)∇f(xt; ζi)

�−∇F (xt)∇F (xt)
�
]
,

where n is the training sample number, and b is minibatch size. For 364

analysis, we make some necessary assumptions. 365

Assumption 4: a) Assume Cxt can approximate the Fisher matrix 366

F xt =
1
n

∑n
i=1 ∇F (xt; ζi)∇F (xt; ζi)

�, i.e., Cxt ≈ F xt . b) As- 367

sume F xt can approximate the Hessian matrix Hxt near a minimum, 368

i.e., F xt ≈ Hxt . c) Suppose n′
t+1 = (1− β2)n

′
t + β2gtg

�
t (virtual 369

sequence) with n′
0 = g0g

�
0 is a good estimation to F xt , i.e., n′

t+1 ≈ 370

F xt . 371

Assumption 4 is widely used. Specifically, we follow [23], [47], [48], 372

and approximate Cxt ≈ F xt , since we analyze the local convergence 373

around an optimum, leading to 1) ∇F (xt) ≈ 0 and 2) a dominated 374

variance of gradient noise. Assumption 4 b) is used in [24], [49] for 375

analysis, and holds when xt is around a minimum. Since most works 376

analyze the generalization performance of an algorithm around a local 377

minimum, e.g., [9], [23], [24], [46], [47], [47], [48], [50], Assumption 4 378

b) holds in their setting and thus is mild. For Assumption 4 c), Staib 379
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et al. [51] proved that the matrix-based second-order moment n′
t is380

a good estimation to the Fisher matrix F xt after running a certain381

iteration number. Please refer to the theoretical details of Assumption 4382

in Appendix E, available online. Then we can derive the hypothesis383

posterior learnt by AdamW.384

Lemma 5: Assume the loss can be approximated by a second-order385

Taylor approximation, i.e., F (x)≈F (x∗)+ 1
2
(x− x∗)�H∗(x− x∗)386

where H∗ is systemic. With Assumption 4, the solution xt of AdamW387

obeys a Gaussian distribution N (x∗,MAdamW) where the covariance388

matrix MAdamW=E[xtx
�
t ] is defined as389

MAdamW =
η

2b
(QH∗ + λI)−1QH∗Q.

where Q=diag[H
− 1

2
∗(11),H

− 1
2

∗(22),. . .,H
− 1

2
∗(dd)] is diagonal matrix.390

See its proof in Appendix H.1, available online. Lemma 5 tells that391

AdamW can converge to a solution which concentrates around the392

minimum x∗. This also guarantees the good convergence behaviors of393

AdamW but from an SDE aspect. From the covariance matrixMAdamW,394

one can see that all singular values of MAdamW become smaller when395

increases and is large enough to ensureQH∗ + λI � 0. This indicates396

that proper weight decay in AdamW can stabilize the algorithm, and397

benefits its convergence to the minimizer x∗.398

Generalization analysis: Based on the above posterior analysis, we399

employ the PAC Bayesian framework [30] to explicitly analyze the400

generalization performance of AdamW. Given an algorithm A and401

a training dataset Dtr whose samples ξ are drawn from an unknown402

distribution D, one often trains a model to obtain a posterior hypoth-403

esis x drawn from a hypothesis distribution P∼N (x∗,MAdamW) in404

Lemma 5. Then we denote the expected risk w.r.t. the hypothesis distri-405

bution P as Eξ∼D,x∼P [f(x, ξ)] and the empirical risk w.r.t. the distri-406

butionP as Eξ∈Dtr,x∼P [f(x, ξ)]. In practice, one often assumes that the407

prior hypothesis satisfies Gaussian distribution Ppre ∼N (0, ρI) [13],408

[50], [52], since we do not know any information on the posterior409

hypothesis. Based on Lemma 5, we can derive the generalization error410

bound of AdamW.411

Theorem 6: Assume that x0 satisfies Ppre ∼N (0, ρI). Then with at412

least probability 1− τ (τ ∈ (0, 1)), the expected risk for the posterior413

hypothesis x∼P of AdamW learned on training dataset Dtr∼D with414

n samples holds415

Eξ∼D,x∼P [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)] ≤ΦAdamW,

where ΦAdamW=
√
8√
n
(AdamW+c0)

1
2 with AdamW =416

− log det(MAdamW) + η
2ρb

Tr(MAdamW)+d log 2bρ
η

, c0=
1
2ρ
‖x∗‖2−417

d
2
+2 ln( 2n

τ
). Here det(M) and tr(M) denote the determinant and418

trace of matrix M respectively.419

See its proof in Appendix H.2, available online. Theorem 6 shows420

that the generalization error of AdamW is upper bounded by O( 1√
n
)421

(up to other factors) which matches the error bound in [53], [54],422

[55], [56] derived from the PAC theory or stability aspects. When λ423

is large, the first term − log det(MAdamW) in MAdamW becomes larger424

since the singular values of MAdamW become small, and leads to small425

det(MAdamW), while the second term η
2ρb

Tr(MAdamW) is small. But for426

small λ, the first term − log det(MAdamW) is small, while the second427

term becomes large. Though it is hard to precisely decide the best λ,428

from the above discussion, at least we know that tuning λ can yield429

smaller generalization error, partly explaining the better performance430

of AdamW over vanilla Adam (λ = 0).431

B. Comparison With �2-Regularized Adam 432

Now we compare AdamW with �2-Adam. To diminish the effects 433

of historical gradient to the current optimization and also analyze the 434

effects of current gradient to the behaviors of adaptive algorithms, 435

many works, e.g., [57], [58], set β1=1 in (2) to focus on concurrent 436

optimization process of adaptive algorithms. Here we follow this setting 437

to investigate �2-Adam with updating rule: 438

xt+1 = xt − ηQt(∇F (xt) + λxt) + ηQtut,

where ut=∇F (xt)−mt and Qt=diag(n
− 1

2
t ) have the same mean- 439

ings in (7). Then one can write the SDE of �2-Adam: 440

dxt = −Qt(∇F (xt) + λxt)dt+Qt (2Σt)
1
2 dζt,

where dζt ∼ N (0, Idt), Σt =
η
2
Cxt and Cxt is given above. 441

Theorem 7: Assume x0 satisfies Ppre ∼N (0, ρI). With at least 442

probability 1− τ and a constant c0 in Theorem 6, the expected risk for 443

the posterior hypothesis x∼P�2-Adam of �2-Adam learned on training 444

dataset Dtr∼D with n samples can be upper bounded: 445

Eξ∼D,x∼P�2-Adam [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)] ≤Φ�2-Adam,

where Φ�2-Adam=
√
8√
n
(�2-Adam+c0)

1
2 with �2-Adam= 446

− log det(MAdamW) + η
2ρb

Tr(M �2-Adam)+d log 2bρ
η

. 447

See its proof in Appendix H.3, available online. Theorem 7 shows 448

the generalization error bound O( 1√
n
) of �2-Adam. Moreover, when 449

λ = 0, AdamW and �2-Adam are exactly the same, and their error 450

bounds are also the same as shown in Theorems 6 and 7. 451

Next, we compare the generalization error bounds of AdamW and 452

�2-Adam. To this end, we follow the similar spirit in [9] and approximate 453

Q ≈ H
− 1

2∗ to simplify ΦAdamW and Φ�2-Adam in the Corollary 3 whose 454

proof can be found in Appendix H.4, available online. 455

Corollary 3: Assume Q ≈ H
− 1

2∗ . Then we have 456

ΦAdamW≈
√
8√
n
(errAdamW+c0)

1
2 , Φ�2-Adam ≈

√
8√
n
(err�2-Adam+c0)

1
2,

where errAdamW=
∑d

i=1 h(x
(i)
AdamW) with x

(i)
AdamW=2η−1ρb(σ

1
2
i + λ), 457

err�2-Adam=
∑d

i=1 h(x
(i)
�2-Adam) with x

(i)
�2-Adam =2η−1ρb(σ

1
2
i + λσ

− 1
2

i ). 458

Here h(x) = log x+ 1
x

. 459

Then we only need to compare the different terms, i.e., errAdamW 460

and err�2-Adam. For h(x), since h′(x)= x−1
x2 , h(x) will increase when 461

x∈(1,+∞). Meanwhile, generally, we have x(i)
�2-Adam >x

(i)
AdamW>1 for 462

most i ∈ [d] due to three reasons. 1) Most of the singular values {σi}di=1 463

of Hessian matrix in deep networks are much smaller than one which is 464

well observed in many works, e.g., fully connected networks, AlexNet, 465

VGG and ResNet [49], [59], [60], [61] and our experimental results on 466

ResNet50 and ViT-small in Fig. 1. 2) The learning rate when reaching 467

the minimum is set to be very small in practice. 3) The minibatch 468

size b is often thousand to train a modern network, and the variance 469

ρ for the initialization distribution Ppre ∼N (0, ρI) is often of the 470

order O(1/
√
di) [62], where di is input dimension. These factors indi- 471

cate x
(i)
�2-Adam >x

(i)
AdamW>1. So the generalization error term errAdamW 472

is smaller than err�2-Adam, testified by our experimental results on 473

ResNet50 and ViT-small in Section VI. So AdamW often enjoys better 474

generalization performance than �2-Adam, also validated in Section VI. 475

Appendix C, available online, intuitively discusses the generalization 476

benefits of coordinate-adaptive regularization in AdamW. 477
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Fig. 1. Visualization of singular values in ResNet50 and ViT-small trained by AdamW (constant weight decay), AdamW-D (decreasing weight decay), �2-Adam
(constant weight decay) and �2-Adam-D (decreasing weight decay). See more visualization results, e.g., ResNet18, in Fig. 7 of Appendix A, available online.

Fig. 2. Training and test curves of �2-Adam, �2-Adam-D, AdamW and AdamW-D on ImageNet. See more results in Appendix A, available online.

TABLE I
GENERALIZATION OF ADAMW (CONSTANT WEIGHT DECAY), ADAMW-D (DECAYING WEIGHT DECAY), �2-ADAM (CONSTANT WEIGHT DECAY) AND �2-ADAM-D

(DECREASING WEIGHT DECAY) ON IMAGENET. ADAMW/-D DENOTES ADAMW/ADAMW-D; �2-ADAM/-D HAS THE SAME MEANING

VI. EXPERIMENTS478

Investigation on singular values of Hessian: We respectively use479

AdamW and �2-Adam to train two popular networks on ImageNet [63],480

i.e. ResNet50 [13] and vision transformer small (ViT-small) [3] for481

both 100 epochs. Then we adopt the method in [64] to estimate482

the singular values of these two trained networks. AdamW/�2-Adam483

uses constant weight decay λk, while AdamW-D/�2-Adam-D adopts484

exponentially-decaying weight decay λk=c1 · λk with two constants485

c1>0 and λ∈(0, 1). Fig. 1 plots the spectral density of these singular486

values on training/test data of ImageNet, and shows that there more than487

99% singular values are in the range [0, 1] and are much smaller than488

one. This accords with the observations on AlexNet, VGG and ResNet489

in [49], [59], [60], [61]. All these observations support the results in490

Section V-B.491

Investigation on generalization: To compute the key generalization492

error terms i.e., ērrAdamW and ērr�2−Adam in Theorems 6 and 7, one493

needs to compute the full Hessian for matrix multiplication that how-494

ever is prohibitively computable. So we compute their approximations495

errAdamW and err�2−Adam in Corollary 3 to compare the generalization496

error bounds of AdamW and �2-Adam. For comprehension, we also497

compute errAdamW-D of AdamW-D and err�2−Adam-D of �2-Adam-D498

which respectively share the same formulation with errAdamW and499

err�2−Adam but performs computation on the models respectively trained500

by AdamW-D and �2-Adam-D with the above exponentially-decaying501

weight decay λk.502

Then we receptively use AdamW, AdamW-D, �2-Adam and �2- 503

Adam-D to train three models, i.e., ResNet18, ResNet50 and ViT-small, 504

on ImageNet, and well tune their hyper-parameters, e.g., learning rate 505

and weight decay parameter λk. Note, �2-Adam includes Adam by 506

setting λk = 0. Next, we compute errAdamW, errAdamW-D, err�2−Adam and 507

err�2−Adam-D on the test dataset of ImageNet, as test data can better 508

reveal the generalization ability of an algorithm. Table I shows that 509

on all test cases, errAdamW and errAdamW-D are smaller than err�2−Adam 510

and err�2−Adam-D by a remarkable margin. errAdamW-D and err�2−Adam-D 511

respectively enjoy similar values with their corresponding errAdamW 512

and err�2−Adam. These results empirically support the superior gen- 513

eralization error of AdamW over �2-Adam. Moreover, Table I also 514

reveals that 1) AdamW and AdamW-D have higher test accuracy than 515

�2- Adam and �2- Adam-D; 2) AdamW-D (�2- Adam-D) enjoys very 516

similar performance as AdamW (�2- Adam). All these results accord 517

with our theoretical results in Section V-B. 518

Investigation on convergence: We plot the training/test curves of 519

AdamW, AdamW-D, �2-Adam and �2-Adam-D on ImageNet in Fig. 2. 520

For AdamW-D and �2-Adam-D, we fix λ=0.99999 and tune c1 to 521

compute its weight decay λk. One can find that on ResNet50 and 522

ViT-small, 1) AdamW and AdamW-D show faster convergence speed 523

than �2-Adam (including Adam via λ=0) and �2-Adam-D when their 524

weight decay parameter are well-tuned, e.g., λ=5×10−1 for AdamW 525

and �2-Adam, c1=5×10−2 for AdamW-D on ViT-small; 2) AdamW 526

and AdamW-D share similar convergence behaviors; 3) weight decay 527
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parameter greatly affects the convergence speed of the three optimizers.528

So under the same training cost, the faster convergence of AdamW529

could also partially explain its better generalization performance over530

�2-Adam.531

VII. CONCLUSION532

In this work, we first prove the convergence of AdamW using both533

constant and decaying learning rates on the general nonconvex prob-534

lems and PŁ-conditioned problems. Moreover, we find that AdamW535

provably minimizes a dynamically regularized loss that combines a536

vanilla loss and a dynamical regularization, and thus its behaviors537

differ from those in Adam and �2-Adam. Besides, for the first time,538

we quantitatively justify the generalization superiority of AdamW over539

both Adam and �2-Adam. Finally, experimental results validate the540

implications of our theory.541
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