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Abstract
Sparse subspace clustering (SSC), a seminal clustering method, has demonstrated remarkable performance by
effectively solving the data sparsity problem. However, it is not without its limitations. Key among these is the
difficulty of incremental learning with the original SSC, accompanied by a computationally demanding recalculation
process that constrains its scalability to large datasets. Moreover, the conventional SSC framework considers
dictionary construction, affinity matrix learning and clustering as separate stages, potentially leading to suboptimal
dictionaries and affinity matrices for clustering. To address these challenges, we present a novel clustering approach,
called SSCNet, which leverages differentiable programming. Specifically, we redefine and generalize the optimization
procedure of the linearized alternating direction method of multipliers (ADMM), framing it as a multi-block deep
neural network, where each block corresponds to a linearized ADMM iteration step. This reformulation is used to
address the SSC problem. We then use a shallow spectral embedding network as an unambiguous and differentiable
module to approximate the eigenvalue decomposition. Finally, we incorporate a self-supervised structure to mitigate
the non-differentiability inherent in k-means to achieve the final clustering results. In essence, we assign unique
objectives to different modules and jointly optimize all module parameters using stochastic gradient descent. Due to
the high efficiency of the optimization process, SSCNet can be easily applied to large-scale datasets. Experimental
evaluations on several benchmarks confirm that our method outperforms traditional state-of-the-art approaches.

Keywords: Subspace clustering, Learning-based optimization, Linearized alternating direction method of
multipliers (ADMM), Differentiable low-rank decomposition

1 Introduction
1.1 Background and limitation
Clustering constitutes a cornerstone task within the do-
main of machine learning. Particularly in the digital age,
the ease of data acquisition from the Internet results in an
abundant supply of unlabeled data. Given the prohibitive
cost and time investment required for data labeling, clus-
tering techniques have become instrumental in elucidat-
ing correlations within these datasets. Consequently, the
development of efficient clustering algorithms for large
datasets is highly important.

Sparse subspace clustering (SSC) [1] and low-rank rep-
resentation (LRR) [2–4] have made significant strides over
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the past decade. By decomposing the data matrix into a
self-representative sparse (or low-rank) term and a noise
term, they are capable of capturing the global sparse (or
low-rank) structure of the data. The robustness to noise
of these methods has led to wide-scale application in di-
verse fields, including image clustering, segmentation and
denoising. These methods have consistently outperformed
traditional clustering methods, such as spectral clustering
[5] and k-means.

However, there are limitations in SSC and LRR, espe-
cially when they are applied to large datasets. First, to as-
sign clustering labels to new data, these methods necessi-
tate recalculation, which consumes memory on the order
of O(n2), where n is the data size. This substantial mem-
ory requirement can render them ineffective for large-
scale datasets. Second, both SSC and LRR rely on the “self-
expression” property, presuming that the provided data
matrix inherently serves as an effective dictionary for rep-
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resentation. Unfortunately, this property may not hold true
in the absence of proper data pre-processing.

Finally, they execute subspace clustering through three
isolated procedures: (1) dictionary construction, (2) affin-
ity matrix learning, and (3) spectral clustering on the affin-
ity matrix. Given the lack of integration between these
steps, the derived dictionary and affinity matrix may be
sub-optimal for subspace clustering.

In response to the aforementioned challenges, recent re-
search has attempted to leverage the benefits of deep learn-
ing to address the first two limitations. By developing suit-
able network architectures and training strategies, various
deep clustering methods [6–14] have shown encouraging
results.

Existing deep clustering approaches can generally be cat-
egorized into two groups. The first encompasses auto-
encoder-based methods, where different loss functions
are embedded into the coder-layer of the auto-encoder
[6, 8–10, 12]. The second group includes task transfor-
mation methods that reframe the clustering task as a set
of pairwise classification problems. For instance, studies
such as Refs. [7, 13] explored pairwise correlations be-
tween clusters or samples to guide the parameter learn-
ing of deep neural networks. However, these deep learn-
ing methods primarily concentrate on loss function design
and network training, and they are not without their short-
comings, including a lack of robustness and high demand
for data. Furthermore, these methods do not possess the
strong generalization ability that traditional methods of-
fer.

1.2 Solutions and contributions
To exploit the nonlinear representation capabilities of
deep learning while preserving the geometric and theo-
retical properties of traditional methods, differential pro-
gramming (DP) has emerged as a compelling alternative.
Broadly speaking, DP first integrates learnable parameters
into classical numerical solvers, followed by discriminative
learning on the training data to derive task-specific opti-
mization schemes. Given the widespread success of deep
learning across many applications, many researchers treat
deep neural networks as learnable units for integration
with the optimization process. For example, Sprechmann
et al. [15] employed a deep auto-encoder to address un-
structured robust principal component analysis problems.
Zhou et al. [16] uncovered the connection between sparse
coding and long short-term memory (LSTM), while Peng
et al. [17] reimagined the k-means algorithm as a network
with a unique structure.

Through the lens of DP, most hyper-parameters associ-
ated with traditional methods can be jointly learned via
deep learning optimizers [18–21], with additional learn-
able parameters supplementing the limited capacity of
the original strategies. Generally, DP is considered a by-
product of learning-based optimization, aiming to resolve

traditional optimization problems in a differentiable and
data-driven manner [22–24].

Although DP offers an efficient and differentiable so-
lution to specific optimization problems, the constraint
of differentiability precludes the direct application of DP
modules to many operators, such as singular value decom-
position (SVD) and matrix inversion. The differentiation
of these operators remains an open problem within the
machine-learning community. Indyk et al. [25] approxi-
mated low-rank decomposition via a differentiable power
method, but it assumed large gaps between eigenvalues,
which was rarely the case in clustering problems. In sub-
space clustering, SVD is pivotal. Most low-rank or sparse
problems necessitate performing SVDs during the opti-
mization procedure, implying that a differentiable SVD
strategy could potentially illuminate the differentiation of
most common low-rank or sparse optimization solvers,
thereby generating a wealth of derived learning-based op-
timization methods. Notably, for SSC, the spectral cluster-
ing step involves an eigenvalue decomposition that cannot
be bypassed.

Aligning with the principles of DP, we integrate all the
steps of SSC with differential modules, including a univer-
sal differentiable eigenvalue decomposition module, and
propose SSCNet to address the issues prevalent in sub-
space clustering and deep clustering. Specifically, first, we
generalize the optimization procedure of the linearized al-
ternating direction method of multipliers (L-ADMM) as a
multi-block deep neural network, where each block corre-
sponds to a step of the L-ADMM iteration. We then ap-
ply the DP framework to the SSC problem, jointly per-
forming dictionary construction and affinity learning. This
component acts as the first differentiable module in our
unified network. Second, we reframe the spectral cluster-
ing process as two additional differentiable modules com-
posed of an eigenvector mapping module and a k-means
clustering module. To differentiate eigenvalue decompo-
sition, we approximate manifold gradient descent on the
Stiefel manifold and generate feasible points via a Cayley
transform. Finally, by combining these differentiable mod-
ules, we obtain the proposed unified network, SSCNet,
which can jointly learn the optimal dictionary, affinity ma-
trix, and clustering parameters. We also introduce a novel
re-weighting technique to handle the noise term in SSC.
In terms of computational efficiency, SSCNet can be ef-
fectively optimized by stochastic gradient descent (SGD).
Therefore, it is well-suited for large-scale datasets.

Our main contributions are summarized as follows:
1) By applying the DP framework to sparse

representation and spectral clustering differentiation,
we establish the novel SSCNet, which jointly learns
the dictionary, affinity matrix, and clustering
parameters. Unlike other deep clustering methods,
SSCNet inherits the robustness of SSC and requires
less training data.
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2) We generalize manifold gradient descent as a
differentiable multi-layer deep neural network
capable of performing SVD or eigenvalue
decomposition in a learning-based manner, which
can be efficiently optimized by SGD. The proposed
layer is highly versatile and may be of independent
interest.

3) We provide several valuable techniques for effectively
training SSCNet and conduct experiments on
multiple datasets to evaluate the subspace clustering
methods. Compared with state-of-the-art
approaches, our SSCNet demonstrates superior
performance.

2 Related work
2.1 Subspace clustering
For subspace clustering, most methods [1–4, 26–29] first
need to learn the affinity matrix based on feature repre-
sentations. Then, spectral clustering [5] is applied to group
the samples based on the affinity matrix. Among the pop-
ular methods, LRR and SSC are two of the most classic
methods. Based on self-representation, LRR imposes the
nuclear norm, i.e., the sum of singular values, to constrain
the affinity matrix under the low-rank assumption, while
SSC utilizes the �1-norm, i.e., the sum of absolute values
of all entries, under the sparse assumption. As we mainly
focus on SSC in this paper, we introduce the framework of
SSC in detail. The objective function of SSC is

min
Z,E

‖Z‖1 + λ‖E‖1,

s.t. X = XZ + E, diag(Z) = 0,
(1)

where 0 is the all zero matrix, λ is the balance constant, Z
is the desired sparse affinity matrix, X is the data matrix,
and E is the error term. The �1-norm ‖ · ‖1 is defined by
the sum of the absolute values of all the entries in the ma-
trix. With the noise under a sparse pattern, SSC assumes
that the data points obey an underlying linear structure
and aim to sparsely represent each data instance by the lin-
ear combination of its neighbors from the same subspace.
Based on SSC, Li and Vidal [26] proposed the structured
SSC to jointly learn the original affinity matrix of SSC and
the spectral clustering mapping function. Based on LRR,
Xie et al. [4, 30] proposed an implicit block diagonal LRR.
Feng et al. [27] and Lu et al. [28] investigated the block di-
agonal property of subspace clustering and provided a the-
oretical guarantee.

2.2 Deep clustering
With the label absent, defining a proper loss function for
deep clustering is crucial. The existing deep clustering
methods can be classified into two categories depending

on whether the auto-encoder is adopted. For the first cate-
gory, the total loss function is defined by summing the re-
construction loss of the auto-encoder and clustering loss
of the latent representation layer. For the clustering loss,
Xie et al. [6] and Guo et al. [10] proposed deep embed-
ding clustering to adopt the Kullback–Leibler divergence
loss, which used highly confident samples as supervision
and then made samples in each cluster distributed more
densely. Yang et al. [13] incorporated the k-means loss. Ji
et al. [12] added a self-representation layer in the middle
of the traditional auto-encoder. Peng et al. [9] used the
subspace clustering loss to regularize the learning of la-
tent representation. For the second category, specific loss
functions are directly designed based on the last layer out-
put without auto-encoder. Yang et al. [7] introduced a
recurrent-agglomerative framework to merge clusters that
were close to each other. Chang et al. [11] investigated the
correlation between samples based on the normalized out-
put and used such similarity as supervision. Bojanowski
and Joulin [31] directly used fixed targets uniformly sam-
pled from a unit sphere to constrain feature assignment.
Shaham et al. [32] performed the spectral clustering using
deep neural networks. Caron et al. [33] directly used the
results of k-means as supervised labels to train neural net-
works.

2.3 Differentiable programming
Differentiable programming, called DP, can recast the ex-
isting optimization process as a differentiable module, and
then the model can be optimized in a data-driven way.
For example, Gregor and LeCun [34] unfolded the opti-
mization of �1-norm regularized sparse coding as a sim-
ple recurrent neural network (RNN). The number of RNN
layers corresponds to the number of iterations, and the
weights correspond to the dictionary. Zhou et al. [16] de-
veloped an LSTM formulation to solve the �1-norm reg-
ularized sparse coding. Peng et al. [17] recast the updat-
ing rules of k-means as a fully connected network. Yang et
al. [35] defined a deep architecture over the ADMM algo-
rithm pipeline (ADMM-Net) for compressive sensing and
magnetic resonance image reconstruction. Recently, Chen
et al. [36] and Liu et al. [37] theoretically revealed that DP
was not only a generalized optimization, but also benefited
parameter learning and even brought the linear conver-
gence when the original optimization was unconstrained,
such as compressive sensing. Unlike previous works, Xie
et al. [22] provided a unified differentiable framework for
problems with linear constraints. This framework is gen-
eralized from the L-ADMM [38], named differentiable lin-
earized ADMM (D-LADMM), which is more general and
has fewer auxiliary variables than ADMM-Net. Moreover,
its analysis shows that, with proper activation functions,
the output of D-LADMM can solve the original optimiza-
tion problem. In other words, D-LADMM can solve an
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optimization problem in a learning-based fashion under
mild conditions. With such reformulation or transforma-
tion, the original problem can be solved by joint learning.
The solution of the optimization can be efficiently com-
puted with limited memory.

3 Preliminaries and general framework
In this section, we review the classic SSC and its solver—
L-ADMM [38, 39] and introduce a general DP framework
[22] to differentiate the solver.

3.1 Dictionary-based SSC
SSC contains two steps. The first step is to solve a convex or
non-convex optimization problem to obtain the coefficient
matrix Z and then construct a graph matrix W based on
Z. The graph matrix W describes the pair-wise similarity
between the training data. The second step is to perform
spectral clustering on W . In particular, for spectral cluster-
ing, one needs an eigenvector decomposition of the Lapla-
cian graph matrix and then utilizes k-means clustering on
the eigenvectors to obtain the final clustering results.

In the first step, with a slight difference from the origi-
nal SSC model, we consider a more general optimization
problem—dictionary-based SSC with the given data sam-
ple matrix X ∈R

d×n:

min
Z,E

‖Z‖1 + λ‖E‖2,1, s.t. X = AZ + E, (2)

where ‖E‖2,1 =
∑

i ‖[E]:,i‖2, [E]:,i is the i-th column of the
error term E ∈ R

d×n, A ∈ R
d×m is the desired basis ma-

trix for the subspace, and Z ∈ R
m×n is the sparse affinity

matrix. Since we want to maintain the robustness of the
classic SSC, we model the sample-specific corruptions by
�2,1-norm to eliminate outliers. Note that one can learn the
dictionary A and Z simultaneously in the DP framework,
which we will show later. After obtaining the coefficient Z,
we construct the graph matrix W ∈ R

n×n. One can easily
set W = |Z|T + |Z| when A = X . However, for a general dic-
tionary A, it is more prevalent to set the (i, j)-th entry of W
as follows:

Wij = exp

(

–
‖zi – zj‖2

2

σ

)

, (3)

where zi = [Z]:i is the i-th column of the coefficient matrix
and σ is a re-scaling constant. Note that the graph Lapla-
cian matrix L ∈R

n×n of W is L = D – W , where D is a diag-
onal matrix with the i-th diagonal entry being

∑
j Wij.

For the second step, we can perform spectral clustering.
Given the cluster number k̃, we first find the k̃ eigenvectors
Y ∈R

n×k̃ corresponding to the 2nd to the (k̃ + 1)-th small-
est eigenvalues of the graph Laplacian matrix L. Then we
treat each row of the n × k̃ eigenvectors matrix Y as an in-
stance and perform k-means clustering to obtain the final
labels.

3.2 Linearized ADMM solver
The problem in Eq. (2) can be solved by the L-ADMM with
the following updating rule:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T(k) = AZ(k) + E(k) – X,
Z(k+1) = Sα(Z(k) – αAT(λ(k) + β · T(k))),
E(k+1) = S̃ 1

β
(X – AZ(k+1) – λ(k)

β
),

λ(k+1) = λ(k) + β(AZ(k+1) + E(k+1) – X),

(4)

where λ(k) ∈ R
d×n is the Lagrange multiplier. α and β are

parameters for the shrink operators. We need α > ‖ATA‖,
i.e., α is greater than the spectral norm of the matrix ATA.
The shrinkage operator [40] is defined as follows:

Sλ(X)ij =
(|xij| – λ

)
+ sign(xij), (5)

where (x)+ := max{0, x}, xij is the (i, j)-th entry of X , and
sign(·) is the sign function. Similarly, the column-wise
shrinkage operator is defined as follows:

[
S̃λ(X)

]
:i =

(∥
∥[X]:,i

∥
∥

2 – λ
)

+
[X]:,i

‖[X]:,i‖2
. (6)

Notably, we did not utilize the traditional ADMM to
solve the problem in Eq. (2), since Liu et al. [41] showed
that the linearized step did not make the optimization
divergent. Fewer variables can reduce the computational
complexity. As shown in the following subsection, we can
reduce the number of learning parameters without intro-
ducing auxiliary variables, and hence accelerate the train-
ing speed. On the other hand, the traditional ADMM for
the problem in Eq. (2) inverses the matrix (I + ATA) in the
iteration, where I is the identity matrix. However, when we
generalize matrix A to a learnable and non-linear mapping,
it is difficult to define the inverse of a neural network.

3.3 General D-LADMM
In this section, we introduce the general framework D-
LADMM [22] to differentiate steps in Eq. (4). D-LADMM
treats the iteration in Eq. (4) as one neural network block
and converts some fixed parameters to learnable parame-
ters, leading to a k-layer feed-forward neural network. By
setting

T(k) = Aϑk
1

(
Z(k)) + E(k) – X, (7)

we have the following updating rules:

⎧
⎪⎪⎨

⎪⎪⎩

Z(k+1) = ηθk
1
(Z(k) – AT

ϑk
2
(λ(k) + β (k) ◦ T(k))),

E(k+1) = ζθk
2
(X – Aϑk

1
(Z(k+1)) – 1

β(k) ◦ λ(k)),

λ(k+1) = λ(k) + β (k) ◦ (Aϑk
1
(Z(k+1)) + E(k+1) – X),

(8)
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where 	 = {ϑk
1,ϑk

2, θ k
1, θ k

2,βk}K–1
k=0 are learnable matrices, ◦

is the Hadamard product, and parameterized functions
η(·) and ζ (·) are some non-linear activation functions with
parameters θ1 and θ2, respectively. Here Aϑ1 (·) : Rd →R

m

and AT
ϑ2

(·) : Rm → R
d , parameterized by ϑ1 and ϑ2, re-

spectively, are non-linear parameterized mappings. The
operator Aϑ1 performs the mapping column-wisely if it is
applied to the matrix. The two mappings are generalized
from the dictionary A. AT

ϑ2
(·) : Rm → R

d is the general-
ized adjoint mapping of Aϑ1 (·). In general, we need only
the parameterized functions Aϑ1 and AT

ϑ1
to have a simi-

lar form, e.g., linear and adjoint mapping, convolution and
deconvolution; their parameters ϑ1 and ϑ2 can be differ-
ent. Note that β ∈ R

d×n in Eq. (4) is now a learnable ma-
trix in contrast to a deterministic penalty parameter β . We
expand the dimension of the penalty parameter such that
the penalties in different directions are also learnable.

It is obvious that Eq. (8) is the same as Eq. (4) when
η(·) and ζ (·) are the original shrink operators and Aϑ1 (·)
degenerates into the original dictionary A. Compared to
L-ADMM, D-LADMM first converts the shrinkage op-
erators in Eq. (4) into learnable activation functions, and
then replaces the given matrix A with a non-linear param-
eterized mapping while expanding the dimension of the
penalty parameter.

Unlike the original L-ADMM solver where no parame-
ter is learnable, Eq. (8) can be treated as a block of a spe-
cially structured neural network and trained using SGD
over the observation. Many empirical results, e.g., Refs.
[17, 22, 34, 35, 42] showed that a trained k-layer DP model
or its variants could obtain a good solution to the same
quality within one or two orders of magnitude fewer iter-
ations than the original optimization method. Especially,
the results in Ref. [22] implied that, under mild conditions,
	 exists such that Zk converges to the optimal solution set
exponentially fast in terms of the layer number k. How-
ever, vanilla L-ADMM may struggle to have a linear con-
vergence rate.

4 Differentiable SSC
In this section, we first specify each step of the differen-
tiable solver in Eq. (8). Then, we introduce the objective to
train this solver in an unsupervised way. Finally, we con-
struct a sparse graph matrix based on the output of the
differentiable SSC solver.

4.1 Differentiable solver for SSC
Our differentiable SSC consists of an affinity updating
layer, a de-noising layer, and a multiplier updating layer.
We discuss them in detail.

Affinity updating layer Z(k+1). This layer corresponds to
the first step in Eq. (8). We merge the dictionary construc-
tion step into the mapping Aϑ1 , so we assume that d � m.

Given the variables Z(k), E(k) and λ(k), the first step in
Eq. (4) is decomposed and generalized into two operations:

⎧
⎨

⎩

T(k) = Aϑk
1
(Z(k)) + E(k) – X,

Z(k+1) = R(Z(k) – AT
ϑk

2
(λ(k) + β (k) ◦ T(k)); B(k)

1 ),
(9)

where weight β (k) ∈ R
d×n ≥ 0, and the threshold matrix

B(k)
1 ∈ R

m×n is learnable. Denote the rectified linear unit
(ReLU) function as r(·), then R(X; B) = r(X – B) – r(–X – B).
R(·; B) comes from the shrinkage operator Sλ(·) and B is
the threshold. We initialize the learnable weight β (k) to all-
one matrix 1 and the learnable threshold B(k)

1 to 1 × 0.15.
When k = 0, we set Z1 = AT

ϑ2
(Aϑ1 (X)).

De-noising layer E(k+1). This layer corresponds to the sec-
ond step in Eq. (8). Given Z(k+1) and λk as the input, the
output of this layer is given by

E(k+1) = R
(

X – Aϑk
1

(
Z(k+1)) – W(k)

1 ◦ λ(k); B(k)
2

)
. (10)

Similarly, W(k)
1 and B(k)

2 ∈R
d×n are learnable parameters.

R(·) is the same as that in the affinity updating layer. We
set λ(0) = 0 when k = 0.

Note that we still adopt the non-linear function R(·; B)
here. In practice, the dimension of data is usually large. The
element-wise operation is more suitable for DNN training.
For implementation convenience, we drop the constraint
that W(k)

1 = 1/β (k).
Multiplier updating layer λ(k+1). This layer corresponds

to the final step in Eq. (8). Given Z(k+1) and E(k+1) as the
inputs, the output of this layer is

λ(k+1) = λ(k) + β (k) ◦ (
Aϑk

1

(
Z(k+1)) + E(k+1) – X

)
, (11)

where the weight matrix β (k) ∈ R
d×n is the same as that in

the affinity updating layer.

4.2 Differentiable SSC objective
We now construct the optimization target for training our
differentiable SSC module. Note that the optimization ob-
jective for the SSC problem is shown in Eq. (2). We choose
a generalized objective instead of directly using Eq. (2)
as a training objective. In Eq. (2), each column norm for
E shares a common weight λ. Here, we assign different
weights to different columns to ease the unbalanced data
problem. Assuming that the outputs of our differentiable
SSC are Z(K ) and E(K ), and we define the training loss for
our differentiable SSC as follows:

LD-SSC =
n∑

i=1

wi
∥
∥
[

E(K )]
:,i

∥
∥

2 + λ
∥
∥Z(K )∥∥

1, (12)
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where n is the batch size for training and the adaptive
weight wi can be calculated by

wi = 1 –
(1 + T (‖[En]:,i‖2))–1

∑n
i=1(1 + T (‖[En]:,i‖2))–1 , (13)

where T (·) is a truncation function that clips the large
value to a pre-defined maximum value. Here, wi is calcu-
lated by a variant of the student’s t-distribution [43] with a
different power order. Inspired by adaptive boosting, the
data sample that is difficult to reconstruct can obtain a
larger weight wi than the others, and the truncation func-
tion can ensure that the loss is not too sensitive to the out-
liers contained in the data and prevent the outliers from
obtaining too large weights. This re-weighting strategy can
not only make the module focus on the hard examples but
also alleviate the problem of unbalanced data distribution.

4.3 Graph matrix construction
We assume that the output of the differentiable SSC is Z(K ).
Similar to the classic subspace clustering method, we con-
struct the graph matrix W based on the coefficient matrix
Z(K ). Wij represents the similarity between the coefficients
[Z(K )]:i and [Z(K )]:j. The (i, j)-th entry of the matrix W is de-
fined by

Wij =

{
exp(– ‖zi–zj‖2

2
σi

), zj ∈ KNN(zi; N),
0, otherwise,

(14)

where zi = [Z(K )]:i corresponds to the i-th column of Z(K )

and KNN(zi; N) represents the N nearest neighbors of zi.
We choose N from the range [3, 6] in the experiments. We
set the scalar σi > 0 by the median of all the positive ‖zi –
zj‖2

2. We symmetrize W by setting W = (W + WT)/2.
Note that we can easily make this module differentiable

by setting W as the Gaussian gram matrix of Z(K ), i.e.,
by Eq. (3), but we still choose the nearest neighbors here
since it produces sparse neighbors, which can prevent our
method from being affected by dense non-essential neigh-
bors produced by its differentiable counterpart. More im-
portantly, the non-differentiable KNN operator is equiv-
alent to setting some values to zero in W . Clearing some
channels to zero, such as dropout, is quite common in deep
learning training, which essentially introduces explicit and
implicit regularization effects. Instead of causing divergent
learning, the regularization benefits generalization [44].

5 Differentiable spectral clustering
In this section, we provide a method to differentiate spec-
tral clustering. The output of our differentiable SSC is
the input of the differentiable spectral clustering module.
Given the cluster number k̃, traditional spectral cluster-
ing contains two steps: (1) find the k̃ eigenvectors Y corre-
sponding to the 2nd to the (k̃ + 1)-th smallest eigenvalues

of the graph Laplacian matrix L; (2) take each row of the
n × k̃ eigenvectors matrix Y as a new feature of the input
data and then perform k-means clustering on all the rows.

We first reformulate the eigenvector decomposition and
provide a differentiable method to perform the decompo-
sition approximately. Then, we differentiate the k-means
clustering using a self-supervised strategy [33]. Finally, we
introduce the training objective for the whole differen-
tiable spectral clustering module.

5.1 Differentiable eigenvector approximation
Recall the definition of the graph Laplacian matrix L =
D – W , where D is a diagonal matrix with the i-th diago-
nal entry being

∑
j Wij. The k̃ eigenvectors corresponding

to the graph Laplacian matrix L are the solution of the fol-
lowing optimization problem:

min
Y∈Rn×k̃

∑

i,j

Wij
∥
∥[Y]:,i – [Y]:,j

∥
∥2

2, s.t. YTY = I, (15)

where k̃ is the cluster number. However, we do not directly
perform the eigenvalue decomposition on the graph Lapla-
cian matrix L here. The exact eigenvalue decomposition
is non-differentiable, and how to differentiate it is still an
open problem in the deep learning community. Indyk et al.
[25] approximated the low-rank decomposition by a mod-
ified differentiable power method. However, this method
might fail when the gaps among eigenvalues are small. An-
other problem with exact eigenvalue decomposition is that
we cannot perform incremental learning for batch train-
ing, which is important for large-scale data. Therefore, an
eigenvalue-gap independent and differentiable method is
needed to solve the problem in Eq. (15). This method is
provided below.

Optimization with orthogonality constraints. The usual
method for solving the general orthogonality-constrained
optimization problem is to perform the manifold gradi-
ent descent on the Stiefel manifold, which evolves along
the manifold geodesic. Specifically, manifold gradient de-
scent (GD) updates the variable in the manifold tangent
space along the objective function gradient projected into
the tangent plane. Then, the procedure is repeated in the
tangent space of the updated variable [45]. As usual, man-
ifold GD requires SVDs to generate feasible points on
the geodesic, which is non-differentiable. Fortunately Refs.
[46, 47] developed a technique to approximately solve an
orthogonality-constrained optimization problem that only
consists of matrix multiplication and addition and does
not rely on SVDs.

Note that the variable is Y ∈ R
n×k̃ . Denote by G ∈ R

n×k̃

the gradient of the objective function in Eq. (15) at Y . Then,
the projection of G in the tangent plane of the Stiefel man-
ifold at Y is PY , where P = GYT – YGT and P ∈ R

n×n [46].
We choose the canonical metric on the tangent space as
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the equipped Riemannian metric. Instead of parameteriz-
ing the geodesic of the Stiefel manifold along direction P
using the exponential function, inspired by Refs. [46, 47],
we generate feasible points by the following Cayley trans-
form:

Y(t) = C(t)Y, (16)

where

C(t) =
(

I +
t
2

P
)(

I –
t
2

P
)–1

, (17)

where I is the identity matrix and t is a parameter used for
updating the current Y . One can easily verify that Y(t) has
the following properties:

1) dY(0)/dt = –PY ;
2) Y(t) is smooth in t;
3) Y(0) = Y ;
4) (Y(t))TY(t) = I, ∀t ∈R, given YTY = I.
It is obvious that Y(t) can result in a smaller objective

function value than Y on the Stiefel manifold when t is in
a proper range.

Y(t) is a reparameterization of the geodesic w.r.t. t on
Stiefel manifold. When computing Y(t), no SVD is needed.
A matrix inversion and several matrix multiplications are
needed instead, which sheds light on solving the problem
in Eq. (15) in a differentiable way. Note that matrix inver-
sion may also be difficult to differentiate. Fortunately, when
t is in a proper range, we can approximate the matrix in-
version by a polynomial of P.

Eigenvector approximation. To solve the problem in
Eq. (15), we compute the gradient G of the objective func-
tion

∑

i,j

Wij
∥
∥[Y]:,i – [Y]:,j

∥
∥2

2, (18)

w.r.t. Y and search for a geodesic on the Stiefel manifold in
the gradient direction to update the current Y .

Note that the matrix inversion (I – tP/2)–1 is time-
consuming and hard to differentiate during back propa-
gation. Observing that C(t) contains Neumann series, we
consider approximating C(t) by a polynomial in P. Hence,
given the current Y , we consider searching in the following
curve:

Y(t) =

(

I +
r∑

i=1

2– (i–1)i
2 (–tP)i

)

Y, (19)

where r is the degree of the polynomial and P = GYT –YGT.
PY corresponds to the projection of G in the tangent plane
at Y . In general, the approximation in Eq. (19) is the opti-
mal r-th order polynomial for maintaining orthogonality.

Proposition 1 Assume that Y is from the Stiefel manifold,
i.e., YTY = I and ‖P‖ is bounded, then we have

∥
∥
(

Y(t)
)TY(t) – I

∥
∥ = O

(
t2r2–r(r–1)), (20)

where ‖ · ‖ is the matrix spectral norm. Furthermore, given
the degree r, Y(t) in Eq. (19) is the optimal polynomial for
maintaining the orthogonality.

Note that the boundness of P inherits from G, which is
the gradient of the objective w.r.t. Y . By Proposition 1, we
have Y(t) ≈ C(t)Y when r is large. Moreover, we avoid the
matrix inversion here and make the curve absolutely dif-
ferentiable in Y .

Obviously, we have dY(0)/dt = –PY for the polynomial in
Eq. (19). However, when t > 0, the direction of the Cayley
transform approximation Y(t) in Eq. (19) may deviate from
the ideal direction –PY . Fortunately, we can still ensure the
descent of the objective when t satisfies some conditions.

Proposition 2 Assume that ‖P⊥
Y P‖F := cp < ∞, where

P⊥
Y = I – YYT is the projector of the complementary space

of Span{Y}. Given t ∈R
+, and let ρt := tcp, if ρt satisfies

g(ρt) ·
(

1 – erf

(
2 ln 2 – 2 lnρt

2
√

ln 2

))

+
ρt

ln 2
< 1, (21)

where

g(ρt) :=
2
√

π exp( (lnρt )2

ln 2 ) lnρt

ρt(ln 2) 3
2

, (22)

then we have
〈
PTY

(
Ẏ(t)

)
,PTY (–G)

〉
c > 0, (23)

where PTY (·) is the projector of the tangent space of Y ,
〈A, B〉c := Tr(ATP⊥

Y B) is the canonical inner product at the
tangent space of Y , and G is the gradient of the objective.

Equation (23) indicates that Y(t) is a descent curve as
long as t is in a wide range. Numerically, the condition in
Eq. (21) can be satisfied when ρt < 0.8. We may find the
optimal t∗ such that

t∗ = argmin
0≤t≤ε

f (t) :=
(∑

i,j

Wij
∥
∥
[

Y(t)
]

:,i –
[

Y(t)
]

:,j

∥
∥2

2

)

, (24)

where ε is a pre-defined parameter to ensure the magni-
tude of t∗. Recall that we only concern that the optimal t∗
satisfies the condition in Eq. (21). We expand f (t) at 0 via
Taylor expansion:

f (t) = f (0) + f ′(0) · t + f ′′(0) · t2 + O
(
t2), (25)
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where f ′(0) and f ′′(0) are the first and second order deriva-
tives of f (t) evaluated at 0, respectively. These two deriva-
tives can be computed efficiently (see Appendixes A, B and
C). We can obtain an approximated optimal solution t∗ via

t∗ = min{ε, t̃}, t̃ = –
f ′(0)
f ′′(0)

. (26)

Then we can update Y by Y(t∗).
Differentiable eigenvector mapping layer Y(l). Based on

the above iterative steps for the eigenvector approxima-
tion, i.e., Y → Y(t∗), we introduce the following eigenvec-
tor mapping layer, which is generalized from one step for
approximation. We set r = 2 for our layers.

Given the last layer output Y(l), we have the following up-
dating rules:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P(l+1) = 2(LYYT – YYTL) + YW(l)
2 YT,

t̃(l+1) = Tr(YTLPY)
Tr(YTPLPY–YTLP2Y) ,

t∗ = min{ε, t̃(l+1)},
Y(l+1) = (I – t∗P + (t∗P)2

2 P)Y,

(27)

where W(l)
2 ∈ R

k̃×k̃ is the learnable matrix at each layer,
Tr(·) is the trace operator, ε is a parameter used to ensure
Eq. (21) for t∗, and L is the graph Laplacian matrix of W .
We randomly choose Y(0) from the Stiefel manifold and fix
it during training. We omit the superscript in the updating
rules for convenience and clear writing. Note that when
W(l)

2 = 0, Eq. (27) is almost the same as one iteration of the
manifold gradient descent, the introduced learnable pa-
rameters can help to find better updating direction when
the gradient is inaccurate.

We bypass the matrix inversion and the exact SVD, and
aim to solve the problem in Eq. (15) approximately. Con-
sequently, we can solve the problem in Eq. (15) in a differ-
entiable and learning-based manner by stacking the pro-
posed eigenvector mapping layers in Eq. (27). Our eigen-
vector mapping layer can be easily modified to perform
differentiable SVD, which is still difficult and is the main
problem when connecting classic low rank-based struc-
ture methods and prevalent DNNs.

5.2 Differentiable k-means clustering
This section provides a method to differentiate k-means
clustering by a self-supervised strategy. The input of this
module is Y (l̃), which is the output of the eigenvector map-
ping layers.

In general, batch training makes the k-means clustering
challenging to differentiate. The sampled data from differ-
ent batches do not have the same eigenvector space. Thus,
they cannot share cluster centers or parameters. We adopt
a parametric function Gη : Rk̃ → R

k̃ to further transform
the input Y(l̃), where η is the learnable parameter of the

parametric function. We want the function Gη to embed
the eigenvectors of different batches into a common fea-
ture space, where we can share the clusters and distance
metric. In the experiments, we choose Gη as a three-layer
fully connected neural network.

On the other hand, k-means clustering assigns data to a
cluster center, which is a discrete process. To overcome the
non-differentiability, we utilize a self-supervised structure
[33] to transform the clustering step into a classification
step. Specifically, we alternate between clustering the input
of this module to produce pseudo-labels using k-means
and updating the parameters of this differentiable mod-
ule by predicting these pseudo-labels. This self-supervised
structure is illustrated in Fig. 1. In summary, we convert
the non-differentiable assignment process into a differen-
tiable classifier via the self-supervised structure.

5.3 Training objective
We provide the training objective for the two modules
of the proposed differentiable spectral clustering. For the
eigenvector mapping layers, we let

Le = Tr
((

Y(l̃))TL
(

Y(l̃))), (28)

where Y(l̃) is the output of the final eigenvector mapping
layer and L is the graph Laplacian matrix. Note that Le is
the same as the objective of the problem in Eq. (15). Due
to the property 4) of Y(t), Y(l̃) approximately satisfies the
constraint in Eq. (15).

We define LK as the loss of the k-means module. Denote
by ỹi ∈ N the pseudo-label of the data xi ∈ R

d and let f i ∈
R

k̃ be the final output of the classifier in terms of xi in the k-
means module, where k̃ is the number of cluster. We utilize
the softmax loss for the multi-classification problem for LK

LK = –
n∑

i=1

ln

(
exp(f i,ỹi – max{f i})

∑k̃
j=1 exp(f i,j – max{f i})

)

, (29)

where f i,j is the j-th entry of the vector f i and max{f i} is
the maximal entry of this vector. LK is smooth and easy to
differentiate. Notably, pseudo-label ỹi is obtained by per-
forming k-means clustering on Gη(Y(l̃)) row-wisely, and f i

is the output of a two-layer classifier with Gη(Y(l̃)) being the
input.

6 Training algorithm and complexity
6.1 Training algorithm
We recast all three steps of subspace clustering as differ-
ential modules and propose the SSCNet. One of the main
differences between our proposed unified differentiable
modules and traditional deep learning lies in the train-
ing algorithm. In most cases, other deep learning meth-
ods design a final loss function and use it to update all
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the network parameters in one iteration. In contrast, fol-
lowing the commonly used ideas of pre-training and fine-
tuning, we assign each module an objective to retain the
interpretability of the model. The training algorithm for
the proposed SSCNet is outlined in Algorithm 1. We de-
note the learnable parameters of the differentiable mod-
ules of SSCNet as �1, �2 and �3, respectively. We update
the parameters of differentiable SSC more frequently be-
cause it is the first differentiable module with the main pa-
rameters. We solve all the optimization problems in this
algorithm via SGD.

Note that the non-differentiable KNN operator in graph
construction does not harm the learning. Based on the
proposed sparse graph matrix, SSCNet concerns only the
local structure when learning the feature Y(l̃). The local dis-
tance is more significant than the global distance for the

Algorithm 1 Training algorithm for the proposed SSCNet
Input: Data matrix X , parameter γmax, λ, c1, c2, ε, ε, and

an orthogonal matrix Y(0) randomly chosen from the
Stiefel manifold.

1: while not converged do
2: Sample a batch data from X and obtain the pseudo-

labels of the batches by a forward propagation;
3: Train the differentiable modules:

if γ mod 3 = 0; solve: min�1 LD-SSC;
if γ mod 3 = 1; solve: min�1,�2 LD-SSC + c1Le;
if γ mod 3 = 2; solve: min�1,�2,�3 LD-SSC + c1Le +
c2LK;

4: Check the convergence conditions: |Lt+1
D-SSC –

Lt
D-SSC| + |Lt+1

e – Lt
e| + |Lt+1

K – Lt
K| ≤ ε or γ > γmax;

5: If not converged, set iteration number γ = γ + 1.
6: end while

Output: ZK , EK and pseudo-labels.

next module—k-means clustering. Usually, large spacing
among clusters often leads to better results.

6.2 Complexity analysis
With the new data coming in, our SSCNet can provide
their labels by forward propagation, while some traditional
methods, such as LRR and SSC, need to perform the opti-
mization again.

The computational complexity equals the consumption
of a forward step. The data size is n, the clustering num-
ber is k̃, and Z ∈R

m×n. In our paper, Aϑ1 (·) and AT
ϑ2

(·) are
shallow convolutional networks with 3 × 3 kernels. Con-
sidering element-wise operations, the computational com-
plexity of one block of our differentiable SSC module is
O(ndm). For the eigenvector mapping module, it stacks
the layers in Eq. (27), and each step of it consumes k̃n2

FLOPs. Hence, the computational complexity of this mod-
ule is O(k̃n2). As shown in Fig. 1, the last k-means clus-
tering module during the testing phase is a shallow classi-
fier with Gη(Y(l̃)) being the input. Assuming that the shal-
low neural networks are in the width O(h), the last module
consumes O(h2 + hk̃) FLOPs. In summary, the total com-
plexity is O(ndm + k̃n2 + h2 + hk̃).

The computational complexity of one block of D-SSC
is the same as that of one iteration of L-ADMM, which
is O(ndm). The results of D-LADMM [22] indicate that
the block number of D-LADMM is much smaller than the
total iteration number of L-ADMM. Thus, the total com-
plexity of one forward step of SSCNet is much lower than
that of SSC.

7 Experiments
In this section, we verify the effectiveness of our SSCNet
for clustering. Detailed comparisons with other methods
and analyses are provided.

Figure 1 Illustration of the self-supervised structure. We cluster the results of the eigenvector approximation and use the cluster assignments as
pseudo-labels to learn the parameters of the differentiable modules. DSSCNet refers to differentiable sparse subspace clustering
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7.1 Experiment settings
7.1.1 Datasets
To evaluate the performance of our proposed methods, we
conduct experiments on three commonly used datasets,
namely the MNIST [48], the USPS, and the CIFAR-10 [49]
datasets.

MNIST [48]. The MNIST dataset contains a total 70,000
handwritten digits of 10 classes. Each image is in the size
of 28 × 28. The digits are centered and size-normalized. In
experiments, we adopt all images for clustering.

USPS. The USPS dataset consists of 9298 handwritten
digits of 10 classes. Each image is 16 × 16 in size, and the
pixel values are in the range of [0, 2].

CIFAR-10 [49]. The CIFAR-10 dataset has 10 classes of
objects. It contains a total of 60,000 color images of size
32 × 32. We also adopt the entire dataset.

7.1.2 Method comparison
We compare our SSCNet with many state-of-the-art meth-
ods, including k-means, spectral embedded clustering
(SEC) [50], autoencoder based k-means (AE + k-means)
[51], deep embedded clustering (DEC) [6], improved DEC
(IDEC) [10], joint unsupervised learning (JULE) [7], cas-
cade subspace clustering (CSC) [9], deep subspace cluster-
ing (DSC) [12], and SpectralNet [32].

7.1.3 Evaluation metrics
We adopt two commonly used metrics, including the clus-
tering accuracy (ACC) and the normalized mutual in-
formation (NMI) [52], to measure the performance. The
NMI(C, C′) can be information-theoretically interpreted.
It is defined by

NMI
(
C, C′)

:=

∑K
i=1

∑S
j=1 |Ci ∩ C′

j | log
N |Ci∩C′

j |
|Ci||C′

j |
√

(
∑K

i=1 |Ci| log Ci
N )(

∑S
j=1 |C′

j | log
C′

j
N )

,
(30)

where C and C′ represent the predicted partition and the
ground truth partition, respectively.

For the ACC, we first need to map clusters to the cor-
responding ground truth labels by the best permutation
mapping function map(·) obtained by the Hungarian al-
gorithm [53]. The accuracy is defined as follows:

ACC =
∑N

i=1 δ(ci, map(ri))
N

, (31)

where ci is the ground truth label, ri is the predicted label,
and

δ(a, b) =

{
1, if a = b,
0, otherwise.

(32)

For these two metrics, the higher value represents better
performance.

7.1.4 Network architecture
We use a convolutional neural network with three layers
for each block’s nonlinear mapping function Aϑ1 . The ker-
nel size is set to 3 × 3, and the numbers of feature maps
in each layer are 32, 64, and 128. The corresponding gen-
eralized adjoint mapping function Aϑ2 is designed sym-
metrically. In addition, we set λ = c1 = c2 = 0.15, and ε =
1.0 × 10–2. We use SGD with a learning rate lr = 3.0 × 10–4

to train the network, and we set the batch size to 256 for
all datasets. Our implementation is based on Python and
TensorFlow [54].

7.2 Performance comparison
In Table 1, we present the results of these related ap-
proaches on these three datasets. Some of the results are
taken directly from their papers. Our method performs
best on all these datasets under the ACC and NMI metrics.
For example, on the USPS dataset, the NMI of our method
is 0.9482, which is 1.6% higher than the second best result
0.9321 achieved by SpectralNet [32], while the third best
result is 0.9130 of JULE [7]. Compared with traditional
clustering methods, including k-means and SEC, these
deep learning-based methods show much better results
due to the powerful representation ability of deep neural
networks. In addition, we can see that DEC achieves much
better results than AE + k-means on all the datasets, which
reflects the importance of joint learning. Our method can
jointly learn the optimal parameters for dictionary con-
struction, affinity matrix computing, and clustering, so it
achieves outstanding performance.

All the clustering methods exhibit weaker performance
on the CIFAR-10 dataset than on the other datasets. It
is essential to emphasize that most unsupervised cluster-
ing methods employed in this study operate without the
benefit of labeled data during training. The complex se-
mantic information in CIFAR-10 images introduces addi-
tional complexity, which may challenge traditional cluster-
ing techniques. These methods tend to rely heavily on low-
level features, such as color, which can lead to misclassifi-
cations, such as grouping images of grassy landscapes and
animals in grassy environments.

The complexity of CIFAR-10 poses a significant chal-
lenge for unsupervised clustering and traditional meth-
ods. Our approach, which autonomously learns high-level
semantic features, surpasses traditional clustering tech-
niques when dealing with such complex datasets. How-
ever, while our method mitigates these challenges, it can-
not completely overcome the inherent limitations of clus-
tering methods and may not entirely eliminate feature-to-
semantic mismatches.
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Table 1 Experimental results on the MNIST, USPS, and CIFAR-10 datasets. The best results are in bold. NMI and ACC represent
normalized mutual information and accuracy, respectively

Methods MNIST USPS CIFAR-10

NMI ACC NMI ACC NMI ACC

k-means 0.4997 0.5723 0.6310 0.6682 0.0871 0.2289
SSC 0.6937 0.6765 0.6532 0.6174 0.0610 0.1982
SEC [50] 0.7275 0.8037 0.7266 0.7420 – –
AE + k-means [51] 0.7473 0.8182 0.6620 0.6931 0.2468 0.2937
DEC [6] 0.8372 0.8655 0.7529 0.7408 0.2568 0.3010
IDEC [10] 0.8672 0.8806 0.7846 0.7650 0.2675 0.3097
JULE [7] 0.9130 – 0.9130 – 0.1923 0.2715
DSC [12] 0.8816 0.8639 0.8254 0.8063 – –
CSC [9] 0.7550 0.8716 – – 0.070 0.2188
SpectralNet [32] 0.9239 0.9709 0.9321 0.9800 0.2311 0.3004
Ours 0.9349 0.9752 0.9482 0.9890 0.3041 0.3515

Figure 2 Visualization of clustering results on subsets of 1000 MNIST and USPS data points during training. Different colors indicate different
clusters. The first row shows the USPS result, and the second row corresponds to MNIST

7.2.1 Visualization
In Fig. 2, we visualize the clustering results with 1000 data
points from the MNIST and the USPS datasets during
training. We can observe that our proposed SSCNet con-
verges quickly even though each module has its objective.
The points of both datasets are well separated. SSCNet in-
creases the separability of the results. Note the points with
red and blue colors in epoch 50 of the USPS dataset; they
are slightly mixed but separated in epoch 100.

7.3 Influence of blocks
In Fig. 3, we show the influence of the block number b
on the results of the MNIST dataset. One block is gen-
erated from one iteration of the L-ADMM. The perfor-

mance is improved with increased blocks initially. This
phenomenon is consistent with the optimization process
of traditional SSC, whose objective value decreases with
increasing iteration number. The network tends to be sta-
ble when b is greater than 4. Therefore, we set the num-
ber of blocks for all the datasets to 4. Another observa-
tion is that when b = 0, the differentiable SSC module of
our network is a variant of the autoencoder since we let
Z(1) = AT

ϑ2
(Aϑ1 (X)). However, the performance is much

better than AE + k-means. This phenomenon verifies that
our other differentiable modules benefit the clustering, i.e.,
eigenvector approximation and self-supervised k-means.
We can also conclude that the unified DP model can ob-
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Figure 3 Influence of the number of blocks on the MNIST dataset.
NMI and ACC represent normalized mutual information and accuracy,
respectively

tain better results than separated traditional deep learning
models even without our D-LADMM structure. Specifi-
cally, the NMI of our method is 0.8421 when b = 0, which is
0.0948 higher than that of AE + k-means. Our D-LADMM
framework further improves the NMI to 0.9349 when b =
4. These results demonstrate the superiority of the joint
learning strategy and the proposed DP structure.

7.4 Discussion for exploring applications with larger
datasets

A significant consideration is the practical applicability of
our method to larger datasets. While our experiments use
moderate-sized datasets, it is essential to consider their
potential for dealing with larger and real-world datasets.
As demonstrated in the algorithm complexity section, our
method surpasses existing techniques in terms of effi-
ciency and supports incremental learning for continued
training on new data. However, one computational bot-
tleneck that remains consistent with the original SSC al-
gorithm is the step resembling eigenvalue decomposition,
with a complexity of O(kn2), where k signifies the number
of clusters and n represents the dataset size. This compu-
tational aspect could be a limitation when applied to larger
datasets. Our current study primarily focuses on differen-
tiable programming. Hence, we maintain alignment with
the original SSC algorithm w.r.t. the algorithm steps.

In addressing this scalability issue for larger datasets, a
promising avenue for future research would involve the
replacement of graph-based spectral clustering, which
exhibits second-order complexity, with an efficient first-
order clustering method. This strategic change could over-
come the scalability limitations observed in our current
implementation and open up new possibilities for apply-
ing our method to large-scale datasets in practice.

8 Conclusions
In this paper, we propose a novel SSCNet to address the
existing limitations of SSC. We first recast the optimiza-
tion step of the L-ADMM as a multi-block deep neural
network. We then apply this approach to the SSC problem,
learning dictionary, and affinity matrix. Second, a spectral
embedding network is used to approximate the eigenvalue
decomposition. A general and novel differentiable eigen-
vector mapping layer is proposed that can be applied to
other problems. Finally, we adopt a self-supervised struc-
ture to overcome the non-differentiability of k-means. Ex-
periments validate the effectiveness of our SSCNet.

Appendix A: Derivatives of f (t)
Note that

f (t) = Tr
(

Y(t)TLY(t)
)
.

Hence, we have

d
dY(t)

f (t) = Y(t)T(
L + LT)

= 2Y(t)TL.

On the other hand, we have

d
dt

Y(t) =
d
dt

(

I – tP +
t2P2

2

)

Y = –(I – tP)PY.

A.1 First-order derivative
By the chain rule, we can easily obtain the first-order
derivative f ′(t):

f ′(t) = Tr

(
df (t)
dY(t)

d
dt

Y(t)
)

= –2 Tr
(

Y(t)TL(I – tP)PY
)
.

Recall that

P = GYT – YGT, G = 2LY.

Then, we can obtain

f ′(0) = –2 Tr
(

YTLPY
)
.

A.2 Second-order derivative
We have

f ′′(t) =
df ′(t)

dt

= –2 Tr

((
d
dt

Y(t)
)T

L(I – tP)PY

– Y(t)TLP2Y
)
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= 2 Tr
(
(I – tP)PY

)TL(I – tP)PY

+ Y(t)TLP2Y).

Hence, we can further obtain

f ′′(0) = 2 Tr
(
–YTPLPY + YTLP2Y

)
.

We finish the calculation.

Appendix B: Proof of Proposition 1
Due to the skew-symmetry of P, we can obtain

Y(t)T =

(

I +
r∑

i=1

2– (i–1)i
2 (–1)i+1(tP)i

)

Y,

then, we can verify that

(
Y(t)

)TY(t) = YT(
I + 2–r(r–1)t2rP2r)Y.

We can see that all the terms with a degree less than 2r

have zero coefficients. The optimality is obvious. More-
over, when P is bounded, we can obtain

∥
∥YT(

2–r(r–1)t2rP2r)Y
∥
∥ = O

(
2–r(r–1)t2r).

We now finish the proof.

Appendix C: Proof of Proposition 2
From Eq. (19), we have

d
dt

Y(t) =

(

–P +
r∑

i=2

2– (i–1)i
2 i(–P)iti–1

)

Y.

We denote by

R =

( r∑

i=2

2– (i–1)i
2 i(–P)iti–1

)

.

Due to the skew symmetry of P, we have R = –RT. Then

(–P + R)T = P – R.

We now project d
dt Y(t) to the tangent space of Y

PTY

(
Ẏ(t)

)
= Ẏ(t) – Y

(
Ẏ(t)

)TY

= (–PY + RY) – Y
(

YTP – YTR
)

Y

=
(

I + YYT)
(–PY) + P⊥

Y (RY).

Note that we already have

PTY (–G) = –PY.

Then we obtain
〈
PTY

(
Ẏ(t)

)
,PTY (–G)

〉
c

= Tr
(
PTY (–G)P⊥

Y PTY

(
Ẏ(t)

))

= Tr
(
–YTPTP⊥

Y (–PY + RY)
)

= ‖PY‖c – 〈PY, RY〉c.

Hence, it is obvious that when

‖P⊥
Y (R)‖F < ‖P⊥

Y (P)‖F := cp, (C.1)

we have
〈
PTY

(
Ẏ(t)

)
,PTY (–G)

〉
c > 0.

Then, we obtain

‖P⊥
Y (R)‖F

=

∥
∥
∥
∥
∥

r∑

i=2

2– (i–1)i
2 i

(
–P⊥

Y (P)
)iti–1

∥
∥
∥
∥
∥

≤
r∑

i=2

2– (i–1)i
2 ici

pti–1 ≤ cp

r∑

i=2

2– i2
4 i(cpt)i–1

≤ cp

∫ ∞

2
2– x2

4 x(cpt)x–1dx

= cp · g(t) ·
(

1 – erf

(
2 ln 2 – 2 ln t

2
√

ln 2

))

+
t

ln 2
,

(C.2)

where the last step is given in the following section, ρt = cpt
and

g(t) :=
2
√

π exp( ln2 t
ln 2 ) ln t

t ln
3
2 2

.

A necessary condition for the inequality in Eq. (C.1) is

g(t) ·
(

1 – erf

(
2 ln 2 – 2 ln t

2
√

ln 2

))

+
t

ln 2
< 1,

which implies the condition in Proposition 2. We finish the
proof.

C.3 Integral calculations for Eq. (C.2)
We have

∫ xtx–1

2 x2
4

dx =
1
t

∫ xtx

2 x2
4

dx.

Note that

dtx

dx
= ln(t)tx,

∫ x

2 x2
4

dx = –
21– x2

4

ln 2
.
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Integrating by parts, we obtain

∫ xtx

2 x2
4

dx = –
tx·21– x2

4

ln 2
+

2 ln t
ln 2

∫ tx

2 x2
4

dx.

Now, we aim to solve the following

∫ tx

2 x2
4

dx =
∫

exp

(

ln tx –
ln 2x2

4

)

dx

=
∫

exp

(
ln2 t
ln 2

–
(√

ln 2x
2

–
ln t√
ln 2

)2)

dx.

We substitute

u =
ln 2x – 2 ln t

2
√

ln 2
,

then we have

∫ tx

2 x2
4

dx =
∫ 2 exp( ln2 t

ln 2 – u2)√
ln 2

du

=
√

π exp( ln2 t
ln 2 )√

ln 2

∫ 2 exp(–u2)√
π

du

=
√

π exp( ln2 t
ln 2 ) erf(u)√
ln 2

=

√
π exp( ln2 t

ln 2 ) erf( ln 2x–2 ln t
2
√

ln 2
)

√
ln 2

.

Then, we can conclude that

∫ xtx–1

2 x2
4

dx = –
tx·21– x2

4

t ln 2

+
2 ln t
t ln 2

√
π exp( ln2 t

ln 2 ) erf( ln 2x–2 ln t
2
√

ln 2
)

√
ln 2

=
2
√

π exp( ln2 t
ln 2 ) ln t erf( ln 2x–2 ln t

2
√

ln 2
)

t ln
3
2 (2)

–
tx–1·21– x2

4

ln 2
.

Due to

tx–1·21– x2
4

ln 2
→ 0, as |x| → ∞,

we have
∫ ∞

∞
xtx–1

2 x2
4

dx = g(t) erf

(
ln 2x – 2 ln t

2
√

ln 2

)∣
∣
∣
∣

∞

2

= g(t)
(

1 – erf

(
2 ln 2 – 2 ln t

2
√

ln 2

))

+
t

ln 2
,

where

g(t) :=
2
√

π exp( ln2 t
ln 2 ) ln t

t ln
3
2 (2)

.

We have now finished the calculation.
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