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– Revision Summary and Replies to Review Comments

Zhouchen Lin, Pan Zhou, and Chao Zhang

First of all, the authors would like to thank the reviewers for bringing up

valuable questions/suggestions to improve our paper. We have tried our best to

revise the manuscript. All the comments have been addressed appropriately.

In the following, we first provide a “Revision Summary” in Section 1 to list

the differences between the original manuscript and the revised one, so that the

reviewers and the editor can easily identify what changes we have made. We

further provide detailed replies to the review comments in Section 2.

1 Revision Summary

Below are the summary of differences between the original manuscript and the

revised version.

1. Following the suggestions from Reviewers #1, #2, #3 and AE, we discuss

in detail the differences between our bilevel method with other bilevel dictionary
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learning methods, including (Yang et al. 2012), (Mairal et al. 2012), (Tao et al.

2014), and (Lobel et al. 2015), in the sixth paragraph of Section 1. Note that we

submitted our manuscript before the publication of (Lobel et al. 2015).

2. Following the suggestions from Reviewers #2, we discuss the differences

between our method with (Guo et al. 2012). Though the model by Guo et al. can

be regarded as the unilevel (single-level) version of our bilevel model to some

degree, there are differences between these two methods. Please refer to the

seventh paragraph of Section 1.

3. Due to the suggestions from Reviewer #1 and page limit, we move the

details of the mathematical deduction of Algorithms 1 and 2 to Supplementary

Material.

4. Following the suggestions from Reviewers #1, #2, and #3, we add Sec-

tion 3.5 to discuss the convergence of our optimization method. Admittedly, our

method cannot be theoretically proven to converge. But we conduct experiments

and report the objective value and find that the objective values reduce reason-

ably well. Due to page limit, we only report the objective value L2 in Fig. 1

(a) and (b) on Extended YaleB and Fifteen Scene Categories, respectively. And

in the future work, we will further explore the convergence issue of ADM when

solving nonconvex optimization problems that have nonlinear linear constraints

and K (K ≥ 3) blocks of variables. This is mentioned in Section 6.

5. Following the suggestions from Reviewers #1, #2 and #3, to make the

advantages of our bilevel model more clear, we add Section 4 to discuss the dif-

ferences between unilevel model and bilevel model.

6. Following the suggestions from Reviewers #3, we discuss the connections

and differences between our method and supervised neural networks at the end
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of Section 4. And we give more details in Section III of Supplementary Material.

7. Following the suggestions from Reviewers #1, #2, and #3, in Section 5.6,

we conduct experiments to compare our bilvel method BMDDL with DDL-PC

(Guo et al. 2012) and our unilevel version SMDDL to verify the advantages of

our bilevel model. Our BMDDL outperforms both DDL-PC and SMDDL, which

demonstrates the benefits of bilevel models.

8. Following the suggestions from Reviewers #1, #2, and #3, to demonstrate

the advantages of the Laplacian regularization, we add two sentences at the end

of Section 5.4.2. We quote them below:

“Note that TDDL [32] is also a bilevel model based dictionary learning method

and it replaces the Laplacian term tr(ALAT ) in problem (4) with a regularization

‖A‖2F . From Tables 3∼8 and Fig. 8, BMDDL achieves better performance than

TDDL on the six benchmarks, which also demonstrates the advantages of the

Laplacian regularization that encourages similar samples to have similar sparse

codes.”

And in Section IV of Supplementary Material, we further conduct other ex-

periments to verify the contribution of the Laplacian regularization. We find that

in BMDDL, the improvements of recognition rates are mainly achieved by the

Laplacian term and our optimization method is more efficient in speed than the

stochastic gradient descent algorithm.

9. Following the suggestions from Reviewers #1, #2, and #3, to demonstrate

the advantages of our optimization method, we add two sentences at the end of

the second paragraph of Section 5.5. We quote them below:

“Note that TDDL [32] replaces the Laplacian term tr(ALAT ) in problem (4)

with a regularization ‖A‖2F , which results in a subproblem that is easier to solve
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for the subgradient with respect to D via implicit differentiation. From Table 9,

we can see that though our optimization method solves a more complex problem,

our method is still faster than TDDL, which demonstrates that our optimization

method runs faster than the stochastic subgradient descent algorithm.”

And in Section IV of Supplementary Material, we explains this in more detail.

10. Following the suggestions from AE and Reviewer #1, we also compare

our method with (Lobel et al. 2015), which is also a bilevel model based dictio-

nary learning method, and we report the results in Tables 4 and 5. It should be

pointed out that in (Lobel et al. 2015), it needs to extract two kinds of features,

HOG and LBP, while our method and other compared methods, such as SRC,

DKSVD, LC-KSVD, TDDL, etc., only use one kind of feature, SIFT. But our

method still outperforms it. Note that we submitted our manuscript before the

publication of (Lobel et al. 2015).

11. Due to page limit, we remove Figure 1 in our original version, which

shows examples of Extended YaleB. We also only show 5 examples, instead of

15 examples, of Fifteen Scene Categories database in Figure 3. Also, we only

show 5 examples, rather than 10 examples, of UCF50 and HMDB51 in Figure 5.

(a) and (b), respectively. Finally, we resize Figure 8, which shows performance

on the six testing databases with varying dictionary sizes, to a smaller one.

12. All the typos, improper presentations, and other minor comments from

reviewers have been properly addressed in the new version. All the suggested

references are cited appropriately.
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2 Detailed Replies to Review Comments

The replies below are ordered as the questions appearing in the comments.

2.1 To AE:

1. The specific bi-level model is very similar to existing models, which are not

cited or compared to. R1 provides some examples that should be discussed and

compared against, since many of the experiments are similar and even on the

same databases. In addition, the ECCV 2014 paper ”Sparse Dictionaries for

Semantic Segmentation” uses a similar strategy of jointly learning the classifier

parameters and the sparse dictionary and shows how the subgradient of the upper

level objective function with respect to the dictionary D can be computed. The

new think in the present paper is the Laplacian regularization, which as pointed

out by R3 is very minor. Overall, the novelty of the model needs to be more clearly

established with respect to the state of the art on bi-level discriminative sparse

dictionary learning.

Reply: Admittedly, (Mairal et al. 2012, PAMI), (Lobel et al. 2015, PAMI),

and (Tao et al. 2014, ECCV) all propose bilevel model based dictionary learning

methods. However, there are obvious differences, which we have discussed in

the sixth paragraph of Section 1 in the new manuscript.

We also conduct experiments to compare our method with these methods. As

the model proposed in (Tao et al. 2014, ECCV) is for semantic segmentation

and is not very related to recognition tasks (they adopt the conditional random

field energy function, which is usually used in semantic segmentation instead of

recognition tasks, as the loss function, and do not do any image classification

5



experiment in their paper), we do not conduct recognition experiments of (Tao

et al. 2014, ECCV) in our revised manuscript and only discuss it in the sixth

paragraph of Section 1. (Lobel et al. 2015, PAMI) divides an image into L

regions and extracts several kinds of features in the regions, such as HOG and

LBP. Then in the lower level, they employ the max-pooling method to find a

few feature words to construct compact features. But our method uses the whole

image rather than patches for dictionary learning and we employ the `1 norm and

the Laplacian term to promote the group sparsity of features in the lower level.

The upper level in (Lobel et al. 2015, PAMI) minimizes the combination of the

loss function of a linear SVM and the regularization of dictionary. Thus, it also

has the second drawback we mentioned previously that the learnt dictionary is

optimal for the combination, rather than the classification loss. Accordingly, the

dictionary may not be the most discriminative for recognition tasks. Our upper

level only minimizes the classification loss, thus it does not have the drawback.

So, obviously, (Lobel et al. 2015, PAMI) is very different from ours. Besides,

(Lobel et al. 2015, PAMI) is difficult to be reimplemented, since it depends on the

number and the regions of patches and the overlap between patches, etc., which

is not provided in the paper. The classification framework is not presented in the

paper either. Namely, they only present the training process, but not the testing

phase. We sent emails to the authors, but they did not provide their code. So

we only report the experimental results on Caltech 101 (75.4%) and 15 scenes

categories (86.3%) shown in their paper. It should be pointed out that in their

paper, they extract two kinds of features, HOG and LBP, while our method and

other compared methods, such as SRC, DKSVD, LC-KSVD, TDDL, etc., only

use one kind of feature, SIFT. But our method still outperforms (Lobel et al.
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2015, PAMI). As for TDDL (Mairal et al. 2012, PAMI), we compare our method

with it on the six testing datasets. We can see from Tables 3∼8 that our method

outperforms (Mairal et al. 2012, PAMI).

2. There is lack of theoretical analysis or justification as to why the proposed

optimization strategy (apply ADMM to non-convex problems with non-linear con-

straints) is valid and why it is advantageous with respect block-coordinate de-

scent strategies from a theoretical point of view. This is a serious limitation of the

present paper and should be clearly addressed in the revised version.

Reply: In the revised manuscript, we added Section 3.5 to discuss this issue.

We quote it below:

“Admittedly, there is no theoretical convergence support when we apply AD-

M to solve problem (11). Typically, ADM for less than three blocks of variables

usually converges when the problem is convex. Recently, some scholars propose

theories to extend the scope of the convergence of ADM. For example, Hong and

Luo [45] point out that ADM with K (K ≥ 3) blocks of variables can converge

when minimizing the sum of two or more nonsmooth convex separable functions

which are subject to linear constraints. Hong et al. [46] also prove that ADM is

convergent for a family of sharing problems, regardless of the number of blocks

or the convexity of the objective function. Those works have extended the scope

of ADM with theoretical guarantee. However, as for more complex optimiza-

tion problems, which contain nonlinear equality constraints, are nonconvex and

have K (K ≥ 3) blocks of variables, there is no theory that supports the con-

vergence of ADM. But this does not mean that ADM cannot converge. Boyd et

al. [47] point out that when solving nonconvex problems by ADM, ADM may

not converge, but when it does converge, it will possibly have better convergence
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properties than other local optimization methods. On the other hand, many schol-

ars have also adopted ADM to solve nonconvex problems with nonlinear equality

constraints and more than three blocks of variables and they report state-of-the-

art experimental results, such as [9]. To illustrate the convergence of ADM in

solving problem (11), we conduct experiments and report in Fig. 1 (a) and (b) the

objective value L2 on Extended YaleB [48] and Fifteen Scene Categories [49],

respectively. We can see that the objective values reduce reasonably well.”

The reason that we do not use other methods that are mentioned is that those

methods cannot, or are difficult to, be applied to solve our optimization problem.

1) Lobel et al. use an alternating minimization algorithm based on the CCCP

algorithm (Yuille et al. 2003), which is designed for unconstrained optimization

problems whose objective is decomposed as the sum of a convex and a concave

term. But our optimization problem is a constrained problem and does not satisfy

the condition that the objective should consist of a convex and a concave term ei-

ther . Thus, the alternating minimization algorithm based on the CCCP algorithm

cannot solve our optimization problem.

2) The block coordinate descent methods can easily stuck at non-critical

points for nonsmooth problems, such as ours, even for convex problems (Xu

et al. 2013). Besides, the block coordinate descent methods are also for un-

constrained problems. Finally, Xu and Yin (2013) proposed a block coordinate

descent method to solve regularized block multiconvex optimization. But it can

converge only when the feasible set and objective function are convex in each

block of variables and they can be generally nonconvex. Obviously, for our prob-

lem, the constraints with respect to the variable D is not convex. So, those meth-

ods cannot solve our optimization problem either.
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3) As for the stochastic subgradient descent algorithm, actually it is difficult

to be applied to solve our bilevel model. This is because deducing the gradient

with respect to D via nonsmooth implicit functions is difficult. We will explain

this in the reply to the part II of Question 2 of Reviewer #1.

Xu Y, Yin W. A block coordinate descent method for regularized multiconvex opti-

mization with applications to nonnegative tensor factorization and completion[J]. SIAM

Journal on imaging sciences, 2013, 6(3): 1758-1789.

3. There is a lack of detail in the experiments and the comparisons to the

point that it is not clear to the reviewers whether the comparison is fair, how

parameters were set, what code was used for comparison, etc. Again, this is a

serious limitation of the present paper and should be clearly addressed in the

revised version.

Reply: The implementations of D-KSVD, LC-KSVD1, LC-KSVD2, SRC,

KSVD, and LLC are provided by their authors. We sent emails to the authors of

LRRDL, SLRRDL, TDDL, LSC, and DDL-PC, but for some reasons, the authors

did not provide their codes. So we implemented their codes by ourselves. It

should be pointed out that LRRDL and SLRRDL are proposed in the same paper.

TDDL is mainly based on the LARS algorithm (Efron et al. 2010) which is

provided to us by its authors. And the LSC and DDL-PC are mainly based on

the feature-sign search algorithm (Lee et al. 2007), which is also provided by

the authors. In the experiments, we have tried our best to tune the parameters of

these methods.

In all experiments, for fairness, D-KSVD, LRRDL, SLRRDL, TDDL, LC-

KSVD, SRC, KSVD, LSC∗, LLC∗ and our BMDDL all use the same feature and

the dictionary sizes are the same, too.
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When we tuned the hyper-parameters of other methods, we use the grid,

which is the SAME as ours, to search the best parameters. In the experiments,

we have tried our best to tune the parameters of these methods.

When testing a dataset, we firstly introduce the dataset, then present what kind

of features and how many dimensions of the features we used in the experiment,

even where the features can be downloaded or how the features are produced. We

also point out the parameter settings in our method. And in the second paragraph

of Section 5 in the revised manuscript, we add a sentence “ Note that the param-

eters in our model are fixed for each database and determined by n-fold cross

validation and the detailed settings are presented in each experimental section.”.

2.2 To Reviewer #1:

1. Authors claim 3 main contributions: 1) Joint learning of mid-level dictionary

and top-level classifier, where model is consistent (training and testing problems

are the same), 2) Use of group sparsity constraints to take advantage of struc-

ture in the data, 3) A novel optimization scheme to solve the resulting model.

Respect to the 2 first contributions above, there is extensive previous work in

terms of discriminative joint learning of dictionary and classifier, as well as, use

of class labels to implement group sparsity constraints. As an example, Lobel

et al. ”Learning Shared, Discriminative, and Compact Representations for Vi-

sual Recognition”, PAMI, 2015, propose a bilevel model with group sparsity

constraints for visual recognition. Earlier, [30] also proposes a bilevel model,

although without group sparsity constraints.

Reply: We have answered this question in the reply to Question 1 of AE.
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Please refer to it.

2. The authors make a good effort to test their method on several bench-

mark datasets. However, most of the experimental part is dedicated to present

overall recognition rates, without further analysis to support the individual con-

tributions of the paper. As an example, authors claim as a relevant contribution

the optimization technique proposed to solve the resulting model. In particular,

they indicate that the proposed model can be also solved by using the stochastic

subgradient descent algorithm, but with a slower convergence rate and a more

complex solution. It will be great if they can support this claim including an ex-

periment that compares the convergence rate of both techniques. Similarly, it will

be good to know the contribution of the group sparsity constraint, and the joint

learning scheme of the dictionary and the classifier. In terms of this last point, the

main differences with respect to the work in [30] are the use of a group sparsity

constraint and an alternative optimization scheme, which of these factors explain

the slightly superior performance with respect to [30]?

Reply: We will answer your questions in turn.

I. A comparison between our optimization method and the stochastic subgra-

dient descent algorithm to verify the convergence rate

Actually, it is difficult to apply the stochastic subgradient descent algorithm

to solve our model. Typically, when applying the stochastic subgradient descent

algorithm to solve bilevel model based dictionary learning, one can follow the

following sketch (Mairal et al. 2012, PAMI and Yang et al. 2012, CVPR). Con-
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sider the general bilevel model based dictionary learning problem (1):

min
W,D

f(A,W ),

s.t.A = min
A
g(A,D),

(1)

where A,W , and D are three variables which need to be solved. A denotes the

sparse representation. W represents the parameter matrix of a classifier or other

parameters. D is a dictionary. To solve problem (1), firstly, fixingD, we solve the

lower level problem and compute the variable A. Then we compute the gradient

of f(A,W ) with respect to D by the chain rule:

∂f

∂D
=
∂f

∂A

∂A

∂D
, (2)

where ∂A
∂D

can be computed via implicit function. Since A is the optimization

solution to the lower level problem, A satisfies the following implicit function.

∂g

∂A
= 0. (3)

Thus, we can utilize Eq. (3) to compute ∂A
∂D

. Unfortunately, when facing a dic-

tionary learning problem, the lower level problem is usually non-differentiable,

e.g., involving the `1 norm for sparsity. Thus, we can only obtain the subgradient
∂A
∂D

, which may lead to a slow convergence rate.

When we use the stochastic subgradient descent algorithm to solve our model,

we can obtain the following implicit function:

−DT (Y −DA) + αsign(A) + βAL = 0, (4)

where sign(A) carries the signs of A. However, for general readers, it is difficult

to compute ∂A
∂D

from (4). Thus, applying the stochastic subgradient descent al-
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gorithm to solve complex bilevel models, such as ours, is not easy, as it requires

significant mathematical skills.

On the other hand, in our manuscript, we have compared our method with T-

DDL (Mairal et al. 2012, PAMI), which is also a bilevel model based dictionary

learning method. Indeed, its model is easier than ours, since its lower level prob-

lem does not consider the data structure and it has no Laplacian term. Actually,

TDDL replaces the Laplacian term tr(ALAT ) in problem (4) in our manuscript

with a regularization ‖A‖2F . Thus, when using the stochastic subgradient de-

scent algorithm to solve the model, the L in the implicit function (4) becomes

an identity matrix and it is much easier to compute ∂A
∂D

. In Table 9 in the re-

vised manuscript, though solving a more complex problem, we can still see that

our method is much faster than TDDL, which demonstrates that using our opti-

mization method to solve this kind of problem is faster than using the stochastic

subgradient descent algorithm. In our revised manuscript, we mentioned this at

the end of the first paragraph of Section 5.5 (“ Note that TDDL [32] replaces

the Laplacian term tr(ALAT ) in problem (4) with a regularization ‖A‖2F , which

results in a subproblem that is easier to solve for the subgradient with respec-

t to D via implicit differentiation. From Table 9, we can see that though our

optimization method solves a more complex problem, our method is still faster

than TDDL, which demonstrates that our optimization method runs faster than

the stochastic subgradient descent algorithm.”).

II. The contribution of the group sparsity constraint

We discuss this issue in Supplementary Material. We quote it below. Note

that Table 1 above is Table 1 in Supplementary Material. We just copy it here.

“In this section, we conduct experiments to verify the advantages of the Lapla-
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Table 1: The effects to recognition rates (%) of the Laplacian term on the three

databases. (This table is adapted from Table 1 in Supplementary Material)
Method Extended YaleB 15 Scene

Categories

Caltech 101

TDDL (Mairal et al. 2012) 94.6 92.1 71.5

Our method without Laplacian term 94.8 92.9 71.8

Our method with Laplacian term 95.5 96.9 75.5

cian term. In our paper, we have compared our method with TDDL [5]. As we

have mentioned, TDDL is also a bilevel model based dictionary learning method,

but it does not consider the intrinsic data structure. Actually, TDDL [5] replaces

the Laplacian term tr(ALAT ) in problem (4) with a regularization ‖A‖2F , which

results in a subproblem that is easier to solve for the subgradient with respect to

D via implicit differentiation. From Tables 3∼8 in the paper, by comparison, we

can see that our method outperforms TDDL on the six testing datasets.

To further demonstrate the contribution of the group sparsity constraint, we

discard the Laplacian term in our model (set β = 0) and add a regularization

‖A‖2F to enhance the convexity of the lower level problem. To accommodate

this change, we only need to set L = I in problem (4) in our paper, where I

is the identity matrix. Now, our model is the same as the model in TDDL [5].

Then we first replace the lower level with its KKT conditions and then apply

ADM to solve the new model. We also use the same initialization strategy in our

paper. Namely, we first use KSVD [6] to initialize D, then solve the lower level

problem to initialize other variables. We report the experimental results in Table

1. The experimental settings in this section are as described in corresponding
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subsections in the paper, respectively. We can see that our original BMDDL can

achieve better recognition performance than the BMDDL without the Laplacian

term, which demonstrates the benefits of the Laplacian term. From Table 1, we

can also see that when the models are the same, our method without the Laplacian

term only outperforms TDDL slightly. Thus, the improvements of recognition

rates are mainly achieved by the Laplacian term. But from Table 9 in the paper,

our method is much faster than TDDL, which employs the stochastic gradient

descent algorithm to solve its model. Thus, our optimization method is more

efficient in speed than the stochastic gradient descent algorithm.”

Due to page limit, we only report the results of TDDL on the six testing

datasets in Table 3∼8 and do not report our method without Laplacian term in

the revised manuscript. We point out this in the last paragraph of Section 5.4 (“

Note that TDDL [32] replaces the Laplacian term tr(ALAT ) in problem (4) with

a regularization ‖A‖2F . From Tables 3∼8 and Fig. 8, BMDDL achieves better

performance than TDDL on the six benchmarks, which also demonstrates the

advantages of Laplacian regularization that encourages similar samples to have

similar sparse codes.”).

III. Joint learning scheme of the dictionary and the classifier

We add Section 5.6 in the revised manuscript to discuss this issue. We conduct

experiments and verify its advantage. In the experiment, we transform our bilevel

model into a unilevel model, named SMDDL:

min
W,D,A

‖H −WA‖2F +
λ

2
‖W‖2F +

γ

2
‖Y −DA‖2F + α‖A‖1 +

β

2
tr
(
ALAT

)
,

s.t. ‖Di‖22 ≤ 1, ∀i ∈ {1, 2, · · · , k}.

(5)
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Table 2: The comparison of recognition rates (%) between unilevel and bilevel on

the four databases. (This table is adapted from Table 11 in the revised manuscript)
Type Method Extended YaleB 15 Scene Categories Caltech 101 Caltech 256

Unilevel DDL-PC (Guo et al.) 95.3 92.0 71.3 58.3

Unilevel SMDDL (ours) 95.2 93.3 72.4 58.7

Bilevel BMDDL (ours) 95.5 96.9 75.5 59.3

Then we use ADM to solve it. For fairness, we also adopt the same initialization

strategy in our paper and solve problem (22) to compute the sparse representation

of testing samples. The experimental results are summarized in Table 2. Note that

Table 2 here is Table 11 in the revised manuscript. We just copy it here.

It should be noted that we also report a similar work DDL-PC (Guo et al.

2012, ACCV) in Table 2. This work also solves the problem (5) to compute

the dictionary D, classifier W , and sparse representations Atr. But it adopts the

feature-sign search algorithm (Lee et al. 2007, NIPS) to solve problem (5). Then

it solves problem (6)

min
A

γ

2
‖Y −DA‖2F + α‖A‖1. (6)

to compute the sparse representations Ats and uses W to classify Ats. From

Table 2, we can see that our method also performs better than DDL-PC (Guo et

al. 2012, ACCV). The reason why our bilevel model outperforms SMDDL and

DDL-PC is presented in more detail in Section 4 in the revised manuscript. We

report the experimental results of unilevel and bilevel model based methods in

Section 5.6.

IV. The main differences with respect to the work in [30] are the use of a

group sparsity constraint and an alternative optimization scheme, which of these
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factors explain the slightly superior performance with respect to [30]?

We have discussed this issue in the reply to the part II of your Question 1.

Please refer to it.

3. Initialization of the proposed model seems to be a relevant issue that lacks

of analysis in the paper, it will be great to show how sensitive is the proposed

method to this step.

Reply: Admittedly, nonconvex problems always have the initialization issue.

But the initialization strategy in our manuscript is empirically good. So, there

is no need for trying other initialization. In all the experiments, we first use

KSVD (Aharon et al. 2006) to initialize D, then solve the lower level problem

to initialize other variables. And our method achieves the best recognition rates.

It should be pointed out that LC-KSVD1, LC-KSVD2 (Jiang et al. 2013), and

TDDL (Mairal et al. 2012) all utilize KSVD to initialize their dictionaries.

4. How do you initialize the alternative method during the experimental vali-

dation?. For the alternative methods, do you use your own implementations?. In

all experiments, do you use the same features for all the methods (this is indicated

in just some of the cases)?

Reply: After we trained our model, we can obtain the dictionary D and the

classifier parameter matrix W . Then we can follow Section 3.3 in the manuscript

to compute the sparse representations of validation samples. Actually, we only

need to solve the problem (22) in the manuscript. Following TDDL (Mairals et al.

2012), we directly use the LARS algorithm (Efron et al. 2010) to solve problem

(22) and we do not initialize by ourselves.

We have discussed the implementation issue when we answer Question 3 of

AE. Please refer to the reply.
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5. Authors indicates that a novel contribution of the method is to subordinate

the learning of the mid-level dictionary to the learning of the upper level classi-

fier. It is not clear to me, how is this different to previous approaches that jointly

learn the dictionary and classifier (ex. using a coordinate descent optimization

approach).

Reply: In Section 4 in the new manuscript, we present the differences be-

tween unilevel model (jointly) and bilevel model (subordinate). We quote it be-

low:

“In this section, we will discuss the advantages of bilevel models. As we

mentioned in Section 2.2, most supervised methods directly incorporate discrim-

inative term F (D,A, S) into the objective functions of unsupervised methods and

the general supervised dictionary learning model can be formulated as (2). Such

a mechanism leads to two drawbacks.

1) Undoubtedly, in recognition tasks, the classification error is our ultimate

goal and we need to minimize it directly. However, these unilevel model based

supervised methods [6], [7], [10], [19], [20], [21], [22], [23], [24] minimize com-

binations of the reconstruction error and the discriminative terms, such as the

classification error. In this way, the learnt dictionary is an optimal dictionary to

the combined terms, rather than the classification error. Accordingly, the perfor-

mance on recognition tasks may be limited. On the contrary, bilevel models can

overcome this drawback as they directly minimize the classification error. The

upper level minimizes the classification loss, while the lower level characterizes

the intrinsic data structure. The objective of lower level is subordinate to that of

the upper level. Therefore, bilevel models achieve an overall optimality in that

the dictionary learning is directly connected to recognition.
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2) Another drawback of those unilevel model based methods [6], [7], [19],

[21], [22], [24] is that the problems for computing the sparse codes in the train-

ing and the testing phases are different, making the models inconsistent. The

sketch of these methods for recognition tasks can be summarized as following

three steps. Firstly, these supervised methods solve problem (2) to learn a dic-

tionary D, the sparse codes Atr of the training samples, and other variables S,

such as the classifier parameters in [6], [7], [19]. Then, in the testing phase, since

there is no supervised information, those methods have to discard the discrimina-

tive term F (D,A, S) in (2) and fix dictionary D to compute the sparse codes Ats

of testing samples. Finally, these methods feed the feature Atr of training sam-

ples into a classifier to learn its parameters W , then use W to identify the feature

Ats of testing samples. Or in [6], [7], [19], they directly use the previously learnt

classifier S of (2) in the training phase to classify testing samples. These methods

solve different problems to learn the sparse representations Atr of training sam-

ples and the sparse representations Ats of testing samples. By this way, the new

feature Ats may not be optimal for the classifier W or S which is learnt on the

feature Atr of training samples. In contrast, bilevel models do not have the above

problem. In the training phase, they solve the lower level optimization problem

to compute the sparse representations Atr of training samples, and in the testing

phase, they still use the lower level model to compute the feature Ats of testing

samples. Thus, the classifier trained on the feature Atr can perform on the feature

Ats of testing samples. So, in bilevel models, the problems for computing the

sparse codes in the training and the testing phases are consistent.”

To better understand, we take our model for example. If we jointly learn the
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dictionary and classifier in unilevel, the model can be written as:

min
W,D,A

‖H −WA‖2F +
λ

2
‖W‖2F +

γ

2
‖Y −DA‖2F + α‖A‖1 +

β

2
tr
(
ALAT

)
,

s.t. ‖Di‖22 ≤ 1, ∀i ∈ {1, 2, · · · , k}.

(7)

Accordingly, we use the model (7) to learn the dictionary D, the sparse represen-

tations Atr of training samples, and the classifier parameters W . Then we have to

solve the following problem to compute the sparse representations Ats of testing

samples:

a∗ = argmin
a

γ

2
‖y −Da‖2F + α‖a‖1 +

β

2

∑
i∈Nk(y)

qi‖a− Ai‖22, (8)

Finally, we use the classifier W to classify the sparse representations Ats of test-

ing samples. We can see that when we learn the dictionary D, we minimize the

combination of the reconstruction error, the classification error and the group s-

parse penalty. Thus, the dictionary D is optimal for the combination to some

degree. However, in recognition tasks, the final goal is to minimize the classifi-

cation error only. Accordingly, the learnt dictionary D may not be the optimal

dictionary for recognition tasks. We also see that when we learn the sparse rep-

resentations Atr of training samples and the classifier parameters W , we solve

problem (7). But when we learn the sparse representations Ats of testing sam-

ples, we use the model (8). In other words, the problems for computing the

sparse codes in the training and the testing phases have to be different, making

the models inconsistent. This leads to a problem that the new feature Ats may not

be optimal for the classifier W , which may limit the performance of the method.

6. How do you manage the different complexity among the target classes, in

the sense that each class (easy ones and hard ones) has the same number of atoms
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assigned. In this sense, a relevant missing reference is the following, where the

authors manage dictionary coherence. Yang et al. ”Latent Dictionary Learning

for Sparse Representation based Classification”, CVPR 2014.

Reply: Actually, we can only manage the total number of the dictionary

atoms. In the learning process, we don’t explicitly allot more atoms to the hard

classes and less atoms to the easy ones. But we optimize the representation abil-

ity of the dictionary holistically on all data, i.e., the atoms can linearly represent

samples well. Thus, such a mechanism may implicitly allot more atoms to the

hard classes and less atoms to the easy ones. Note that other dictionary learning

methods, such as (Jiang et al. 2013, Mairal et al. 2012 and so on), can only

manage the total number of the dictionary atoms, too. We delete those inaccurate

sentences in the revised manuscript, e.g., “the trained dictionary has 15 atoms for

each person”, to avoid misunderstandings.

7. In some of the tested datasets the proposed method presents a relevant

increase in performance with respect to the runner-up (ex. 5%), but in other cases

the increase is marginal, less than 1%. Could you comment on what conditions

one can expect to take advantages of the proposed method.

Reply: We think that the complexity of a dataset affects the performance

of our method. If the data are linearly distributed, it is easy for our method to

handle it. Otherwise, if the data are nonlinearly distributed, it is relatively hard

to deal with the data. Also, the class number is also a factor that affects the

complexity of a dataset. When the class number increases, the complexity of

a dataset will increase and it is more difficult for our method to deal with the

data. YaleB is an easy dataset, since (Liu et al. 2013, PAMI) point out that faces

are approximately linearly distributed and its class number is relative small (it
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has only 38 classes). Thus, most methods can handle YaleB easily. Actually,

the baselines on it are very high. Most methods can achieve 94%. In contrast,

Caltech 256 is very complex, since the data are nonlinearly distributed due to its

different poses, shapes and illuminations, and the class number is 257. Thus, it is

quite difficult for most methods, including ours. Thus, our method only performs

a little better on YaleB and Caltech 256. As for 15 Scene Categories, UCF50,

HDBM51 and Caltech 101, their data are also nonlinearly distributed, but their

class numbers are not very large. Thus, their complexities are less than Caltech

256. So, compared with Caltech 256, our method can handle these four datasets

more easily. But other methods cannot handle them well. So our method achieves

good improvements.

8. The mathematical deduction of the optimization method is rather elabo-

rated, maybe some part can be in an Appendix. Also some intuitions about the

different steps can help to follow the method.

Reply: Thank for your suggestion. Due to page limit, we move the mathemat-

ical deduction of the optimization method to Sections I and II of Supplementary

Material.

2.3 To Reviewer #2:

1. At a high level, I didn’t find the innovation of the method to be particularly

well developed or described. Specifically, the primary formulation of this paper

(eq. 4) seems to be identical to the formulation considered by Guo et al in Dis-

criminative Dictionary Learning with Pairwise Constraints (see eqs. 3-5). This

paper is not cited, nor is the novelty of the current work relative to this exist-
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ing work discussed. As such, the main innovation of this work appears to be

the proposed bilevel optimization strategy, about which I have several concerns

(described below).

Reply: In the revised manuscript, we have discussed the difference between

our method and (Guo et al. 2012) in the seventh paragraph of Section 1. We

quote it below:

“Guo et al. [19] propose a pairwise constraint based discriminative dictio-

nary learning method, named DDL-PC. They also incorporate a Laplacian term

with a linear classifier to jointly learn a discriminative dictionary and a classifier.

However, their model is unilevel, which cannot avoid the second drawback we

mentioned above. 1) It minimizes the combination of the reconstruction error,

the classification error, and the group sparse penalty, not the final goal in recog-

nition tasks, i.e., the classification error. In this way, the classification error using

the learnt dictionary may not be optimal. 2) The problems for computing the

sparse codes in the training and testing phases are not consistent. That is, they

use one model to learn a classifier, a dictionary, and the sparse representations of

training samples, while they solve a different optimization problem to compute

the sparse representation of testing samples. Finally, they adopt the learnt classi-

fier to classify the sparse representation of testing samples. In this way, the learnt

classifier is not discriminative to the sparse representation of testing samples, s-

ince the classifier is learnt on the feature of training samples and the models for

computing the feature of training samples and testing samples are different. We

will discuss the differences between unilevel model and bilevel model in more

detail in Section 4. Another difference is that in the testing phase, Guo et al.

[19] solve a LASSO problem to compute the sparse codes of testing samples,
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while we further consider the data structure and solve the lower level optimiza-

tion problem, i.e., problem (22), to compute the sparse representation of testing

samples.”

And in Section 4 of the new manuscript, we further discuss the differences

between unilevel models, including (Guo et al. 2012), and bilevel models. When

answering Question 5 of Reviewer #1, we take an example to explain the differ-

ences. Please refer to Section 4 of the new manuscript and the reply to Question

5 of Reviewer #1.

Besides, the optimization methods are very different. In (Guo et al. 2012),

their model is unilevel and they just adopt the feature-sign search algorithm (Lee

et al. 2007) to solve it. But our model is bilevel and is much more complex. Thus,

we develop a novel optimization method to solve it. Compared with other opti-

mization algorithms which can solve the bilevel models, such as the stochastic

subgradient descent algorithm, our method is much more efficient. We deem that

changing unilevel models to bilevel models is significant enough. For example,

(Mairal et al. 2012, PAMI) is a bilevel version of (Zhang et al. 2010, CVPR)

and Mairal et al. simply adopt the stochastic subgradient descent algorithm to

optimize the problem.

2. While the dictionary learning problem is understandably inherently non-

convex, the optimization approach seems somewhat ad hoc with little theoretical

support. For example, the application of ADM to problem (11) is well beyond

the typical scope for which ADM has been developed and analyzed. First, the

convergence of ADM for more than 2 variable blocks has only very recently been

proven even in the convex case (which the authors do not mention) and the im-

plementation must be done with some care to ensure convergence depending on
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the particular objective. Second (and more seriously), every ADM analysis of

which I am aware is only developed for linear equality constraints. The equality

constraints in the formulation the authors propose to solve (11) contain bilin-

earities and even quadratic terms composed with bilinearities. As such, problem

(11) is well outside the scope of problems for which ADM is typically used with

very little known about how ADM will perform on such a problem, and I would

expect to see significant discussion of this issue and why the authors consider this

approach to be justified (which they do not provide).

Reply: When we answer Question 2 of AE, we have discussed this issue.

Please refer to the reply.

3. Given points 1 and 2, why the bilevel approach is advantageous over a

more traditional optimization strategy such as alternating minimization used by

Guo et al is not well established. Alternating minimization and block coordinate

descent methods can be shown to be globally convergent to a critical point for

the proposed objective function (see, for example, A Block Coordinate Descent

Method for Regularized Multiconvex Optimization with Applications to Nonneg-

ative Tensor Factorization and Completion by Xu and Yin and related works),

and as a result are arguably more justified from a theoretical perspective. If the

authors wish to establish the benefit of their method over existing techniques I

would at least expect to see significant experimental results showing the supe-

riority of bilevel optimization over something like block coordinate descent or

alternating minimization. I am skeptical there will be much benefit. In fact, Guo

et al performed face classification experiments on the Extended YaleB database

and achieved almost identical performance (95.3% vs 95.5% accuracy).

Reply: As for the advantages of our method when comparing with (Gao et al.
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2012, ACCV), we have answered this question in your Question 1. Please refer

to it.

When we answer Question 2 of AE, we have answered the reasons that we do

not use other methods that are mentioned. Please refer to the reply.

Indeed, all compared methods achieve excellent recognition rates on Extend-

ed YaleB since the dataset is relatively easy. Thus, that Guo et al. obtain 95.3%

cannot demonstrate that bilevel models are not beneficial to recognition rates. In

our manuscript, we conducted other experiments and reported the experimental

results of (Guo et al. 2012, ACCV) in Table 11. We can see that our method

performs much better than DDL-PC (Guo et al. 2012, ACCV). Please refer to

Section 5.6. As for why sometimes the improvements of our model over existing

ones are large and sometimes small, please refer to the reply to Question 7 of

Reviewer #1.

4. How the experimental comparison is being done is somewhat unclear and

some key results from well-known competing methods seem to be missing. For

example, in the experiments on the YaleB database, SRC [ref 5] is listed as an un-

supervised method with worse performance than the proposed method; however,

in section 4 of the SRC paper the method achieves 98.1% accuracy (compared to

the current methods 95.5%) in an almost identical experimental setup (in fact s-

lightly harder as SRC used only 504 random projections compared to the current

studys 540). Why is this result not listed for comparison and why is SRC listed

as an unsupervised method? Further, the authors claim to compare with other

state-of-the-art methods for that task (pg. 7, lines 43-45, right column) for each

particular task. However, there are some methods that significantly outperform

the current method which are not reported. For example, the authors of DeCAF:
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A Deep Convolutional Activation Feature for Generic Visual Recognition achieve

almost 87% accuracy on Caltech 101 (compared to 75.5% in the current paper),

but this is never mentioned.

Reply: When we answer Question 3 of AE, we have discussed the details of

experiments and the implementations of other methods. Please refer to it.

In the original SRC paper, the authors adopt a downsampling method to

downsample the images, the downsampling ratio is 1/8, while in our manuscrip-

t, following LC-KSVD (Jiang et al. 2013), we employ the random projection

method to reduce the dimension of the images. About the dimension of our fea-

ture on Extended YaleB, it is also 504. We have revised it in the new manuscript

and the feature for Extended YaleB is provided by (Jiang et al. 2013) and can be

downloaded at http://www.umiacs.umd.edu/ zhuolin/projectlcksvd.html. Anoth-

er difference is that in the original SRC paper, the authors randomly select half

of the images (i.e., about 32 images per subject) to construct a dictionary and the

other half for testing, while in our manuscript, for fairness, we randomly select

15 images per subject to construct a dictionary and half for testing.

SRC randomly selects the same number of images from each class to con-

struct the dictionary. So, actually it has used the label information. Thus, we

agree that SRC is a supervised method. We have fixed this error in our new

manuscript.

We don’t need to compare our method with DeCaf, because we are studying

how to learn discriminative dictionaries for visual recognition. So it is reasonable

to compare with other dictionary learning based methods or other methods with

similar framework, which have been mentioned at the end of first paragraph of

Section 6 (“In each specific task, we further compare with other state-of-the-
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art methods with similar framework for that task, such as the classic locality-

constrained linear coding (LLC) method [37].”). The framework of DeCaf is

very different from ours and it is not on dictionary learning. Thus, we do not

compare with it.

5. Similar to 4, how are the other methods being evaluated? Presumably, the

authors must be running their own experiments from implementations of these

methods as some reported results do not match those in the original papers (for

example, the reported results on the Caltech 101 dataset for LC-KSVD1 and LC-

KSVD2 do not match those in the original paper [ref 7, table 5]). As such, the

details for how these methods are being implemented need to be provided. For

example, it is a somewhat unfair comparison if the hyper-parameters for the pro-

posed method are tuned via a large grid search while the parameters for the

competing methods are only evaluated at one fixed value.

Reply: In (Jiang et al. 2013), they reduce the dimension of spatial pyramid

feature to 3000 by PCA, while we reduce the dimension of same feature to 1500

by PCA, which is presented in Section 5.3.1. When the data scale is large, some

methods, such as TDDL, SRC, etc., are very time consuming. So we reduce

the dimension smaller. Thus, the reported results on the Caltech 101 dataset for

LC-KSVD1 and LC-KSVD2 are not the same as those in the original paper.

About the implementations of other methods, we have answered it in Ques-

tion 3 of AE. Please refer to the reply.

2.4 To Reviewer #3:

1. The paper makes many comparisons with existing dictionary learning ap-
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proaches, but gives very few details about the context of this comparison. Where

these methods reimplemented by the authors, coming from some open-source soft-

ware? How were chosen the parameters of all these approaches?

Reply: We have answered this question in Question 3 of AE. Please refer to

the reply.

2. The beginning of Section 3.2 contains many statements that are vague and

that lack some proper justification. First, the use of the terminology “subgra-

dient” is not appropriate. Subgradients are only defined for convex functions.

Second, the claim that “its convergence speed is relatively slow” is unjustified.

Stochastic gradient descent may be difficult to use because it requires tuning a

step size whose optimal value is unknown in advance, but I am not aware of any

other approach that is theoretically faster. The next sentence is also a bit obscure.

What does mean “ it is difficult to deduce the subgradient”?

Reply: Actually, subgradient is defined not only for convex functions but

also for nonconvex functions. For example, in (Attouch et al. 2013), Attouch et

al. quoted the definition of “subdifferential” which is also called “subgradient”.

When a function is convex, the “subdifferential” can be defined in the usual way

for convex functions.

We have compared our method with TDDL (Mairal et al. 2012, PAMI), which

is also a bilevel model based dictionary learning method. Indeed, its model is eas-

ier than ours, since its lower level problem does not consider the data structure

and it has no the Laplacian term. Actually, TDDL replaces the Laplacian term

tr(ALAT ) in problem (4) in our manuscript with a regularization ‖A‖2F . Thus,

when using the stochastic subgradient descent algorithm to solve the model, the

L in the implicit function (4) becomes an identity matrix and it is much easier to
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compute ∂A
∂D

. About the step size, we also adopt the step size choosing strategy in

(Mairal et al. 2012, PAMI). In Table 9, though solving a more complex problem,

we still can see that our method is much faster than TDDL, which demonstrates

that using our optimization method to solve this kind of problem is faster than

using the stochastic gradient descent algorithm. From the theoretical aspect, sub-

gradient descent for nonsmooth problems is known to have a convergence rate

O( 1√
K

) (Boyd et al. 2011), where K is the iteration number, while ADM for

convex problems has a rate of O( 1
K

) in an ergodic sense (Lin et al. 2015). So

ADM could be faster than subgradient descent, although our problem is noncon-

vex.

We have answered why it is difficult to deduce the subgradient in the part I in

Question 2 of Reviewer #1. Please refer to the reply.

H. Attouch, J. Bolte, B. Svaiter. Convergence of descent methods for semi-algebraic

and tame problems: proximal algorithms, forwardbackward splitting, and regularized

GaussSeidel methods[J]. Mathematical Programming, 2013, 137(1-2): 91-129.

S. Boyd, N. Parikh, E. Chu, et al. Distributed optimization and statistical learning via

the alternating direction method of multipliers[J]. Foundations and Trends in Machine

Learning, 2011, 3(1): 1-122.

Z. Lin, R. liu, H. Li. Linearized alternating direction method with parallel splitting

and adaptive penalty for separable convex programs in machine learning[J]. Machine

Learning, 2015, 99(2): 287-325.

3. The proposed approach is heuristic for several reasons, which is fine, but

this should be made clear in the paper. For instance, (10) is non-convex and

involves nonlinear constraints. It is thus intractable and cannot be “solved” by

ADM. Applying augemented Lagrangian techniques to non-convex problems may
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be a good heuristic, but noboby knows exactly what it does in theory with respect

to the original primal problem. Similarly, some of the sub-problems of the ADM

algorithm are themselves intractable (updating D for instance), which requires

further heuristics. This raises several questions regarding the convergence of the

algorithm, which should be discussed in the paper.

Reply: We have answered this question in the reply to Question 2 of AE.

Please refer to it.

It should be pointed out that in (Zhang et al. 2013, CVPR), ADM has been

successfully applied to solve an optimization problem which is a nonconvex prob-

lem with nonlinear equality constraints and has more than three blocks of vari-

ables. So their situations are similar to ours. Zhang et al. also adopt a similar

strategy to update D. They report state-of-the-art experimental results.

4. The choice of parameters in the experimental section is not clear to me. As

far as I understand the paper, they seem to be optimized on the test set. Is that

correct?

Reply: Following (Jiang et al. 2013, PAMI) and (Lobel et al. 2015, PAMI),

the parameters in our model are fixed for each dataset and determined by n-fold

cross validation. We mention this in the second paragraph of Section 5 in the

revised manuscript (“ Note that the parameters in our model are fixed for each

database and determined by n-fold cross validation and the detailed settings are

presented in each experiment section.”).

5. The optimization technique is novel, even though the formulation builds

upon those of [30,31]. Adding the Laplacian regularization can for instance not

be considered a major modification: since this regularization is quadratic, the

inner-problem remains a Lasso, and is thus trivial to modify [30] to use this
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regularization and compute the modified gradient.

Reply: Actually, computing the modified gradient is not easy. Please refer to

the reply to part I in Question 2 of Reviewer #1. And we discuss the differences

between our method and other methods, such as DDL-PC (Guo et al. 2012),

TDDL (Mairal et al. 2012), (Yang et al. 2012), (Tao et al. 2014), and (Lobel et

al. 2015). Please refer to the reply to Question 1 of AE.

6. There is a link between these ”task-driven” approaches and neural net-

works with backpropagation. Given the current popularity of neural networks, I

think the readers may be interested in drawing this link, which can be found for

instance in Section 4.5 of [A].

[A]. J. Mairal, F. Bach, and J. Ponce. “Sparse Modeling for Image and Vision

Processing”, Foundations and Trends in Computer Graphics and Vision. 2014.

Reply: Thank for your suggestion. We have discussed this issue in our re-

vised manuscript and the reference is also cited appropriately. But, due to page

limit, we only mention this connection briefly in the third paragraph of Section

4. We quote it below:

“From the above viewpoints, there are connections between BMDDL and su-

pervised neural networks [50], [51], [52]. Both BMDDL and supervised neural

networks are multi-level recognition-driven feature learning schemes. In recog-

nition tasks, they adopt the classification loss as their optimization goal and at

each level, they use a feature extractor, such as the lower level problem (5) in

BMDDL, to learn more discriminative features and feed them into the next level

as input. But, since the feature extractor used in BMDDL is much more complex

than that (linear mapping and nonlinear mapping) in neural networks, BMDDL

can only be a network with two levels. Please refer to Supplementary Material
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for more details.”

And we discuss this connection in more detail in Section III of Supplementary

Material. We quote it below:

“There are connections between BMDDL and supervised neural networks [2],

[3], [4]. Both BMDDL and supervised neural networks are task-driven feature

learning schemes. In recognition tasks, minimizing the classification loss is the

final task. So BMDDL and neural networks adopt it as their optimization goal.

They can be formulated as a general multi-level model:

min
{W i},{Ai}

n∑
i=1

Φ(hi, f(Am−1
i ,Wm)),

s.t. Am−1 = argmin
A

Gm−1(Am−2,Wm−1, A),

s.t. Am−2 = argmin
A

Gm−2(Am−3,Wm−2, A),

· · · · · ·

s.t. A1 = argmin
A

G1(A0,W 1, A),

(9)

where Gi(Ai−1,W i, A) is a feature extractor, W i is its parameters, and A is a

variable representing the extracted feature. A0 is the input, Ai is feature of the ith

level extracted by Gi(Ai−1,W i, A). Φ(hi, f(An−1
i ,Wm)) is a classification loss

function. f(Am−1
i ,Wm) is a classifier, such as multinomial logistic regression or

a linear classifier. Ai is a vector and denotes ith sample. H = [h1, · · · , hn] is the

label of An−1. n is the number of training samples.

In BMDDL, the lower level optimization problem (5) in our paper can be re-

garded as the first level, which extracts group sparse feature from training samples

and feeds them into the second level, i.e., a classification loss function Φ(·). In

this way, BMDDL is only a two-level based feature learning network. The reason
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why BMDDL can only stack two levels is that its feature extractor Gi(Ai−1,W i)

is too complex. This is the very difference between BMDDL and neural network-

s. In BMDDL, Ai = argminAG
i(Ai−1,W i, A) has no closed-form solution and

we have to solve it to obtain Ai by iterative algorithms. If we stack K (K ≥ 3)

levels in BMDDL, it will be too difficult to solve the optimization problem. In

contrast, in neural networks, the new feature can be directly obtained, since we

usually set Ai = argminAG
i(Ai−1,W i, A) = argminA ‖A − Ψ(W iAi−1)‖2F =

Ψ(W iAi−1), where Ψ(·) is an activation function. Then we can use the back-

propagation algorithm (based on the chain rule) to update the parameters W i in

turn. Thus, both BMDDL and neural networks are task-driven feature learning

methods. But, due to the optimization difficulty, BMDDL can only be a network

with two levels.”
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