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One-Shot Approximate Local Shading

(a) 35.0=α 75.0=β (b) 41.0=α 87.0=β 39.0=α 84.0=β(c) 36.0=α 81.0=β(d)

Figure 1: Direct illumination results of area light sources with different patterns. The Phong shading model is used. The correspondingα’s
andβ’s for the light sources (see Section 3) are listed below the images. Notice the near field and the far field effects of the light sources.

Abstract
In most rendering systems, area light sources are decomposed into
many point light sources, which requires heavy computation to pro-
duce realistic results. In this paper, we propose a novel approach to
approximate an area light source with a point light source for each
component of the shading model. The position and intensity of the
point light source is dependent on the position and orientation of
scene points. Thus the scene is shaded usingon-the-fly point light
sources. The key contribution of our work is that we are able to
shade with area light sources of arbitrary shape andarbitrary inten-
sity distribution in real time and the shading model can be generic.
And the computation cost is independent of the complexity of the
area light source. Experimental results show that our approach cre-
ates results comparable to the ground truth. Our approach could be
extended to other kinds of local light sources such as curved light
sources and volume light sources.

Keywords: real time shading, light sources, direct illumination

1 Introduction
In computer graphics, most shading models have two main ingredi-
ents: surface properties and light source properties. Although much
research has been done on shading realistic scenes, shading with a
wide variety of light sources in real time is still an open problem.

There are mainly three kinds of light sources [C. Verbeck and D.
Greenberg 1984]: point sources (zero dimensional), linear sources
(one dimensional), and area sources (two dimensional). Point lights
and directional lights are the most often used due to their simplic-
ity. However, to increase the realism of the rendered images, more
complex light sources are necessary [I. Ashdown 1993; I. Ashdown
1995; W. Heidrich et al. 1998; M. Goesele et al. 2003; X. Granier
et al. 2003]. For such lights, people often have to decompose them
into many point lights in order to achieve an acceptable approxi-
mation, resulting in heavy computation. In this paper, we present a
novel approach to approximate a general light source, particularly
an area light source of arbitrary shape andarbitrary intensity distri-
bution, with a single point light for each component of the shading
model1, in order to achieve real time shading with complex lights.

1It is theoretically possible to use a single point light source for the whole
shading model. But things will be much easier if each component of the

There has been much work on shading with complex light
sources. Verbeck and Greenberg [C. Verbeck and D. Green-
berg 1984] approximate linear/area light sources by a series of
collinear/coplanar point sources. Nishitaet al. [T. Nishita et al.
1985] use multiple points to approximate the specular integral. And
for the diffuse component numerical integration is also required
when the linear light is neither parallel nor perpendicular to the
object surface. These approaches require a large number of point
lights, which makes them computationally expensive. An analytic
solution for the diffuse and the specular component of linear lights
is presented in [P. Poulin and J. Amanatides 1990]. Shading with
area sources is also investigated in [K. Picott 1992], where the dif-
fuse component is computed by contour integration and the specu-
lar component is evaluated at a point on the area light which has the
maximum contribution to the specular illumination. The analytic
methods in [P. Poulin and J. Amanatides 1990; K. Picott 1992] are
valid only when the shading model is Phong [B. Phong 1975]and
the light intensity is uniform. Although environment maps are area
light sources with non-uniform intensity, they are usually treated
as directional lights [R. Ramamoorthi and P. Hanrahan 2002]. Re-
cently, based on the light field representation [M. Levoy and P. Han-
rahan 1996; S. Gortler et al. 1996], several approaches [W. Hei-
drich et al. 1998; M. Goesele et al. 2003; X. Granier et al. 2003]
have been proposed to simulate light photometry. These approaches
can capture both the far field and the near field [I. Ashdown 1993;
I. Ashdown 1995] illumination of a light source. However, the
specific rendering requirements and the heavy storage of the data
makes interactive visualization difficult.

In most previous work, it is so far not possible to use arbitrary
local light sources in interactive applications. Thus offline tech-
niques such as ray tracing have to be used for shading with com-
plex light sources, including area light sources. Using closed-form
solutions, the methods in [P. Poulin and J. Amanatides 1990] and
[K. Picott 1992] might be the only possibility for real time shading
with linear and area light sources. However, the closed-form solu-
tions are derived by assuming modified Phong shading models and
uniform distribution of the light intensity. Therefore, the methods
in [P. Poulin and J. Amanatides 1990] and [K. Picott 1992] can-
not be applied to general lights and generic shading models. Our

shading model is assigned a point source. See the end of Section 2.
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paper attacks this problem by pushing to an extreme. In our ap-
proach, for each component of the shading model, the area light is
represented by asingle on-the-fly point light: the position of the
point light is precisely computed to maximize the shading com-
ponent, which is dependent on the position and orientation of the
scene point, and the intensity is estimated by the total intensities in
the local area surrounding the point light. The intensity estimation
enables us to handle light sources with non-uniform intensity distri-
bution and also naturally produces near field and far field effects [I.
Ashdown 1993; I. Ashdown 1995] of the light sources. The compu-
tation cost is independent of the complexity of the area source. The
basic methodology is also independent of specific shading models
and can be implemented on any graphics hardware to shade the
scene in real time. And it could be further extended to other kinds
of local light sources, such as curved and volume lights.

However, currently our approach only handles direct illumina-
tion. The cast shadow, light interaction, and radiance transport are
not involved. The remainder of the paper is organized as follows.
In Section 2, we present the underlying theory of our approach.
Using the Phong model [B. Phong 1975] as an example, Section 3
describes how to find the position and intensity of the point light
source(s). The shading errors are also numerically evaluated. Then
we show the experimental results in Section 4. Finally, we discuss
the future work and conclude our paper in Section 5.

2 Basic Theories
In this section, we first present the basic theory of approximating
an area light source with a point light source and then discuss some
implementation issues.

Given an area light sourceS, its intensity distribution function
L(t), and a local shading modelρ(p, t) which measures the con-
tribution of a pointt on the light source to a scene pointp, the
generated direct illumination atp is:

I(p, S) =

∫
S

ρ(p, t)L(t)dS. (1)

We prove that:

Theorem 1. There exists a point t0 on S and a corresponding ra-
dius r0 = r(p, t0) such that

I(p, S) = ρ(p, t0)

∫
S∩Bt0 (r0)

L(t)dS, (2)

whereBt(r) is the disk centered att and with a radiusr. Namely,
the shading result of the area light sourceS at the scene pointp is
identical to that of a point light positioned att0 and with an intensity∫

S∩Bt0 (r0)
L(t)dS, using the same shading modelρ.

Indeed, if we chooset0 in the region of:

A(p, S) =


t

∣∣∣∣∣∣ρ(p, t) ≥ I(p, S)∫
S

L(t′)dS
=

∫
S

ρ(p, t′)L(t′)dS

∫
S

L(t′)dS


 , (3)

i.e., the part of the light source that contributes to the shading of
p above the average (weighted by the intensity distributionL(t)),
then in order to produce the same illumination atp the intensity of
the point light should be:

L̃(t0) =
I(p, S)

ρ(p, t0)
, (4)

which is between 0 and
∫

S
L(t)dS by the definition of the choice

of t0. Next, we define

gt0(r) =

∫
S∩Bt0 (r)

L(t)dS.

It is easy to see that

lim
r→0

gt0(r) = 0, and lim
r→∞

gt0(r) =

∫
S

L(t)dS.

Sogt0(r) is a continuous function ofr (as long asL(t) is bounded)
and is between 0 and

∫
S

L(t)dS. Therefore, by the intermediate
value theorem of continuous functions, there exists anr0 such that

gt0(r0) = L̃(t0). (5)

Given the light sourceS, this radiusr0 is dependent onp andt0.
This completes the proof of Theorem 1.

To compute
∫

S∩Bt0 (r(p,t0))
L(t)dS in real time, we may

pre-compute the convolution ofL(t) with the kernel function
χBt(r)(t′):

χBt(r)(t
′) =

{
1, if t′ ∈ Bt(r),
0, otherwise. (6)

By padding the values outsideS with zeros, we need not identify
the regionS ∩ Bt0(r(p, t0)). The convolution can be efficiently
computed using the FFT. It is easy to see that the disk in Theo-
rem 1 can be replaced by a square. In this case, the computation is
approximated byMipmap, which can be easily generated by GPU.

For complex shading models, an economic choice of a single
t0 might be difficult. In this case, we may decompose the shad-
ing models into several simple components and apply Theorem 1 to
each component independently. Then it is usually possible thatt0’s
are simply chosen as the points that maximize each component.
And the corresponding radii can be estimated empirically. Hence
the shading error comes from the inaccuracy of the estimated radii.
Nonetheless, our method produces visually appealing shading re-
sults. All these will be shown in the following sections using the
Phong model as an example.

3 Shot with Point Light Source
There have been many shading models in the literature. Popular
shading models include the Phong model [B. Phong 1975], Blinn
model [J. Blinn 1977], Cook-Torrance model [R. Cook and K. Tor-
rance 1981], and Lafortune model [E. Lafortune et al. 1997]. In
this paper, we use the Phong model as an example of applying the
theories in Section 2, due to its simplicity and relative accuracy.

p
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r
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rN
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Figure 2: Illumination of a pointp by an area light sourceS.

As illustrated in Figure 2,t is a point on an area light source
S. �n is the normal ofS. p is a scene point, with a surface normal
�N . �V is the view direction and�Nr is thereflected viewpoint vector
w.r.t. �N . S has an intensity distribution functionL(t). Then Phong
shading uses the following shading function

ρ(p, t) =
cos(�pt, �n)

|pt|2
{
Kd max(cos(�pt, �N), 0)

+Ks[max(cos(�pt, �Nr), 0)]n
}

,

(7)
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whereKd andKs determine the proportions of diffuse and specular
reflection, respectively.

Phong shading naturally consists of two components: diffuse and
specular. Their shading models are respectively:

ρd(p, t) = Kd
1

|pt|2 cos(�pt, �n)max(cos(�pt, �N), 0), and

ρs(p, t) = Ks
1

|pt|2 cos(�pt, �n)[max(cos(�pt, �Nr), 0)]n.
(8)

As mentioned at the end of Section 2, we may choose appropriate
positions and radii of the point light sources for the diffuse and the
specular components, respectively.

3.1 Diffuse
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Figure 3: Diffuse illumination. (a) shows the chosen world coordi-
nate and (b) shows the vectors in thex-z plane.

As ρd(p, t) is a differentiable function w.r.t.t, it is easy to differ-
entiate it to find its maximum point2. Choosing a world coordinate
shown in Figure 3, the pointt1 that maximizesρd(p, t) is on the
intersection line between planes�np �N andS and is a distance

xpt1 =
h

tan(θ + η)
(9)

from xp
3, wherexp is the orthogonal projection ofp ontoS. xN is

the intersection of the surface normal withS. The detailed deriva-
tion and interpretation of (9) can be found in Appendix A.

For the radiusrd(p, t1) that is used to estimate the intensity of
the point light source (see Theorem 1), there may not be a closed
form solution. We empirically assume thatrd(p, t1) = α|pt1|,
whereα is a constant for agiven area light source. With such
choice of radius, when the light source is close to the surface, its
pattern will appear sharply. And when the light source is far from
the surface, the pattern becomes blurry.

So now we only have to choose an appropriate fixed value of
α for the given area light source. Here we resort to a numeric
solution. We may sample several pointsp1, p2, ..., pk with dif-
ferent positions and orientations and compute the exact shading at
these points. Since the shadings equal those of the point lightst1
at the corresponding positions,α1, α2, ..., αk can be estimated via
equation (5). Then the empiricalα is estimated as the average of
α1, α2, ..., αk.

Figure 4(a) shows the numerically computedα values for differ-
ent positions and orientations ofp, where the light source is a disk
with uniform intensity4. p is at a distanceh from S andxp is kept

2As the maximum point must be in the region thatcos(�pt, �N) ≥ 0, we
may drop the “max” operation inρd(p, t).

3As we pad zeros outsideS and our algorithm can handle general inten-
sity distributions, we need not further clampt1 to the real part ofS as done
in [K. Picott 1992].

4The purpose of Figures 4 and 6 is to show the distribution of exactα’s
andβ’s and the shading errors from the ground truth. In real applications, it
is unnecessary to sample so manyp’s.

at the center of the disk. The distanceh varies from 0 to 5 times the
diameter of the disk light. We do not samplep’s at farther distances
because in that case an area light source could be treated as a point
source [I. Ashdown 1993; I. Ashdown 1995]. And the normal�N
at p varies from pointing toS to parallel toS. With such choice
of p’s, the empiricalα is estimated as0.30. Using this constant
α, Figure 4(b) shows the shading errors of the diffuse component,
defined as the absolute error divided by the light intensity. One can
see that the error is relative large only whenp is very close toS
and its normal is nearly parallel toS. For other combinations of the
distance and the normal, the error is relatively small.

h h
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Figure 4: Estimatedα’s and the diffuse error for a uniform disk
light. (a) The computedα’s. (b) The numerical diffuse error.

3.2 Specular
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Figure 5: Specular illumination. (a) shows the chosen world coor-
dinate and (b) shows the vectors in thex-z plane.

Figure 5 shows the chosen world coordinate and related param-
eters when considering the specular component. The computation
and deduction is similar to the diffuse case, by simply replacing�N

with �Nr. Then we have a formula for the positiont2 of the point
that maximizes the specular component, which is similar to (9):

xpt2 =
h

tan(θ + η)
, (10)

where the anglesθ andη are now relative to the reflected view-
point vector �Nr. The dependence oft2 on �Nr makes the point light
sourceview dependent. As a result, the specular pattern of the area
source is view sensitive. The detailed derivation and interpretation
of (10) is in Appendix B. Note that the derivations for the specular
component can be easily adapted for other shading models consist-
ing of cosine lobes, such as the Blinn model [J. Blinn 1977] and
Lafortune model [E. Lafortune et al. 1997].

Again, there is no closed form solution either for the radius
rs(p, t2) that is used to estimate the intensity of the point light
source. We assume thatrs(p, t2) = β|pt2|/n, whereβ is a con-
stant for agiven area light source. The empirical value ofβ can be
obtained numerically in a way similar to the diffuse case. The only
difference is that we use different�Nr ’s instead of different�N ’s.
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Figure 6: Estimatedβ’s and the specular error for a uniform disk
light. (a) The computedβ’s. (b) The numerical specular error.

Figure 6(a) shows the numerically computedβ’s for different
positions and reflected viewpoint vectors ofp, where the setting is
the same as the diffuse case except that�Nr replaces�N andn = 3
(see (8)). With such choice ofp’s, the empiricalβ is estimated
as0.57. Using thisβ, Figure 6(b) shows the specular error, also
defined as the absolute error divided by the light intensity. One can
see that for most combinations ofh and �Nr, the error is quite small.

Note that Picott [K. Picott 1992] also used a single point to ap-
proximate the specular component. However, the pointt2 was cho-
sen onS such that the angle between�Nr and �pt2 is minimized.
And the intensity is simplyL(t2). As a result, it cannot produce a
blurry specular pattern when the light source is far away from the
object surface.

4 Experimental Results
We implement our algorithm on an Intel Xeon PC with nVIDIA
Qundro FX3450/4000 graphics card. We use Autodesk 3dsMAX
as the rendering engine. In our experiments, the computation cost
is tiny, which is the same as shading with a point light source and is
independent of the complexity of the light source. And our shader
can also run on other 3D graphics cards.

(a) Ours (b) Mental Ray

Figure 7: Comparison withMental Ray. The light source is a disk.
The empirical values ofα is 0.30 andβ is 0.57.

In our implementation, the convolution of the light source in-
tensity distribution functionL(t) with the kernel functionχBt(r) is
pre-computed and is stored in a 3D table with a float representation.
The light source has a size of128 × 128 and we store the convolu-
tion in a256×256×9 texture, which costs about 4 megabytes. For
thei-th level texture, the central128×128 pixels store the convolu-
tion of L(t) with χBt(2i), i = 0, 1, ..., 8. The remaining pixels are
for points outside the area source which are sampled more sparsely
away from the center of the light source, e.g., at(64+ j2, 64+ k2)
(j, k = 1, ..., 64) when the samples are in the first quadrant. And
the corresponding convolution radii are2i · max(j2, k2). We use
such compact storage of the convolution results because when the
representative point source is outside the area source, it usually re-
quires a larger radius than those inside the area source (because|pt|

(a) Ours (b) Ray Tracing

Figure 8: Comparison with ray tracing. The light is a checkerboard
pattern. The empirical values ofα is 0.35 andβ is 0.75.

will often be larger) and it could be quite far away from the area
source. On the other hand, for points inside the area source, a max-
imum radius of28 is already enough to cover the whole area source.
So naively computing a huge texture to a much higher level5 will
cause an enormous waste of computation and storage. When ren-
dering, if the representative point source and its radius are not at
these samples, linear interpolation is used. And if either the posi-
tion or the radius of the point source is out of range, the nearest
sample is used.

Figure 1 shows shading results of using area lights with different
patterns. From the outputs, we see that the shadings preserve visu-
ally correct light patterns. The rendering rate achieves 300 fps for
a frame size of800 × 600 pixels.

Figure 7 shows the comparison with the ground truth under a uni-
form disk light source. We useMental Ray to produce the ground
truth, which is widely used as an offline rendering standard in many
3D rendering systems such as 3dsMAX, Maya and MotionBuilder.
One can see that our shading results are visually comparable with
those byMental Ray. Figure 8 shows the comparison to ray tracing
with a checkerboard area light, i.e., densely sample points on the
area light and then sum the contribution of these points. Our shad-
ing results are also comparable with the ray tracing results. Fig-
ure 9 shows more results using different lighting patterns. In these
experiments, our simple algorithm produces visually correct light
patterns, no matter how far the area source is from the object sur-
face. More one-shot approximate shading results are presented in
our submitted video.

(a) (b)

Figure 9: More shading results using complex area lights. For the
left light, α is 0.38 andβ is 0.78, and for the right light,α is 0.39
andβ is 0.84.

5For example, to cover the same range of representative point sources
and the convolution radii, the texture should be of size(128 + 2 · 642) ×
(128 + 2 · 642) and the highest level should be 20.
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5 Discussion and Conclusions
In this paper, we have presented a novel approximate local shading
algorithm for area lights. The algorithm has tiny computation cost,
which is independent of the complexity of the light source, and can
be implemented on general graphics hardware easily.

One key feature of our approach is that it can be applied to
generic shading models represented as continuous functions, such
as Phong [B. Phong 1975], Blinn [J. Blinn 1977], Cook-Torrance
[R. Cook and K. Torrance 1981], and Lafortune [E. Lafortune et al.
1997]. The other key feature is that we could precisely compute the
position of the desired point light, and give an approximation of the
light intensity. The algorithm provides visually correct shading pat-
terns under complex lights. Using the same methodology, 3D lights
such as 3D curved and volume lights could also be represented by
dynamic point lights, which hints at interesting future work.

However, as exposed in Introduction, there are limitations of the
proposed approach. Firstly, we have not provided cast shadows,
which improve realism. Secondly, the algorithm only handles direct
illumination. Light transport or indirect illumination is currently
out of scope. Thirdly, the approach approximates light intensity by
using a numeric solution, which is difficult for quantitative analysis
of the shading error. The above limitations suggest other possible
future work of the paper.
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Appendix A: Derivation for the Diffuse Light
As analyzed, we may findt1 that maximizes

ρd(p, t) = Kd
cos(�pt, �n) cos(�pt, �N)

|pt|2 = Kd
(�pt · �n)(�pt · �N)

|pt|4 .

As shown in Figure 3(a), we assume that�n is thez direction of the world coordinate,
xp is the orthogonal projection ofp to S, xN is the intersection point of the surface
normal with S (could be at infinity), and the plane�np �N is the plane ofy = 0.
Suppose the coordinate ofp is p = (0, 0, h), that of pointt onS is (tx, ty, 0), and
the normal of object surface is�N = (Nx, 0, Nz), whereNx ≥ 0. Then we have

ρd(p, t) = Kdh
txNx − hNz

(t2x + t2y + h2)2
.

We can see thatρd(p, t) is maximized only ifty = 0 andtxNx > hNz , i.e., t1
must be on the axisy = 0. So we only have to determine the optimaltx. Differenti-
atingρd(p, t) w.r.t. t, we have

∂ρd(p, t)

∂tx

= Kdh
Nx − 4 cos(�pt, �N) tx

|pt|
|pt|4 = 0.

Sotx should satisfy

cos(�pt, �N)
tx

|pt| =
Nx

4
. (11)

To find out the geometric meaning of the above equation, we redraw thex-z plane in
Figure 3(b). In the figure, we show the anglesη, φ andθ, respectively. Then (11) is
nothing but

cos θ cos φ =
cos η

4
.

Using a trigonometry formula, we may rewrite the above as

cos(θ + φ) + cos(θ − φ) =
cos η

2
.

Using the relationshipφ − θ = η, whereη is the known angle between�pt and the
x-axis (Figure 3(b)), we have that

θ + φ = arccos

(
1

2
cos η − cos η

)
= arccos

(
− 1

2
cos η

)
.

Together withφ − θ = η, we have

θ =
1

2

[
arccos

(
−1

2
cos η

)
− η

]
. (12)

So we obtain

xpt1 =
h

tan φ
=

h

tan(θ + η)
.

Appendix B: Derivation for the Specular Light
For the specular component, we want to maximize

ρs(p, t) = Ks
cos(�pt, �n) cosn(�pt, �Nr)

|pt|2 = Ks
(�pt · �n)(�pt · �Nr)n

|pt|n+3
.

We choose the world coordinate as in Figure 5(a). Here the only difference from Figure
3(a) is that �Nr replaces�N . The optimal point lightt2 also lies on the axisy = 0.
Differentiatingρs(p, t) w.r.t. tx we obtain that the optimaltx should satisfy

cos(�pt, �Nr)
tx

|pt| =
n

n + 3
Nrx,

where �Nr = (Nrx, 0, Nrz) (Nrx ≥ 0).
Using the same geometric interpretation, we find that

θ =
1

2

[
arccos

(
n − 3

n + 3
cos η

)
− η

]
,

whereη is the known angle between�pt and thex-axis andθ is the angle between�pt

and �Nr (Figure 5(b)). One can see that whenn = 1, the above equation reduces to
(12) but with different meaning of the angles. And whenn → ∞, θ = 0, which
corresponds to mirror specular reflection.

Again we have

xpt =
h

tan φ
=

h

tan(θ + η)
.
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