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Abstract

In this paper, an image denoising operator de�ned by
a non-linear partial di�erential equation(PDE) is pre-
sented. Similar to the operators proposed by Perona,
Malik and Catt�e et al., it can remove noise, enhance
step-like edges and keep the locality of the edges. Its
extra ability is to keep thin edges. The criterion for
stopping time is also investigated. The new operator
is capable of removing rather high uniform noise with-
out sacri�cing the details of the image. If the noise
is Gaussian with not too high standard deviation, the
result is also quite good.

1. Introduction

In the �eld of image processing and analysis, the
problem of noise reduction with feature preservation
is still pending, though remarkable progress has been
made in the past few decades. The primary methods
are mainly linear low-pass �ltering, using various tem-
plates. These approaches, though simple and easily
implementable, inherently could not respect local fea-
tures. The price paid for the removal of noise is the
decrease of spatial resolution, which is caused by the

attening of sharp edges. This is a common defect of
linear operators. A good operator must be adaptive to
local features: ironing out 
uctuations at smooth areas
and keeping the sharpness of edges. However, with the
presence of noise, the discrimination of noise and true
edges involves the task of image understanding. Since
1980s, the importance of multiscale description of im-
ages is gradually recognized and accepted, e.g., [8][13].
In 1983, Witkin[15] introduced the idea of scale space
via de�ning a family of derived images I(x; y;�) ob-
tained by convolving the original image I0(x; y) with
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a Gaussian kernel G�(x; y) = 1
2��2 e

�
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2�2 , where �
is called the scale parameter, varying from 0 to 1.
Later, Koenderink [6] and Hummel[5] pointed out that
computing I0 � G� is equivalent to the solution of the
following standard heat conduction equation:

@I

@t
= �I; (1)

at time t = 1
2�

2, with I0(x; y) as the initial condi-
tion (this will not be repeated in the sequel). The
work of Koenderink et al. �nally made the applica-
tion of partial di�erential equations (PDEs) in image
processing and analysis stand on its feet. During the
following years, many researchers have embarked on
�nding various PDEs to deal with di�erent problems
([1][2][4][9][10][11][12], to name just a few).

In 1990, Perona and Malik [11] proposed an operator
de�ned by the following anisotropic di�usion equation:

@I

@t
= r � (g(krIk)rI): (2)

They suggested two choices of g(x):

g(x) = e�(x=K)2 or g(x) =
1

1 +
� x
K

�2 :

Perona's operator exhibits a dichotomous behavior:

uctuations with gradient smaller than a threshold are
gradually wiped out while large gradients are sharp-
ened and enhanced. However, this operator does not
work well when applied to very noisy images in that the
noise introduces very large oscillations of the gradient,
thus all the noise will be kept.

In 1992, Catt�e et al. [4] proposed a modi�cation on
(2):

@I

@t
= r � (g(kr(G� � I)k)rI): (3)

It estimates the gradient on the smoothed imageG��I,
therefore promises more stable performance. Though



Catt�e's operator is capable of dealing with ramping
edges better than Perona's operator, both operators
su�er from removing true detail edges. After the re-
moval of noise only large areas remain. Within these
areas the greylevel is nearly constant, resulting in the
loss of naturalness of images. Therefore, neither oper-
ator is quite suitable for the reduction of noise, partic-
ularly when noise is considerable, which requires many
times of solving (2) or (3).

In 1993, Whitaker and Pizer [14] went a little fur-
ther. They suggested that the scale parameter should
also decrease with time, i.e., their PDE is

@I

@t
= r � (g(kr(G�(t) � I)k)rI):

But they did not provide a method to choose �(t) to
achieve optimal results, therefore this idea is still in a
fairly primitive form.

In this paper, a new operator de�ned in an analo-
gous manner is given. It incorporates the second-order
derivatives of the image to reduce the conduction coef-
�cient at narrow peaks. As a result, more detail edges
are kept after the removal of noise.

2. New Operator and Its Properties

The reason why Perona's and Catt�e's operators can-
not preserve detail edges is that krIk = 0 at the
narrow peaks, so the conduction coe�cient g(krIk)
reaches its maximumvalue 1, leading to the fastest de-
cay of the greylevel at the narrow peaks. On the other
hand, the peaks are widened, thus the spatial resolu-
tion decreases. Though the sharpness of the edges is
increased, the contrast is in fact reduced. Therefore
to improve the result of �ltering, the preservation of
narrow peaks is necessary. The key is to reduce the
conduction coe�cient at these places. Note that at the
peaks, the second-order derivatives of I are in general
local maxima, hence taking the values of the second-
order derivatives of I into consideration will help to
discourage the fast di�usion at the peaks. Regarding
the rotational invariance, � = (Ixx)2+2(Ixy)2+(Iyy)2

is a good candidate. On the other hand, in order to
estimate the derivatives more accurately, the convolu-
tion with Gaussian kernel should also be incorporated.
In short, the modi�ed PDE is:

@I
@t = r � (~g(kr(G� � I)k2 + (G� � Ixx)2+

+2(G� � Ixy)2 + (G� � Iyy)2)rI);
where ~g(x) = g(

p
x):

The selective edge-enhancement property is ana-
lyzed qualitatively in [7]. The new operator has the
following properties:

1. At 
at areas, the new operator smoothes the noise
as fast as Perona's (or Catt�e's) operator does,
given the same number of iterations.

2. At strong edges, the new operator also enhances
them, but not as much as Perona's (or Catt�e's)
operator does. It is more likely to preserve the
slope of peaks, avoiding the widening the peaks,
therefore maintains the spatial resolution better.

3. The contrast is kept better than Perona's (or
Catt�e's) operator does.

3. Numerical Scheme

We approximate the temporal derivative by forward
di�erence: @I

@t = In+1 � In. In order to estimate rIn,
Inxx and I

n
yy, we need to compute their convolution with

G�. Because the convolution and di�erentiation are
commutative, computing the convolution of I with G�

�rst and then calculating the corresponding derivatives
will call for less computational load. As pointed out in
section 1, computing I � G� is equivalent to solving
the standard heat conduction equation with adiabatic
boundary conditions and stopping at t = 1

2�
2, so it is

easy to write down a fast algorithm. We omit it here.
The approximation of Ix and Iy should apply for-

ward or backward di�erence. Central di�erence usu-
ally will make the value of kr(G� �I)k2+(G� �Ixx)2+
2(G� � Ixy)2+(G� � Iyy)2 at peaks much less than that
using forward or backward di�erence. This will coun-
teract our e�ort to preserve narrow peaks.

At last, the computational scheme becomes:

In+1i;j = Ini;j + �(CN � 5NI
n
i;j +CS � 5SI

n
i;j+

+CE � 5EI
n
i;j + CW � 5W Ini;j);

(4)

where:

5N I
n
i;j = Ini�1;j � Ini;j; 5SI

n
i;j = Ini+1;j � Ini;j;

5EI
n
i;j = Ini;j+1 � Ini;j; 5W Ini;j = Ini;j�1 � Ini;j;

CN = ~g(k(r �In)i�1;jk2 + �ni;j);

CS = ~g(k(r �In)i+1;jk2 + �ni;j);

CE = ~g(k(r �In)i;j+1k2 + �ni;j);

CW = ~g(k(r �In)i;j�1k2 + �ni;j);

�In = G� � In;
(( �In)xx)i;j = ( �In)i;j�1 � 2( �In)i;j + ( �In)i;j+1;

(( �In)yy)i;j = ( �In)i�1;j � 2( �In)i;j + ( �In)i+1;j;

(( �In)xy)i;j = (( �In)i+1;j+1 � ( �In)i+1;j�1�
�( �In)i�1;j+1 + ( �In)i�1;j�1)=4;



Figure 1. A typical curve C of r as a function of t.

Figure 2. The second-order derivative of the curve C.

�ni;j = [(( �In)xx)i;j]
2 + 2[(( �In)xy)i;j]

2 + [(( �In)yy)i;j]
2:

The boundary condition is adiabatic: @I
@�

= 0. The
su�cient condition for the stability of (4) is 0 < � �
0:25.

4. Stopping Criteria

Three parameters are required to make the above
scheme workable, namely K, scale parameter � and
stopping time T . � = 0:8 [9] will su�ce wide categories
of images. The choice ofK still borrows the framework
of Canny's histogram estimation: K is chosen such
that for q=85%�90% pixels the value of kr(G� � I)k
is less than K [11]. The percentage may vary slightly
for di�erent images. There is no need to set K at every
timestep, due to the selective edge-enhancement prop-
erty. Thus, only the stopping time T is left.

It is most preferable to seek an automatic decision
strategy on T . A natural idea is: if a noisy area is sup-
posed to be 
at and it becomes smooth enough after
some iterations, then the algorithm may stop. At a
pixel P , if the estimated gradient kr(G� � I)k < K
then it is expected to be in a 
at area. Denote by
N1 the number of such pixels. Next, we use � =
(Ixx)2 + 2(Ixy)2 + (Iyy)2 to test whether the neigh-
bourhood N of P is really smooth enough. If � < 30,
then N is considered smooth; otherwise not smooth
enough. The threshold 30 is obtained in a heuris-

tic way. Since we are considering the local 
uctua-
tion at P , we may assume that the greylevel of the
image is all zero except at P = (i; j). If Ii;j < 2,
then we may regard that it is smooth around P ; oth-
erwise not smooth enough. For Ii;j = 2 on this \con-
ceptual" image, Ixx � Ii+1;j � 2Ii;j + Ii�1;j = �4,
Iyy � Ii;j+1�2Ii;j+Ii;j�1 = �4, and Ixy � (Ii+1;j+1�
Ii�1;j+1 � Ii+1;j�1 + Ii�1;j�1)=4 = 0, therefore the
threshold � should be around 32. This is how the
threshold 30 comes. We have done experiments to show
that the stopping time found by the criterion stated be-
low is not sensitive to this threshold.

Note that not all pixels that ful�ll kr(G� � I)k < K
can satisfy � < 30, we have to look at the ratio r =
N2=N1 instead, where N2 is the number of points that
meet both kr(G� � I)k < K and � < 30. A naive
criterion is: if r > p then stop, otherwise go on, where
p 2 (0; 1) is some threshold percentage. However, this
is not a good criterion. For textured images p should
be smaller, while for images with many smooth areas
p should be larger. For some images, r increases with t
very slowly, thus the appropriate stopping time is very
sensitive to the choice of p if such criterion is adopted.

Draw the curve C of r as a function of t (Figure 1),
one will notice the time T0, where the slope of the curve
decrease fastest (Figure 2). It is a sign that the noise
in 
at areas have been smoothed. After T1, the slope
begins to decrease slower and slower, indicating that
the edges are being destroyed gradually. Therefore T1
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Figure 3. Comparison between Catte’s operator and the new operator. The mechanism of noise
addition is pixelwise adding a random number which is uniformly distributed on some interval
[��; �]. (a) Lena with uniform noise on [�15; 15]. (b) a filtered by the new operator, T = 1:6. (c)
a filtered by Catte’s operator. (d) Lena with uniform noise on [�30; 30]. (e) d filtered by the new
operator, T = 3:4. (f) d filtered by Catte’s operator. (g) Lena with uniform noise on [�50; 50]. (h) g
filtered by the new operator, T = 4:6. (i) g filtered by Catte’s operator.



Table 1. The PSNRs on various images and areas (unit: dB)

Figure 3a Figure 3d Figure 3g
on whole on area on area on whole on area on area on whole on area on area
image A B image A B image A B

before �ltering 29.12 29.10 29.10 23.19 23.17 23.11 18.91 18.85 18.91
Catt�e's operator 33.64 39.84 28.81 30.52 38.49 24.92 27.75 36.85 22.05
new operator 34.82 39.82 30.97 31.58 38.48 26.83 29.39 36.96 24.22

is a good stopping time. However, we cannot obtain
the whole curve �rst in order to �nd T1, so we have to
estimate it. Experiments on many noisy images show
that T1 = 2T0 is a good choice. As observed in many
experiments, C and its �rst derivative is rather smooth
when � is not too small, thus the determination of T0
is not ambiguous.

The pseudo-C-codes for the algorithm that are rele-
vant to the stopping time can be written as:

num iteration = 3;
for ( i = 0; i < num iteration; i ++ )
f

compute r;
if ( i < 2 ) f r0 = r1; r1 = r; continue; g
// stores r;
r xx = r0 { 2�r1 + r;
// second-order derivative of the curve;
if ( r xx >= 0 ) num iteration ++;
if ( min r xx > r xx )
f num iteration = 2�i; min r xx = r xx; g
r0 = r1; r1 = r; // stores r;

g

It is recommended that � should not be too large, in
order to avoid the sensitivity of �ltering results to the
number of iterations. For large � (and it should not
exceed 0.25!), one more (or less) iteration may cause
noticeable di�erence between two successive iterations.
In our experiments, it is set to 0.1.

This criteria is striking when applied to �lter nearly
noiseless images, such as the standard images Lena,
Barbara and Goldhill etc. It stops very quickly, after
three to �ve iterations. Note that three is the least pos-
sible number of iterations. When applied to very noisy
images, the �ltered images have good compromise be-
tween smoothing noise and keeping details.

5 Experiments

Figure 3 compares the results of �ltering by the new
operator and Catt�e's operator (For better visualization,
only the central 4/9 portions are displayed.). The left

Figure 4. The areas on which the PSNR will
be computed.

column are noisy images before �ltering, with di�erent
levels of uniform noise. The central column are images
�ltered by the new operator, while the right column
are those �ltered by Catt�e's operator with the same
stopping time. Throughout the experiments, the per-
centage q used in the histogram estimation is �xed at
86%.

We see that those visually signi�cant details (sharp
features), such as the fringe of the hat and the eye-brow
are well preserved by the new operator, even with very
high uniform noise. At 
at areas, such as the face,
shoulder and the mirror, the noise is well removed by
both operators. To give a quantitative illustration, we
compute the peak signal-to-noise ratio (PSNR) on the
whole image, the 
at area A (surround by the black
box in Figure 4) and the edge-rich area B (surround by
the white box in Figure 4) respectively. Table 1 gives
the PSNRs in various cases before �ltering and after
�ltering. One can see that even in quantitative aspect,
the new operator is also superior to Catt�e's operator.

We also tested the new operator and Catte�e's oper-
ator on images contaminated by Gaussian noise. Fig-
ure 5 shows the di�erence. If the standard deviation of
the Gaussian noise is not too high, then the new op-
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Figure 5. Filtering results on images with
Gaussian noise. (a) Lena with Gaussian noise
N (0; 100) filtered by the new operator; (b)
filtered by Catte’s operator. (c) Lena with
Gaussian noise N (0; 400) filtered by the new
operator; (d) filtered by Catte’s operator.

erator still performs well (Figure 5a). However, if the
standard deviation becomes large, many isolated spots
will appear on the images �ltered by the new opera-
tor (Figure 5c). At this time, the images �ltered by
Catt�e's operator are blurry (Figure 5d).

6. Conclusions

In this work, a new image operator de�ned by an
anisotropic di�usion PDE is presented. Since it uses
the estimated gradient as well as the second-order
derivatives of the image to compute the conduction co-
e�cient at every pixel, thin edges are better preserved
than Perona's or Catt�e's operator does. The removal of
noise in 
at areas is also fast. The criterion for stopping
time works well in our algorithm. The new operator is
very powerful when the noise is uniform. For Gaussian
noise, if the standard deviation is not too high (the
amount may depend on the characters of the image)
then the result is also very satisfactory.
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