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Abstract

Super-resolution is a technique that produces higher reso-
lution images from low resolution images (LRIs). In prac-
tice, people have found that the improvement in resolution
is limited. The aim of this paper is to address the problem
“do fundamental limits exist for super-resolution?”. Specif-
ically, this paper provides explicit limits for a major class
of super-resolution algorithms, called the reconstruction-
based algorithms, under both real and synthetic conditions.
Our analysis is based on perturbation theory of linear sys-
tems. We also show that a sufficient number of LRIs can
be determined to reach the limit. Both real and synthetic
experiments are carried out to verify our analysis.

1. Introduction
Super-resolution is a technique that combines low resolu-
tion images (LRIs) to produce higher resolution ones, where
not only the sharpness is improved, but more importantly,
the pixel sizes are also smaller than those of the LRIs.
Namely, it is a combination of deblurring and fine resolving.
Various algorithms { 1, 2, 3, 5, 8, 9] have been proposed for
super-resolution. Most of them are so called reconstruction-
based algorithms (RBAs) (coined in [2]).

RBAs start from the continuous image formation equa-
tion:

L(y) = / PSF(y,x)H(x)dx + E(y), M

where L(y) is the continuous low resolution irradiance field
on the image plane, PSF(y, x) is the point spread function
(PSF) of the system, H(x) is the continuous high resolu-
tion irradiance light-field that would have reached the im-
age plane and E(y) is the noise. Equation (1) is a general
formulation if it is considered locally, including motion de-
blurring where the PSF has been integrated in time. Then
(1) is discretized to form linear systems, where the sampling
density of L(y) is lower than that of H(x). A smoothness
prior, such as maximum a posteriori (MAP) [6, 5, 10] or
maximum likelihood (ML) [5], is often required in order to
remove noise and solve the system stably.

The performance of RBAs is affected by several factors:
the level of noise that exists in the LRI, the accuracy of the
PSF estimation and the accuracy of registration, including
the correction of geometric distortion. The higher level of
noise or the poorer PSF estimation and registration, the less
improvement in resolution.
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In practice people have found that the improvement in
the resolution is quite limited. Current algorithms, not lim-
ited to RBAs, can only produce overly smooth images or
images with undesirable details when the magnification fac-
tor becomes large.

It is important to address the problem “do fundamental
limits exist for super-resolution?” so that practitioners can
avoid trying those unduly large magnification factors. Fur-
thermore, a better understanding would help people choose
good magnification factors under the limits so as to make
better use of system resources. Towards this problem, Baker
and Kanade [2] showed that both the condition number of
the system and the volume of solutions grow fast with the
increment of the magnification factor, and an RBA can only
generate an overly smoothed solution. However, they only
pointed out the deteriorating tendency of the RBAs. Elad
and Feuer [5] also briefly discussed the choice of magnifica-
tion factors, but their assumption that the coefficient matrix
is block-Toeplitz cannot be justified. Moreover, their results
appear to permit arbitrarily large magnification factors.

In this paper, we will give explicit bounds of the mag-
nification factor under both practical and synthetic situa-
tions. We further analyze the influence of increasing the -
number of LRIs and determine the optimal fractional part
of the magnification factor and the corresponding sufficient
number of LRIs. These conclusions result from our discov-
ery that if some special low resolution pixels (LRPs) called
the vertices set have been captured then the resolution will
not be further improved.

The remainder of this paper is organized as follows. In
Section 2, we introduce the main contributions of this paper
and sketch the route of our proof. In Section 3, we intro-
duce the detailed proof and present the fundamental limits
of super-resolution under both practical and synthetic situ-
ations. In Section 4, we study the influence of increasing
the number of LRIs. In Section 5, both real and synthetic
experiments are presented to verify our theory. Finally, we
give the conclusions and discuss some issues in Section 6.

2 Main Results

We prove that fundamental limits do exist for RBAs by de-
riving an inequality that an effective magnification factor,
which is possible to produce higher resolution than smaller
ones do, should satisfy. Specifically, we discuss two ex-
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treme cases and find that:

e The practical limit is 1.6, if the noise level is relatively
high and is not removed effectively enough.

o The synthetic limit is 5.7. Moreover, the effective mag-
nification factor can only distribute on some disjoint
intervals.

.. We prove the inequality by applying perturbation the-
ory to the linear systems assembled by the RBAs. The cor-
nerstone for proving the bounds is a theorem on the per-
turbation of the least-square-error (LLSE) solutions to over-
determined systems, which states how much the LSE solu-
tion deviates from the real one if noise and error exist. The
limits are found by bounding the deviation. To estimate the
deviation, we succeed in finely estimating the norms of the
pseudo-inverse of the coefficient matrix of the system and
the perturbation coefficient matrix.

After analyzing the influence of increasing the number
of LRIs, we find that:

o Ifthe vertices set have been captured then adding more
LRIs will not further improve the resolution.

¢ For synthetic data, the best choice of the fractional part
of the magnification factor is 0.5 and the correspond-
ing sufficient number of LRIs is four times the squared
magnification factor.

3 Outline of the Proof
3.1 Fundamental Linear System and Its Per-
turbation

The discrete version of (1) gives the relation between LRPs
and high resolution pixels (HRPs) via a linear system:

L=PH+E, 2
where L is the column vector of the intensities' of all
LRPs considered, H is the vectorized (namely concatena-
tion of matrix rows) high resolution image (HRI), P gives
the weights of the HRPs in order to obtain the intensities of
corresponding LRPs, and E is the noise. P is required to be
of full rank, i.e., the rank of P equals the number of columns
in P. This requirement is non-essential in our analysis be-
cause otherwise the solution that an RBA finds is smoother
than the one from full rank P, due to the smoothness regu-
larization. '

No matter how the RBAs vary, they can be viewed as
denoising first and then solving (2) by finding its LSE solu-
tion. Such a viewpoint frees us from dealing with the details
of RBAs. More explicitly, suppose an RBA finds a solution
H,, then it can be viewed that the algorithm actually esti-
mates the noise to be E = L-PHy+E,, leaves the residual
error r, and then finds the LSE solution to (2), where E; +r
is in the null space of PT. This will also give the solution
Hjy. Note that the LSE solution to a system Ax = b is
x = A*b, where A* = (ATA)~' AT Therefore E in (2)

!Since current RBAs compute in the greylevel domain, we also assume
that they are greylevels.
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can be considered as the user-estimated equivalent noise. It
is no longer a random variable throughout our analysis.

Except those considering motion blur [4] in the super-
resolution of video sequences, most existing RBAs throw
all possible errors into E and the coefficient matrix P is
deemed to be precise. Actually, this is not true. Regarding
the errors in P, the correct system should be a perturbed
version of (2):

L=PH+E, A3)
where P = P + 6P is the correct coefficient matrix, H=
H + JH is the correct solution and E is the exact noise.
The error_in estimating P and E causes the deviation 6dH
between H and H. If §H is too large, then the HRIs cannot
present correct details or can even lack details.

3.2 The Perturbation Theorem
The deviation JH can be depicted by a theorem [11, 7]:
Theorem: If both P and P are of full rank and ) < 1, then

et < = e (1m0 2 LEEL] g
1088l < 7 Jem (1B + gy ) + it |+ @

where k = ||P|{||P™|| is the condition number of the sys-
tem, ep = ||6P}|/||P||. n = kep,r =L — PH — E is the
residual error and 6E = E — E is the error in estimating the
noise. 'l:;le:’x‘lﬂns of a vector and a n}\atrix are defined as:
— /T . _ , X .
[Iv]| v' -v,and ||A]} = ”I)r‘ll‘la;coun;ﬂu,respecnvely.
Inequality (4) is a relatively sharp estimate of ||§H]], i.e.,
the equality may hold in some circumstances. This rules
out abused versions of the argument in this paper, namely
enlarge the right hand side (RHS) of (4) in order to obtain a
tighter bound. Unfortunately, it is not guaranteed that ||§H|
will reach the magnitude of the RHS, because at the extreme
case it is theoretically possible that HI happens to be the
solution of both (2) and (3) (or equivalently H is also the
solution to dE = §PH). However, usually we are not that
lucky because SP and SE are independent in that they come
from completely different sources. In practice, the possibil-
ity that the RHS is large while ||0H]| is small seems to be
slight. Therefore, we should view ||6H]|| as being quite cor-
related with the RHS. If the RHS is large, it is expected that
||0H]| is also large. Hence, a most conservative estimation
of the RHS is a good estimate of ||§H}||. The “conservative-
ness” refers to: 1. assuming as little error as possible in the
measurement in order to make the RHS small; 2. allowing
||0H|| to be as large as possible. Such treatment shrinks the
gap between the actual ||§H|| and the RHS.

3.3 The Limits of Reconstruction-Based
Super-resolution
3.3.1 Assumptions
We first make some practical and reasonable assumptions in
order to analyze the limits.
e The super-resolution is done locally on small regions
of interest (ROI). This not only speeds up the super-
resolution and lowers the memory requirement, but




also make the problem simpler because both the PSF
and geometric distortion in a small region are uniform.

o The number of LRIs is unlimited but there are no mul-
tiple images at the same place. This issue will be dis-
cussed in section 4.

e The camera is not allowed to rotate along its optical
axis. For most applications, this restriction is adequate
since the camera movement is still quite free.

e The PSF is a box function, namely

_ [ 572 lzl <8/2,lyl < 5/2,
PSF(x) = { 0, otherwise.

&)

where x = (z,y) and S is the size of the LRP. Such
PSF weights HRPs according to their portions of area
inside the LRPs. More general PSF will be discussed
_ in section 6.
With these assumptions, camera movement can be regarded
as locally translational on a plane parallel to the image
plane, and the sizes of the LRPs are identical.

3.3.2 The Limit of Super-resolution
Suppose we want to raise the number of pixels in the ROI
to Np x Nj. Let the magnification factor be B > 1,
which can be decomposed into integral and fractional parts:
B = M +¢ (0 < & < 1). If the most conservative esti-
mation of the RHS is still larger than 65 Ny, then it is quite
possible that ||H]|| is also close to 8, N},. For a particular
bn = 128, this means that in average every component of
0H takes a value of 128 or —128. A large deviation can im-
ply that the details in the real solution are totally lost so that
the computed solution is overly smooth, or the computed
solution contains details that are quite different from those
in the real solution, or even the profile of the super-resolved
image is quite different from the real one. Consequently, it
is desirable that the RHS is less than ShNh, or
(P ISP (I + P [lleli+81 Na)+||ISEN) < 85 Nw. (6)
Obviously, ||P+{|~! = ”rrﬁgo [|Px{|/|x|| and is upper-
x
bounded by G(B)N,/N},, where G(B) is some function of
B and N is the square root of the number of LRPs con-
sidered in the system. In [2], by setting the value of pixel
(p, ) of the HRI to be (—1)P*7, G(B) is roughly estimated
as B~2. In our much finer analysis, we set the value to be
w?*? (i = 1,2, 3) instead, where w; are the solutions of

M-1 M-1 %

Wk +ewM =0, Zwk=0,and Wk =0,

k=0 k=0 k=0
respectively. Our better estimate is G(B) = ¢%(B)B~2,
where

o(B) = 1—¢g, ifM=1
n=r= min(e|l — wMH|jw |- ¥ 6,1 —¢), if M > 1

The curve of g(B) is shown in Figure | (a), where w; should
be chosen among the solutions in order to minimize |1 —
WM+l le——l‘zi'

On the other hand, {|§P|] is related to the registration
error and B. Our analysis gives {|6P|| > §,N; /Ny, where

2
8, = A2/4 [M(l + M)_(”ﬁ)] ,
in which A, is the maximum registration error and we as-
sume that the registration error is uniformly distributed be-
tween 0 and BA,.. Detailed proofs of the above inequalities
are lengthy, hence are omitted due to page budget.
Suppose .
IIGEll = 8¢ Vi, |Ir|| = 6, N, |[H|| = 04 Nn,
from (6), we obtain

255,

B < f(B) =g(B) = )
o+ \/&2 + 468,60,

N

‘where ¢ = 6, + (o, + Sh)ép.

The above inequality demarcates the existence intervals
for “effective” magnification factors. Those that fall outside
these intervals can still produce resolutions higher than that
of low resolution images, but may not be efficient in resolu-
tion improvement in that they require stronger smoothness
regularization and hence waste the effort of increasing pixel
numbers. At this time, using smaller magnification factors
is more economical.

Now let us estimate the parameters in (7) from a practical
point of view.

1. In practice eighth-pixel registration accuracy is the
limit. Hence A, > 0.125.
2. For oy, since globally shifting the intensity does not
affect ||0H}|, it should be estimated by the variation of
the super-resolved image. Estimating it to be o5, > 15
is quite conservative.
3. For 4,, we may estimate it to be 6, > 0.5.
J. is nothing but the root mean square error (RMSE) after
denoising. If the noise removal is unsuccessful, say 6, >
5.0, then with other practically optimal parameters, B must
be in the interval where the curve of f(B) is above the line
B = f in Figure 1(b), namely B < 1.59. B = 2.5 looks
possible but can be easily ruled out by a bit more careful
treatment in estimating ||P¥}|.

Inequality (7) indicates that with small registration error,
denoising is crucial to improve the resolution. In practice
an RMSE<5.0 is not undemanding for denoising, because:

e With a relatively high level of noise, noise removal
cannot be very effective without strong a priori knowl-
edge? on the image content and the noise type.

e Equation (1) is correct only in the radiometric domain,
but all existing algorithms treat it in the greylevel do-
main directly.

However, one may try B =2.5 if he is sure that the noise
level is quite low or he can remove the noise at an RMSE
lower than 5.

2Otherwise, recognition techniques will replace super-resolution.

I-1173



Lo Vi
[ i
6 2

()

(b)

¥ i H Vi

\i \ \i L/ 3

e N X3
4 6

- e e BE

[

) —

Py

Voo iy

. i . \ h
1932210 2893315 2.844 420 4805 527 688 6 7 B

(©)

0 7 8 T

Figure 1: The plot of g(B) and the intervals that B distributes. In (b) and (c) B must be in the intervals where the curve of
f(B) is above the line B = f. (a) The curve of g(B). (b) Under practical situations, 1 < B < 1.59. (c) For synthetic data,
B € (1,1.93) U (2.10,2.89) U (3.15, 3.84) U (4.20, 4.80) U (5.27, 5.68).

In the case of synthetic data, the data may be noiseless
except for the quantization error, and the registration is per-
fect (A, = 0). We may view the quantization error as uni-
formly distributed between 0 and 0.5; therefore, we may
assume J, to be its expectation value 0.25, and the resid-
ual error is 4, = 0.25. With these parameters, B must
be in the disjoint intervals shown in Figure 1(c), namely
B € (1,1.93) U (2.10,2.89) U (3.15,3.84) U (4.20,4.80) U
(5.27,5.68).

4 The Sufficient Number of LRIs

It is well known that a convex linear combination (i.e., the
coefficients are all non-negative) suppresses noise. There-
fore, if an LRP is a convex combination of others, namely
its coefficient vector is a convex linear combination of those
of others, then the chance that its intensity is more accu-
rate than the correspondingly linearly combined intensity is
small, and it is quite unlikely that considering this LRP will
improve the LSE solution. In this viewpoint, if we have al-
ready captured the vertices set of the set of all LRPs, whose
convex hull includes all LRPs, then the chance that addi-
tionally more LRPs produce better HRPs is relatively small.

We define the relative displacement (RD) of an LRP,
which occupies an area [z, z+ B] x [y, y+B], to be (z., y¢),
where z. and y. are the fractional parts of z and y, respec-
tively. It is easy to see that the LRPs with RDs at (0,0),
(0,1—¢),(1~¢,0) and (1 —¢,1 —¢) form the vertices set.
Unfortunately, in practice, we cannot capture pixel by pixel.
Instead, a set of LRPs that forms an LRI is acquired at the
same time and in general, the RDs of these LRPs are quite
different except for some special B. Therefore, we cannot
obtain the vertices set conveniently and economically for an
arbitrary B.

Fortunately it is not the case for B whose fractional part
is £ = 0.5: one only need to shift the camera (2B)? times
to make it run through an area of LRP, using a stepsize that
equals half the size of the HRP. The number of LRIs is thus
4B, Furthermore, as we see in Figure 1 (a), choosing such
a B makes the system most stable and error-resistant when
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one wants to use a magnification factor that is greater than
2. Such magnification factor has good balance between im-
proving the resolution and making the system stable.

S Experiments

For the sake of visual comparison, in order to produce sharp
HRIs, we only use the box function to filter a large image
(Figure 2(a)) to obtain many LRIs (Figure 2(b)). Moreover,
no noise except the quantization error is introduced to the
LRIs and the registration is exact. Figures 2(c) through (n)
are super-resolved images at various magnification factors,
from B =1.5to B =3.0. They are all scaled by bi-cubic in-
terpolation to the size of Figure 2(n) for better visual com-
parison. The smoothness regularization is not applied to
Figures 2(c)~(e) and (i)~(1), which corresponds to B =1.5,
1.8, 1.9, 2.15, 2.3, 2.5, 2.8, respectively, since the noise
therein is unnoticeable. However, MAP regularization is
applied to Figures 2 (f)~(h), (m) and (o) since the noise be-
comes unacceptable. The MAP algorithm follows [5] and
[6]. We see that the resolution increases from B =1.5 (Fig-
ure 2(c)) to B =1.9 (Figure 2(e)), and does not increase
until B =2.15 (Figure 2(i)). Then the resolution increases
again until B =2.8 (Figure 2(1)) and then stops increasing
again (Figures 2(m) and (n)). When B is outside those inter-
vals, noise removal demands stronger smoothness regular-
ization, hence the resolution is not further improved. When
B is inside those intervals, we see that a larger B produces
higher resolution. This phenomenon will persist for larger
B, but the existence intervals we find may not be so accu-
rate. This verifies the distribution intervals of B derived in
section 3.3.2.

When noise increases, the existence intervals of B will
shrink and the B’s with ¢ = 0.5 (such as 2.5, 3.5) are the
last to survive in the same interval. Figures 3(a)~(c) attest
to this by adding small amount of uniform noise in the LRIs.
We see that Figure 3(c) immediately becomes random noise
and the noise levels in Figure 3(a) and (b) are the same.
Note that they use the same number of LRIs and larger B
should require more LRIs. Therefore, ¢ = 0.5 makes B



(a) (1)
Figure 2: The images in the synthetic experiment. (a) The ultra-high resolution image for acquiring low resolution images.
(b) One of the low resolution images. (c) The high resolution image at B =1.5. (d) B =18. (¢) B =1.9. (f) B =1.98. (g)
B =2.0. (h) B =2.02. (i) B =2.15. (j) B =2.3. (k) B =2.5. (1) B =2.8. (m) B =2.94. (n) B =3.0. Images (c)~(e) and
(i)~(1) are not regularized. Images (f)~(h), (m) and (n) are regularized by MAP in order to remove the noise.
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Figure 3: The comparison of error resistibility of different
fractional parts. Uniform noise on [0,0.5] is added to the
LRIs. These high resolution images all use 36 LRIs. (a)
B =23, (b); B =2.5;(c), B =2.8.

most noise-resistant when B > 2. Furthermore, we also try
to use the vertices set solely. Figures 4(a), (c) and (f) are the
HRISs reconstructed without regularization from the vertices
sets that correspond to B =2.3, 2.5 and 2.8, respectively.
It can be seen that their resolutions can be deemed to be
identical to those of Figures 4(b), (d) and (g) respectively,
which are reconstructed from 36 full images. Figure 4(e)
is reconstructed from exactly 25 full images. Figure 4(d)
and (e) are also of the same resolution. These testify to our
conclusions in section 4.

To carry out real experiments, we utilize a computer-
controllable vertical XY-table shown in Figure 5(a), where
a monochromic CCD camera (white box in Figure 5(a)) is
attached vertically to the XY-plane. The camera can be
moved at a stepsize of 0.025mm and the error is below 1%.
In our experiments, we place a portrait (Figure 5(b)) about
3 meters away from the camera. When the camera moves
10,000 steps in both x and y directions, the disparities are
122+1 and 113+£1 pixels, respectively. Therefore, we can
register the images at a higher accuracy than any existing
registration algorithms, such as [9]. On the other hand, mul-
tiple images (20 images in this experiment) can be captured
at the same place in order to remove noise by simple av-
eraging. Hence we waive the vision and image processing
techniques for registration and denoising.

We set the gamma of the CCD camera to be 1 and cap-
tured 12x 12 images (Figure 5(c)) for the portrait, in which
most of the details are lost. After super-resolution using
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Figure 4: The comparison of super-resolution using only
the vertices set and using many whole images. (a), (¢) and
(f) are the high resolution images using the vertices set only,
while (b), (d) and (g) are the high resolution images from 36
whole images. (e) uses exactly 25 images. For (a) and (b),
B =2.3; for (c)~(e), B =2.5; for (f) and (g), B =2.8.

the box PSF and MAP regularization, we obtain HRIs of
the face. Figure 5(e) is the HRI at magnification factor 1.5.
Figure 5(f) is reconstructed from the vertices set only. Since
the available LRPs may not be exactly at RDs 0 or 0.5, we
in fact pick out all the pixels whose RDs are close to 0,
0.5 or 1.0. We also try super-resolution at magnification
factors 2 (Figure 5(g)) and 2.5 (Figure 5(h)). We see that
Figure 5(e)~(h) are indistinguishable and they are a little
sharper than the low resolution images (Figure 5(d)). There-
fore, the resolution is not further improved for B >1.6.

6 Conclusions and Discussions
We analyze reconstruction-based algorithms for super-
resolution and give explicit limits under both practical and
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Figure 5: The device and images in the real experiment. (a)
The vertical XY-table and the CCD camera (white box) in
our experiments. (b) A portrait. (c) One of the low resolu-
tion images captured and the region of interest (white box).
(d) Blow-up of the region of interest. (¢) Super-resolution
of the face area at B =1.5 by MAP. (f) Super-resolution of
the face area at B =1.5 by MAP, using the vertices set only.
(g) B =2.0. (h) B =2.5. (d)~(g) are enlarged to the size of
(h) by bi-cubic interpolation.

synthetic conditions. Under practical conditions, the limit
is found to be 1.6. While under synthetic conditions, it is
5.7. The highest resolution must be achieved below the lim-
its. Hence larger magnification factors are wasteful. More-
over, for synthetic data, the effective magnification factors
can only distribute on some disjoint intervals. We also find
that if the vertices set has been captured, then adding more
LRIs will not further improve the resolution. Finally, we
conclude that the optimal fractional part of the magnifica-
tion factor is 0.5 and the corresponding sufficient number
of LRIs is four times the squared magnification factor. Our
experiments have verified all these conclusions.

In our proof, we assume that the PSF is a box func-
tion. A general PSF can be decoupled into two parts [2]:
PSF = LPSF « SPSF, where LPSF and SPSF are
the PSFs of the lens and the sensor on the image plane, re-
spectively. For motion deblurring, the LPSF' should also
be convolved in time. Because of the localness assump-
tion, it can be assumed to be shift-invariant. The SPSF
is the box function defined in (5). For most applications,
recovering U(x) = LPSF x H(x) is more fundamental
since estimating the LPSF is not an easy task. More im-
portantly, we may compute U (x) first and then deconvolve
it to obtain H(x). However, unless the LPSF is effec-

tively super-resolved at higher magnification factors, after
deconvolution larger magnification factors will not produce
higher resolution than smaller ones do. Consequently, we
need not take the LPSF into consideration. As a result,
our results are in fact quite general.

Among the four assumptions we make, the one that dis-
allows rotation of the camera along the optical axis is es-
sential for our analysis since it will destroy the separability
of the SPSF and make the estimate on ||P*|| and ||P||
much more difficult. We believe that allowing such rota-
tion may make the limits larger but they are still bounded.
We are working on proving this. Moreover, in recent years
component-wise perturbation theory [7] has been developed
for more accurate estimation. We hope this novel theory
could improve our results.
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