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Abstract 
  The existing signature verification systems usually train 
classifiers for a new user by both his/her genuine and 
forgery signatures. Obviously, the requirement of forgery 
signatures is impractical. This paper presents an off-line 
signature verification system that only requires the genuine 
signatures of a new user. At the training stage the system 
learns the mapping between the parameters of classifiers 
without simple forgeries and those with simple forgeries. In 
the application stage, a primary classifier is trained for a 
new user without his/her simple forgeries. The final 
classifier is obtained by transforming the primary classifier 
via the mapping learnt in the training stage. Experimental 
results confirm the effectiveness of the proposed system. 
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1. Introduction 

Financial and legal transactions demand several types 
of handwritten documents to be validated. The process 
involves two independent but highly related tasks: a) 
writer identification, and b) signature verification, i.e. 
decision whether the suspected signature is true or not.  
Handwritten signature verification (HSV) can be 
classified into two categories: on-line HSV and off-line 
HSV. The former relies on dynamic attributes, such as 
pressure, velocity and acceleration. The latter analyzes 
the digitized signature images, in which dynamic features 
are lost. 

Usually three kinds of forgery can happen in signature 
verification. Random forgery is taking the genuine 
signature of others for that of the current user. Skilled 
forgery is produced with close imitations. It is hard to be 

differentiated from the genuine one only by shape 
variations. Simple forgery is produced with the 
knowledge of content but without close imitations. For 
example, the forger signs out of his/her memory on the 
genuine signature. 

There have been many systems for signature 
verification. Sabourin and Drouhard[8] proposed an 
approach based on directional probability density 
function in combination with BP neural networks to 
detect random forgery. Qi and Hung[7] used global and 
grid features with a simple Euclidean distance classifier. 
Bajaj and Chaudhury[4] proposed a system consisting of 
sub-classifiers based on three sets of global features. 
Sansone and Vento[2] proposed a sequential three-stage 
multi-expert system, in which the first expert eliminates 
random and simple forgeries, the second isolates skilled 
forgeries, and the third gives the final decision by 
combining decisions of the previous stages together with 
reliability estimations. However, its performance relies 
greatly on the rejection criteria chosen for each expert. 
Baltzakis and Papamarkos[1] developed a two-stage 
neural network, in which the first stage gets the decisions 
from neural networks and Euclidean distance classifier 
supplied by the global, grid and texture features, and the 
second stage combines four decisions using a radial-base 
function (RBF) neural network.  

Most existing systems use both positive (genuine) 
samples and negative (forgeries) samples in the training 
process. Actually, it is hard to collect enough forgeries 
(of simple and skilled types) for each new user, 
especially when the number of users is large.  

In this paper, a novel system for signature verification 
is proposed. It can detect both random and simple 
forgeries. In Section 2, the system model is introduced in 
detail. Section 3 gives the experimental results. Section 4 
concludes this paper. 



2. The Proposed System 

The proposed Handwritten Signature Verification 
System (HSVS) involves two parts, as illustrated in 
Figure 1.  

2.1. The System Model 

We build one individual classifier for each signature 
owner. His/her dataset consists of genuine signatures as 
positive samples, random (and simple) forgeries as 
negative samples. Note that genuine signatures of an 
owner are random forgeries of other owners. Supposing 
the selected features are effective for most users, the 
mapping between the classifiers trained with and without 
simple forgeries will be similar among users.  

Referring to Figure1, our system consists of two stages: 
the training stage and the application stage, where: 

1. 1O  and 2O  are two non-overlapped user sets. 
2. rkθ  and rkτ  denote the parameters of the k-th 

sub-classifier used in the training stage and the 
application stage. 

3. kα  and kβ  denote the weights of the k-th 

sub-classifier used in the training stage and the 
application stage.  

4. ( )D i  and ( )D i′  denote training datasets for 
i-th user without and with simple forgery. 

The system training stage is implemented on 1O : 
Step 1: For user i  in 1O , his/her first training 

dataset ( )1D i  is composed of genuine signatures and 

random forgeries ( ) ( ) ( )1 1
1 1 1g rfD i D i D i= ∪ . We can 

obtain a classifier ( ) ( )1 , , ,, ,i rk i k i kH i Lθ α= , in which 

{ },i kL  are label sets of genuine signatures which are 

randomly sampled for training.  
Step 2: For user i , his/her second training dataset has  

simple forgeries, i.e. ( ) ( ) ( ) ( )1 1 1
1 1 1 1g rf sfD i D i D i D i′ = ∪ ∪ . 

To make parameters of two classifiers comparable, we 

keep using { },i kL  as the positive training samples, and 

train another classifier ( )1 , ,,i rk i kH θ α′ ′ ′= . 

Step 3: Repeat Step 1 and Step 2 for several owners. 
Establish the mapping between classifier parameters 
under two training modes, 

( ) ( ): , ,rk k rk kf θ α θ α′ ′→ . 

The system application stage is tested on 2O : 
Step 4: For the j-th new user in 2O , we select genuine 

samples from 1O  as random forgeries, then his training 
dataset consists of genuine samples and random forgeries: 

( ) ( ) ( )2 2
2 2 1g rfD j D j D j= ∪ , where ( )2 1

1 1rf gD j D= . Train 

the primary classifier ( ) ( )2 , , ,, ,j rk j k j kH i Lτ β= . 

Step 5: Based on the previous assumption, we apply 
the mapping f  to get another set of parameters that 

should correspond to the classifier trained with simple 

forgeries: ( ) ( ), , , ,, ,j rk j k j rk j kfτ β τ β′ ′ = . 

Step 6: Build the classifier 2H ′  with ( ), , ,, ,j rk j k j kLτ β′ ′ . 

Figure1. The system model contains two stages. System training stage is conducted on user set 1O , which aims to get 
the mapping. System application stage is performed for each new owner, which is tested on user set 2O . 

�����������	�
�	

������������	��

��������������

�����������	�
�	

������������	��

��������������

��������������

��	����	��

���

�����

( ),rk kθ α′ ′

�����	�������������	����

���

�����
������	�������


( ) ( ): , ,
rk k rk k

f θ α θ α′ ′→

�����

���

�����
1

H ′

1
D

1
D′

�����������	�
�	

������������	��

��������������

��
	������	�
�	

������������	��

��������������

��������������

�����

���

�����

��	����	��

���

�����

( ),
rk k

τ β

��	����

������������	��
���

���������	����������

( ) ( ), ,
rk k rk k

f τ β τ β′ ′=
2

H2
D

2
D′

����

���

�����
2

H ′
�	�	

(1)

(2)

(4)
(5)

(6)

(7)

System Training Stage

System Application Stage

��	����	��

���

�����
�����

���

�����
1

H
( ),rk kθ α

(3)



Step 7: Make verification using 2H ′ . 

This system architecture can train a classifier for a new 
owner without simple forgeries, which makes the system 
practical. In the following we introduce more details. 

2.2. Feature Extraction 

Signature images are scanned with a resolution of 300 
dpi. To eliminate homogenous background[13] produced 
in the scanning process, local contrast enhancement is 
first employed and local binarization proceeds. Since the 
binarized signature shrinks along edges, a dilation 
morphological operator is used to make the stroke wider, 
and a bridge operator to connect two areas that are one 
pixel apart. The resulting binarized image is taken as a 
mask image to extract the gray-level signature trace from 
the scanned image. 

In this system, four groups of features are extracted on 
global or local scales. As a shape descriptor, global 
feature provide information about the whole structure of 
the signature. We select a subset of global features 
proposed by Baltzakis[1], which include pure width, 
image area, centers of the signature, maximum vertical 
and horizontal projection, vertical and horizontal 
projection peaks, local slant angle, number of edge points, 
and number of cross points.  

The grid gray feature is defined as a group of average 
gray value in each grid overlapped on the preprocessed 
image, which describe local shape characteristic. Here 
grid coordinates are determined adaptively by dividing 
pixel projection histograms into successive parts with 
almost equal pixel counts. 

As a pseudo-dynamic descriptor, ink distribution 
feature[7] give out gradual changes of gray values on the 
local scale.  

The co-occurrence matrix is a widely used approach to 
texture analysis. Each element in the matrix represents 
the probability of the combination of gray values at pairs 
of points separated by a vector ( ),dδ θ= , whereby d  

is the distance and θ  the angle. Here the corresponding 

matrix is denoted as ( ),M d θ . In our approach, four 

matrices ( ) ( ) ( ) ( ), 1, 45 1,901,0 , , 1,135M M M M° °° °  are 

calculated separately. And four second-order statistic 
measurements[9] (matrix energy, difference matrix energy, 
difference matrix mean, and relevance variance) are 
evaluated for each matrix. Finally all those features are 
grouped into a 16-dimension feature vector. 

2.3. Integrated Multiple Classifiers 

Referring to Fig1, H  can be any classifier in theory. 

The parameters of two classifiers must be comparable. 
More importantly, it should be easy to build a classifier 
out of parameters. Here we choose MED (Minimum 
Euclidean Distance) classifiers as sub-classifiers and 
make classifier fusion based on Boosting algorithm. 

It is crucial to choose a suitable distance threshold for 
an MED classifier. We define the relevance threshold 

kT as 

 , 1,..., 4
2*

k k
gmax gmink

D D
T k

σ
+

= =  (1) 

whereσ  is the standard deviation of genuine training 
samples, gmaxD denotes the maximum distance between 

genuine testing samples and their mean, and fminD  is 

the minimum distance between forgeries and the mean of 
genuine samples. Relevance threshold kT  provides a 
feasible basis for the mapping. 
 

 
 

 
 
 
 

 
 

Boosting algorithm can change many weak learners 
into a strong learner. An MED sub-classifier is 
established respectively for each group of features. 
Adaboost[10] approach is employed to combine 
sub-classifiers, as shown in Fig 2, where ih  refers to an 

individual classifier, kS  denotes the feature set, and 

kD  is the sample distribution. Tests show the order of 

sub-classifiers has little effects on the performance of the 
integrated classifier. 

3. Experimental Results 

3.1. Data collection 

Signatures in Chinese for two non-overlapped user sets 
are collected respectively. 1O  consists of 8 owners, 
each one providing 12 genuine signatures, and 1 simple 
forgery each for the rest 7 owners. 2O  consists of 20 
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Figure 2. Integrate multiple classifiers by 
Adaboost algorithm 



owners, each providing 24 genuine signatures, and 1 
simple forgery each for the rest 19 owners. Signature 
may be affected by the mood of the owner, paper quality, 
and stencil type. Here subjects work with gel pens of the 
same type, writing on the same paper printed with 3*4 
tables, each cell of which contains a signature.   

3.2. System Training Stage 

This stage is conducted on the user set 1O . For i-th 
user, his/her first training dataset ( )1D i  is composed of 

7 genuine signatures and 3*8 random forgeries randomly 
selected from sample sets of the 8 owners in 2O . Then 
train the first classifier 1H . The second training dataset 

( )1D i′  includes 7 more simple forgeries. We can train 

the second classifier 1H ′ .  

In each iteration step, Adaboost algorithm will 
randomly select samples from the dataset according to 
the current sample distribution. So each training process 
may get different classifier. By repeating ten times of the 
training process for every owner in 1O , we get 80 groups 
of parameter pairs. Parameter data are feed into a BP 
neural network FN with 8 4 8× × structure. 

3.3. System Application Stage 

This stage is proposed to imitate the practical 
application. For j-th user in 2O , the training dataset 

( )2D j  consists of 12 genuine signatures, and 3*8 

random forgeries randomly selected from the sample sets 
of the 8 owners in 1O . Train the primary classifier as 

2H . Take parameters of 2H  as the input of the neural 

network FN . Combine its output with the structure of 

2H  to build the final classifier 2H ′ . Considering the 

process in system training stage, we can see that 2H ′  

has the same role as the classifier which is trained with 
simple forgeries included. 

To evaluate the efficiency of 2H ′ , we use the 

remaining 12 genuine signatures, 9 simple forgeries, and 
12*19 random forgeries, randomly selected from the 
sample sets of the rest 19 owners in 2O , as the testing set 
for user j . 

Type I (false rejection rate, or FRR) and Type II (false 
acceptance rate, or FAR) errors are calculated for our 
testing purpose. We record error rates for sub-classifiers, 
classifier 2H  and the final classifier 2H ′ . 

The use of integrated classifier can improve the 

performance on random forgeries, as is evident from the 
fourth column in Table 1. Comparing the resulting error 
rates for 2H  and 2H ′ , it’s obvious that the latter has 

better performance on two types of forgery. However, the 
FRR in this case is higher than that of 2H . This is due to 

the fact that in the system training stage, the second 
training process takes simple forgeries into account. 
Since the distances between simple forgeries and genuine 
signatures are usually less than those between random 
forgeries and genuine signatures, the introduction of 
simple forgeries may decrease the relevance threshold. 
Therefore, FRR will increase a bit accordingly. The 
calculated results also demonstrate the mapping between 
the parameters with or without simple forgeries is 
effective in our application environment. 

Table 1. System verification results 
Error rate FRR 

(%) 
FAR(%)  
Simple 
Forgery 

FAR(%)  
Random 
Forgery 

Total 
Error 
(%) 

Texture features 13.3 15.0 1.91 2.93 

Grid gray features 5.42 50.56 7.83 9.26 

Ink distribution 
features 

8.75 37.22 6.89 8.07 

Global features 10.83 52.78 16.47 17.51 

2H  4.58 34.44 1.16 2.53 

2H ′  7.92 13.89 0.35 1.2 

3.4. Comparison test 

The results obtained with the proposed system are also 
compared with those achieved by Baltzakis and 
Papamarkos’ method. See Table 2 for details.  

Table 2. Results of Baltzakis and Papamarkos’ 
method based on user set 2O  

Error rate FRR 
(%) 

FAR(%) 
Simple 
forgery 

FAR(%) 
Random 
forgery 

Total 
error 
(%) 

Texture feature NN 25.00 30.56 0.86 3.09 
Grid skeleton NN 25.42 22.78 1.34 3.27 
Global feature NN 42.08 27.22 2.26 5.08 

RBF 77.92 7.78 0.81 4.78 
BP 14.58 33.33 0.24 2.13 

Table2 records error rates for individual sub-classifiers 
based on each group of features, those of the system with 
RBF used as the second stage classifier (proposed by 
Baltzakis), and those of the system with BP used in the 
second stage (tested for comparison). It is clear that using 
different classifiers in the second stage results in quite 
different performance. And the FRR when using RBF are 



significantly low. The possible reason is that the second 
classifier is trained only with the decisions from 
classifiers in the first stage. In other words no knowledge 
from sample distribution is considered. 

4. Conclusions 

  This paper has presented a Handwritten Signature 
Verification system incorporating a prior model, which 
trains the classifier for any new owner without simple 
forgeries. Experimental results of the system have been 
provided with reference to two non-overlapped user sets. 
The performance has testified to the effectiveness of the 
proposed approach. The final results obtained by using 
the integrated classifier and the mapping are better than 
those obtained by the classifier working separately. And 
they are also much better than those by Baltzakis’ 
method.  

The future work lies in three aspects. Considering the 
size of user sets used in the current experiment, the 
system should be tested on a larger dataset. It should also 
include skilled forgery into account. Taking the random 
characteristics of the Adaboost algorithm into account, an 
integrated classifier of better generalization performance 
may be selected based on verification results. 
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