
Fundamental Limits of Reconstruction-Based
Superresolution Algorithms under

Local Translation
Zhouchen Lin, Member, IEEE, and Heung-Yeung Shum, Senior Member, IEEE

Abstract—Superresolution is a technique that can produce images of a higher resolution than that of the originally captured ones.

Nevertheless, improvement in resolution using such a technique is very limited in practice. This makes it significant to study the

problem: “Do fundamental limits exist for superresolution?” In this paper, we focus on a major class of superresolution algorithms,

called the reconstruction-based algorithms, which compute high-resolution images by simulating the image formation process.

Assuming local translation among low-resolution images, this paper is the first attempt to determine the explicit limits of reconstruction-

based algorithms, under both real and synthetic conditions. Based on the perturbation theory of linear systems, we obtain the

superresolution limits from the conditioning analysis of the coefficient matrix. Moreover, we determine the number of low-resolution

images that are sufficient to achieve the limit. Both real and synthetic experiments are carried out to verify our analysis.

Index Terms—Superresolution, reconstruction-based algorithms, conditioning analysis, fundamental limits, magnification factor.
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1 INTRODUCTION

INCREASING image resolution is a fundamental problem in
image processing. Instead of imposing higher require-

ments onhardwaredevices andsensors, it is oftenmuchmore
economical to takemultiple images.Thismakes the technique
of superresolution very useful as it combines low-resolution
images to produce higher resolution ones.

Numerous algorithms ([1], [6], [8], [12], [14], [15], [21], [20],
[10], [19], [7], [17], [4], and the references in [5]) have been
proposed for superresolution. However, in practice, people
have found that improvement in resolution is quite limited.
When the magnification factor becomes a bit large, the
performance of existing algorithms deteriorates. The images
they produce either are overly smooth or contain undesirable
details. This leadsus topose aquestion: “Do fundamental limits
exist for superresolution?” The study on this problem is
important because:

1. If sucha limit exists, practitioners canstop trying those
unduly large magnification factors, thus saving
resources.

2. A better understanding of this problem can help
people choose good magnification factors within the
limits and capture just enough images so as to make
better use of resources.

In this paper, we investigate this problem within recon-
struction-based algorithms (RBAs, coined in [2]), which are
by far the most commonly used superresolution algorithms,

under the assumption that the movement between the low-
resolution images is locally translational.

1.1 Reconstruction-Based Algorithms

Reconstruction-based algorithmsmodel the process of image
formation to build the relation between the low-resolution
images (LRIs) and the high-resolution image (HRI). They
usually start from the continuous image formation equation:

LðyÞ ¼
Z

Bðy;xÞHðxÞdxþ EðyÞ; ð1Þ

where LðyÞ is the continuous low-resolution irradiance field
on the image plane, Bðy;xÞ is the blurring kernel (when
there is motion blur, Bðy;xÞ is supposed to have been
integrated in time), HðxÞ is the continuous high-resolution
irradiance light-field that would have reached the image
plane, and EðyÞ is the noise. For the explanation of more
abbreviations and notations, please refer to Table 1.

The discrete version of (1) is a linear system, where the
sampling density of LðyÞ is lower than that of HðxÞ. A
smoothness prior, such as that involved in maximum
a posteriori (MAP) [12], [8], [21] or regularized maximum
likelihood (ML) [8], is often required in order to remove noise
and solve the linear system stably.

Often, the blurring kernel is assumed to be shift invariant.
This is true for local superresolution. In this case, it shows up
as a point spread function (PSF). As mentioned by Baker and
Kanade [2], the PSF can be decoupled into two parts:

B ¼ PSFsensor � PSFlens;

then

LðxÞ ¼ PSFsensor � UðxÞ; ð2Þ

where UðxÞ ¼ PSFlens �HðxÞ, PSFlens and PSFsensor are the
PSFs of the lens and the sensor on the image plane,
respectively. When there is motion blur, PSFlens is also
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convolved in time. The PSFsensor is a box function (see (10))
for CCD sensors [3].

1.2 What Is Superresolution and Its Limit?

As the readers may have different understanding about
“superresolution,” here we would like to make it more
specific. In this paper, superresolution must have the effect
of resolving LRIs into an HRI with smaller pixels. If the pixel
size of HRI is identical to that of LRIs, we only refer to
deblurring (or enhancement, etc.) to such techniques of
sharpening images. It is obvious that PSFsensor is related to
the pixel size and accounts for fine-resolving, while PSFlens

is not and is for deblurring only. We will show later that the
superresolution limits do not depend heavily on PSFlens.

Although, in theory, the HRI at arbitrary magnification
factor M can be computed by using smoothness regulariza-
tion, we are in fact more interested in the “effective”
magnification factors (EMFs), beyond which the resolution
of HRI is more or less the same as that of those with smaller
Ms. Here, two images are of the same resolution means that
an image can be obtained by interpolating the other image or
the salience of useful features in both images is identical. In
this definition, the “resolution” of an image cannot simply be
measured by the pixel size nor the highest frequency in the
image (e.g., adding random noise does not improve resolu-
tion). On the other hand, theHRIs of interest are those images

that are close to the ground truth. An HRI is useless if it does
not reflect the ground truth, even if all its edges are sharp.
Through the above analysis, the problem of finding the
“limits of superresolution” can be converted to a more
workable one: find the distribution of magnification factors
beyondwhich theHRIdeviates significantly from the ground
truth.By finding suchdistribution, ifM is not anEMF,people
can savemuch computation and storage resources by trying a
smaller EMF and then interpolating to this largerM.

1.3 Previous Work and Main Results

The study on the problem of “limits of superresolution” is
rare and incomplete. All existing studies focus onRBAs. Elad
and Feuer [8] briefly discussed the choice of magnification
factors, but they were considering the superresolution under
different defocus and without relative motion and the
coefficient matrix is block-Toeplitz. Moreover, their results
appear topermit arbitrarily largemagnification factors. Baker
andKanade [2] showed that both the condition number of the
linear system and the volume of solutions grow fast with the
increment of the magnification factor and an RBA can only
generate an overly smoothed solution. However, they only
pointed out the deteriorating tendency of the RBAs. No
explicit limits are deduced. In fact, even the concept of “limits
of superresolution” is not clarified in existing literature. We
are the first ones to make this statement explicit.
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This paper is a breakthrough toward the problem of “do
fundamental limits exist for superresolution?”1 Also limited
to RBAs and assuming local translation among LRIs, we
give explicit bounds of the magnification factor and
investigate sufficient number of LRIs.

We prove that fundamental limits do exist for RBAs
under local translation. Specifically, we discuss two extreme
cases and find that:

. The practical limit is 1.6, if the noise removal and
registration is not good enough. Moreover, 2.5 is the
first choice if one wants to try an M that is larger
than 1.6.

. The theoretical limit is 5.7. Actually, the EMF can
only distribute on some disjoint intervals.

Althoughwe analyze by assuming box PSF, aswewill shown
later, the limits of superresolution is dominated by the ability
of fine-resolving. Therefore, the above results are still general.

We derive the above limits from an inequality that an
EMF should satisfy. The cornerstone for proving the
inequality is a theorem on the perturbation of the least-
square-error (LSE) solutions2 to overdetermined systems
assembled by the RBAs. This theorem states how much the
LSE solution deviates from the real one if noise and error
exist. The limits are found by bounding the deviation. To
estimate the deviation, we succeed in finely estimating the
norms of the pseudoinverse of the coefficient matrix of the
system and the perturbation coefficient matrix.

We further analyze the influence of increasing the
number of LRIs. We find that:

. If a special set of low-resolution pixels (LRPs), called
thevertices set, havebeen captured, thenaddingmore
LRIs will only improve the resolution marginally.

. If the fractional part ofM is 0.5, then the correspond-
ing sufficient number of LRIs is 4M2. For an
integerM, the sufficient number of LRI isM2.

1.4 Guideline of Our Analysis

Since our analysis is a bit mathematical, we would like to
give a rough guideline here in order to help the reader
better understand the following proofs. Fig. 1 illustrates the
logic flow of our analysis on superresolution limits.

As we analyze in Section 1.2, we need to estimate the
deviation �H between the HRI and the ground truth.
Therefore, we first formulate the RBAs as finding the
equivalent LSE solutions to the linear systems used in RBAs.
Due to noise and error, these linear systems are somewhat
different from the real ones.

Then, we apply the perturbation theorem in matrix
analysis to estimate �H. It is upper-bounded by a quantityQ.
Though,mathematically,a largeQdoesnotnecessarily leadto
a large �H, we justify that their magnitude should be
correlated. At least for very largeQ, �H should also exceed a
relatively small threshold so that the computedHRI does not
reflect the ground truth image well. Therefore, the EMFs
should makeQ smaller than a large threshold.

The upper-bound estimate Q depends on some matrix or
vector norms. Our meticulous analysis gives their estimates,
represented by the magnification factor, registration error,
noise reduction level, etc. This is the critical part of our
paper. By plugging the estimates in the inequality that
bounds Q, we derive an inequality that the EMFs should
satisfy. To obtain fundamental limits, we assign extreme
values that are hard to break under practical situations to
the parameters. Finally, we obtain the distribution of EMFs
by solving the inequality numerically.

The remainder of this paper is organized as follows: We
first present the mathematical formulation of the problem in
Section 2. This is followed by an analysis of the norms of
matrices in Section 3. Then, in Section 4, we present the
fundamental limits of superresolution under both practical
and synthetic situations. In Section 5, we study the impact of
increasing the number of LRIs on the superresolution limits.
InSection6,bothrealandsyntheticexperimentsarepresented
to verify our theory. Finally, we present the conclusion and
suggest some directions of future work in Section 7.

2 PROBLEM FORMULATION

2.1 Fundamental Linear System and Its
Perturbation

The discrete version of (1) gives the relation between LRPs
and high-resolution pixels (HRPs) via a linear system:

L ¼ PHþE; ð3Þ

where L is the column vector of the irradiance of all LRPs
considered, H is the vectorized (namely, concatenation of
matrix rows) irradiance of theHRI,P gives theweights of the

LIN AND SHUM: FUNDAMENTAL LIMITS OF RECONSTRUCTION-BASED SUPERRESOLUTION ALGORITHMS UNDER LOCAL TRANSLATION 85

1. Its early version appeared in the Proceedings of Computer Vision and
Pattern Recognition, CVPR ’01 [16].

2. Those algorithms that do not seek explicit LSE solutions can be viewed
to find the equivalent LSE solutions. See the justifications in Section 2.1.

Fig. 1. The logic flow of our analysis on superresolution limits. The texts in dashed boxes are for supplementary information.We first formulate theRBAs
as finding equivalent LSE solutions to the perturbed linear system due to noise and error. Using the perturbation theorem, we can have an upper-bound
estimateQon thedeviationbetween the LSEsolution and theground truth. As thedeviationandQare correlated,Q should be small so that the deviation
is also small. Then, thematrix norm analysis further gives an estimate onQ and an inequality that relates the EMF, registration error and noise level are
derived. Considering practical situations, we finally derive the distribution of EMFs by assigning the parameters with their extreme values.



HRPs in order to obtain the irradiance of the corresponding
LRPs, and E is the noise. Usually, RBAs simply replace
irradiance with gray level. In the following analysis, we also
follow this convention.

An example of P is:

P ¼ 1
625

196 154 0 154 121 0 0 0 0

0 196 154 0 154 121 0 0 0

0 0 0 196 154 0 154 121 0

0 0 0 0 196 154 0 154 121

72 192 36 78 208 39 0 0 0

0 0 0 72 192 36 78 208 39

72 78 0 192 208 0 36 39 0

0 72 78 0 192 208 0 36 39

16 64 20 64 256 80 20 80 25

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; ð4Þ

which relates the HRI and LRPs shown in Fig. 2 with a
magnification factor M ¼ 25=16. For instance, the sixth
LRI covers 72/625, 192/625, 36/625, 78/625, 208/625,
and 39/625 of the fourth to ninth HRPs. Therefore,
assuming a box-function PSF, the sixth row of P is
1

625 ð0; 0; 0; 72; 192; 36; 78; 208; 39Þ. This example shows that
the structure of P may not be block-Toeplitz, contrary to
what some researchers have assumed [8], [9]. A block-
Toeplitz coefficient matrix corresponds to a shift-invariant
filter. The coefficient matrix is block-Toeplitz only when
there is only one relative displacement (see Section 3.2)
and the magnification factor is an integer so that the
LRPs can form complete LRIs. Assuming a block-Toeplitz
coefficient matrix can greatly facilitate the analysis (such
as applying Fourier transform as done in [9]). However,
as we will assume an unlimited number of LRIs, such an
assumption is abandoned in our paper. Nevertheless, a
block-Toeplitz coefficient matrix is a special case of our
analysis.

No matter how the RBAs vary (such as MAP [7], [8], [12],
[21], ML [8], POCS [19], Iterative Backprojection [15], [17],
etc.), they can be viewed as denoising first and then solving
(3) by finding its LSE solution. This can be justified by using
the notion of “equivalent noise.” Suppose an RBA finds a
solution H0, then the equivalent noise estimated by the
algorithm is

E0 ¼ L�PH0:

One may check that the LSE solution to (3) is also H0 when
E is estimated as E0. Note that the LSE solution to a system
Ax ¼ b is x ¼ Aþb, where Aþ is the Moore-Penrose
generalized inverse [11], [22] of A. Similarly, the ground-
truth solution is also an LSE solution with appropriate
equivalent noise. With such a posteriori equivalent noise,
we are freed from dealing with the details of RBAs.

The performance of RBAs is affected by several factors: the
level of noise that exists in the LRIs, the accuracy of the
blurring kernel estimation and the accuracy of registration,
including the correction of geometric distortion. The higher
the level of noise or the poorer the kernel estimation and
registration, the less improvement in resolution. Except those
consideringmotion blur [4], [6], [19] in the superresolution of
video sequences,most existingRBAs throwall possible errors
intoEand the coefficientmatrixP isdeemed tobeprecise.We
choose todifferentiate thenoise frommisregistration and that
from gray evel. Regarding the errors inP, the system that an
RBA assembles should be a perturbed version of (3):

L ¼ ~PP~HHþ ~EE; ð5Þ

where ~PP ¼ Pþ �P is the estimated coefficient matrix, ~HH ¼
Hþ �H is the estimated solution, and ~EE is the equivalent
noise. Taking the coefficient matrix in (4), for example, the
corresponding coefficient matrix due to misregistration is:

~PP ¼

0:2847 0:2661 0 0:2322 0:2170 0 0 0 0

0 0:2918 0:2070 0 0:2932 0:2080 0 0 0

0 0 0 0:3603 0:2064 0 :2755 0:1578 0

0 0 0 0 0:2657 0:2295 0 0:2709 0:2340

0:1502 0:3580 0:0512 0:1183 0:2820 0:0403 0 0 0

0 0 0 0:1290 0:2766 0:0266 0:1695 0:3634 0:0349

0:1475 0:1483 0 0:3192 0:3208 0 0:0320 0:0322 0

0 0:1699 0:1364 0 0:3550 0:2850 0 0:0297 0:0239

0:0200 0:0838 0:0271 0:0976 0:4096 0:1328 0:0350 0:1466 0:0475

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; ð6Þ

where the LRPs are misregistered, as shown in Fig. 2b.

The error in estimating ~PP and ~EE causes the deviation �H
between ~HH and H. As we analyzed in Section 1.2, �H
should not be too large.

2.2 The Perturbation Theorem

We should find out the relation between �H and the
magnification factor. From the perturbation theory of linear
systems, �H can be depicted by the following theorem [11],
[13], [22]:

Theorem. If both ~PP and P are of full rank and �"P < 1, then

jj�Hjj � �

1� �"P
"P jjHjj þ �

jjrjj
jjPjj

� �
þ jj�Ejj

jjPjj

� �
; ð7Þ

where � ¼ jjPjjjjPþjj is the condition number of the system,
"P ¼ jj�Pjj=jjPjj, r ¼ L�PH�E is the residual error3 and
�E ¼ ~EE�E is the error in estimating the noise. To be
specific, the norms of a vector and a matrix are defined as:
jjvjj ¼

ffiffiffiffiffiffiffiffiffiffiffi
vt � v

p
, and jjAjj ¼ maxjjxjj6¼0

jjAxjj
jjxjj , respectively.

Inequality (7) is relatively sharp, i.e., the equalitymayhold
in some circumstances [22].4 This rules out abusedversions of

86 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 1, JANUARY 2004

3. As we deem (3) is exact, r is always 0. However, we choose to put it
here in order to give the readers a complete picture of the perturbation
theorem. This treatment does not affect our later analysis.

4. As it is inequality, the equality cannot hold for all cases.

Fig. 2. The relation between low and high-resolution pixels. The dotted
squares represent the HRPs, while the overlapped and shaded squares
represent LRPs. The number on each LRP indicates the order of LRPs.
The magnification factor isM ¼ 25=16. (a) The ground-truth registration.
(b) The misregistration with registration error uniformly distributed
between 0 and 0.08 pixel size of the LRP.



the argument in this paper, namely, enlarge the right-hand
side (RHS) of (7) in order to obtain smaller superresolution
limits. Unfortunately, it is not guaranteed that jj�Hjj will
reach the magnitude of the RHS. For example, in the extreme
case, it is theoretically possible that �H happens to be 0 or,
equivalently,H is not only the solution to both (3) and (5), but
also the solution to �E ¼ ��PH. However, usuallywe are not
that lucky because �P and �E are independent randomnoise.
In practice, they come from completely different sources: �P
comes from registration error, while E and ~EE come mainly
from sensor noise.As a result, �P and �E cannot be correlated
and, hence, the possibility that the RHS is largewhile jj�Hjj is
small seems to be slight. Therefore, we should view jj�Hjj as
beingquite correlatedwith theRHS. If theRHS is very large, it
is expected that jj�Hjj will be above a threshold T such that
there is no further resolution improvement in ~HH. As we will
show, such a threshold T is, in general, quite small.

Then, it is apparent that the following should hold:

RHS � �̂�hNh; ð8Þ

where �̂�h is a number, say 128, that is much larger than T and
Nh is the square root of the number of HRPs. Hence,
estimating the RHS is of central role. Note that the RHS of
(7) can be rewritten as:

jjPþjj
1� jjPþjjjj�Pjj jj�Pjj jjHjj þ jjPþjjjjrjjð Þ þ jj�Ejj½ �;

where jjPjj is canceled. Then, (8) can be written as:

jjPþjj½jj�PjjðjjHjj þ jjPþjjjjrjj þ �̂�hNhÞ þ jj�Ejj� < �̂�hNh: ð9Þ

Consequently, estimating jjPþjj and jj�Pjj is critical.

3 ESTIMATING THE NORMS OF Pþ
AND �P

Several researchers have recognized the importance of the
condition number of the coefficient matrix in such ill-posed
problems of deblurring and superresolution. In [18], the
growth rate of the condition number of Toeplitz matrix is
studied. In [9], the conditioning of block-Toeplitz matrix that
corresponds to a symmetric 2D PSF is investigated using a
new conditioning measure. Both studies assume fixed
weights and rely on root finding. Therefore, their problems
are different from ours and the relation between condition
number and magnification factor cannot be derived. Baker
and Kanade [2] may be the first to directly tackle the
relationship between condition number and magnification
factor. In comparison, our estimation ismuch finer thanBaker
and Kanade’s.

Before presenting the details of the norm estimation in this
section, we firstmake some assumptions and introduce some
notations.

3.1 Assumptions

In order to make the theoretical analysis possible, we make
the following assumptions:

1. The superresolution isdone locally on small regionsof
interest (ROI). If a large area is required, one may
partition the area into relatively small regions and do
superresolution region by region. This approach not
only speeds up the computation and lowers the
memory requirement, but also simplifies the problem

since both the PSF and geometric distortion are
uniform within a small region.

2. The number of LRIs is unlimited, but there are no
multiple images taken at the same place. As a
consequence, one cannot remove the noise simply by
averaging the multiple images at the same place. The
problem of sufficient number of LRIs will be
investigated in Section 5.

3. The camera movement is locally translational.
4. The PSF is a box function, namely,

PSF ðxÞ ¼ S�2; jxj � S=2; jyj � S=2;
0; otherwise;

�
ð10Þ

where x ¼ ðx; yÞ and S is the size of the LRP. Such
PSF weights HRPs according to their portions of area
inside the LRPs. For most applications, recovering
UðxÞ ¼ PSFlens �HðxÞ is more fundamental since
estimating PSFlens is not an easy task. Moreover, we
may compute UðxÞ first and then deconvolve it to
obtain HðxÞ. Most importantly, usually the PSFlens

at high resolution is simply the interpolation of that
at low resolution. In this case, the deconvolved
image at high resolution are also nearly the inter-
polation of that at low resolution. The proof is
sketched in Appendix D. Therefore, the limits of
superresolution is dominated by the limits of fine-
resolving unless the PSFlens at high resolution is not
the interpolation of that at low resolution. As a
result, we need not take PSFlens into consideration.

3.2 Notations

Each LRP is a blending among its neighboring HRPs. We
call the set of HRPs that contribute to an LRP the “influence
region” of the LRP (Fig. 3a). In order to avoid the nasty
boundary problem, which needs to extend the pixel values
outside the ROI, we only utilize those LRPs whose influence
regions are completely inside the ROI.

Note that, for a matrix A, its norm jjAjj ¼ maxjjxjj6¼0
jjAxjj
jjxjj ,

where x need not be a real vector. Therefore, given anH and
the corresponding L, jjLjj=jjHjj is a lower-bound estimate of
the norm of the coefficient matrix, whereH need not be real.
For an arbitrary H, the corresponding jjLjj usually does not
have a simple closed-form solution. In order to facilitate our
norm estimation of both L andH, we choose separable HRIs
(Fig. 3b): Ih ¼ W �Wt, where W ¼ ð1 ! !2 � � � !Nh�1Þt. The
vectorization of Ih is denoted by H! and the corresponding
vector of LRPs is denoted by L!. The choice of ! (may not be
real) is dependent on our purpose. We have tried other
choicesof Ih, but have found that thenormestimation is not as
convenient.

Since thenumberofLRIs is unlimited,wemayassume that

whenever the top-left corner of an LRP is at a relative

displacement (RD, Fig. 3a) �x ¼ ð�x;�yÞ ð0 � �x;�y < 1Þ
inside an HRP ði; jÞ, then (3) includes all other LRPs with the

same RD inside all other HRPs. In particular, for every RD,

there is a “base LRP” whose top-left corner is inside the

HRP (0, 0) (Fig. 3b).With our separableHRI, if the pixel value

of this base LRP is L0;0, then the pixel value of other LRP at

HRP ði; jÞ is !iþjL0;0. Therefore, both the norms ofH! and L!

can easily be written down and we can concentrate on

investigating the base LRP.
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Finally, suppose that we want to raise the number of

pixels in the ROI to Nh �Nh and the magnification factor is

M > 1, which can be decomposed into integer and

fractional parts:M ¼ M þ " ð0 � " < 1Þ:We may normalize

the size of HRPs to be unit 1, then the size of LRPs is M.

Now, we set out to estimate jjPþjj and jj�Pjj.

3.3 Estimating jjPþjj and jj�Pjj
jjPþjj can be computed via [11], [22]: jjPþjj�1 ¼ minjjxjj6¼0

jjPxjj=jjxjj. For our problem, x is any HRI and Px is the

corresponding vector of LRPs. Therefore, given any !,

jjPþjj�1 � jjL!jj=jjH!jj, where L! andH! have been defined

in last section. To have a good estimate on jjPþjj�1, ! had

betterbechosensuch that everyelementofL!, i.e., the integral

within every LRP, is as close to 0 as possible so that jjL!jj is
small. Obviously, if an ! can make the integral 0 in either the

shaded squares shown in Fig. 4,5 then other LRPs at other

places will be close to 0. The corresponding ! satisfies:

XM�1

n¼0

!n
1 þ "!M

1 ¼ 0 or
XM�1

n¼0

!n
2 ¼ 0 or

XM
n¼0

!n
3 ¼ 0; ð11Þ

respectively (Figs. 4a, 4b, and 4c). With such !s, we have an

estimate:

jjPþjj�1 � M�2g2ðMÞNlN
�1
h ; where

gðMÞ ¼
1� "; if M ¼ 1;

minð"j1� !Mþ1
1 jj!1j�

M
2 ; "; 1� "Þ; if M > 1;

(
ð12Þ

in which Nl is the square root of the number of LRPs and !1

should be chosen among the solutions so that it minimizes

j1� !Mþ1
1 jj!1j�

M
2 . The detailed proof can be found in

Appendix A. The curve of gðMÞ is shown in Fig. 6a. We

see that, when 1 � M � 2, gðMÞ decreases linearly from 1

to zero. When 2 < M < 4, the curve of gðMÞ consists of two

saw-teeth. When M > 4, the local maxima of gðMÞ
gradually decrease to 0. Moreover, gðMÞ ¼ 0 for all integer

M > 1. When M > 2, the local maxima appear when

" ¼ 0:5. This indicates that choosing such an M with " ¼
0:5 can make the system most stable and error-resistant.

Take the coefficient matrix P in (4), for example,

jjPþjj�1 ¼ 0:0166, while the estimated value is 0.0784.

Although the estimation does not seem very tight, the reader

should be reminded that we need to derive an estimate that

depends only on the magnification factor and the size of the

matrix, i.e., it should be fulfilled by any coefficient matrix at a

given magnification factor and size, in order to arrive at

fundamental limits.
Our estimate is much better than that in [2], where the

value of pixel ðp; qÞ of the HRI is chosen as ð�1Þpþq and,

thus, gðMÞ is roughly estimated as 1.
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Fig. 3. The notations and graphical illustrations. (a) The influence region (shaded square) of an LRP (square in solid lines) and its relative

displacement. (b) The separable HRI used for norm estimation and a base LRP (shaded square).

5. Another choice of ! is permitted, but does not help our norm
estimation.

Fig. 4. The choice of !i ð1 ¼ 1; 2; 3Þ is to make the integration on the shaded square zero, where the size of the shaded square is (a) M�M,

(b) M �M, and (c) ðM þ 1Þ � ðM þ 1Þ, respectively.



Also, by choosing special !, we have:

jj�Pjj � �pNl=Nh;where

�p ¼ �2
r=4 Mð1þMÞ�ð1þ 1

MÞ
h i2

;
ð13Þ

whereM�r is the maximum registration error. The detailed
proof can be found in Appendix B. Taking the coefficient
matrices in (4) and (6), for example (where �r ¼ 0:08 and
M ¼ 25=16), the exact jj�Pjj is 0.1243, while the estimated
norm is 10�4. Although the estimation seems quite
pessimistic, it suffices to help us in achieving our results.

4 LIMITS OF RECONSTRUCTION-BASED

SUPERRESOLUTION

As we have clarified in Section 1.2, a large deviation can
imply that the details in the real solution are totally lost so
that the computed solution is overly smooth or the
computed solution contains details that are quite different
from those in the real solution or even the profile of the
superresolved image is quite different from the real one. In
fact, the resolution is quite sensitive to the amount of
deviation. As shown in Fig. 5, the average deviation
between Figs. 5a and 5b is only 18.55 gray levels, but the
details in Fig. 5a is completely lost in Fig. 5b.

To obtain fundamental limits, we set the average
deviation �̂�h at 128, which is much larger than the reference
threshold T=18.55, in order to ensure the correlation
between the RHS of (7) and jj�Hjj.

Suppose

jj�Ejj ¼ �eNl; jjrjj ¼ �rNl; jjHjj ¼ �hNh:

�e is nothing but the root mean square error (RMSE) of LRPs
after denoising. Since globally shifting the intensity does
not affect jj�Hjj, �h should be estimated by the variation of
the superresolved image. Therefore, �h stands for the
richness of details in the image. As for �r, it is always 0
(see the footnote in Section 2.2). Then, from (9), (12), and
(13), we obtain:

M < fðMÞ � gðMÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂�h

�e þ ð�h þ �̂�hÞ�p

s
: ð14Þ

Theabove inequalitydemarcates theexistence intervals for
EMFs.6Those that fall outside these intervals can still produce
resolutions higher than that of low-resolution images, but
may not be efficient in resolution improvement because they
require stronger smoothness regularizationand,hence,waste
the effort of increasing pixel numbers. At this time, using
smaller magnification factors is more economical.

Now,wemay examine (14) to find the fundamental limits.
In the ideal case, the data may be noise free except for the
rounding error and the registration is perfect (�r ¼ 0). We
may view the rounding error as uniformly distributed
between 0 and 0.5; therefore, we may assume �e to be its
expectation value 0.25. With these ideal parameters,Mmust
be in the disjoint intervals where the curve of fðMÞ is above
the lineM ¼ f in Fig. 6b, namely,M 2 ð1; 1:93Þ [ ð2:10; 2:89Þ
[ð3:15; 3:84Þ [ ð4:20; 4:80Þ [ ð5:27; 5:68Þ.

Peoplemay caremore about the fundamental limits under
practical situations. Indeed, as shown in (14), the limits
depend onmany factors. When the registration error is small
(then �p 	 1), denoisingbecomes crucial.Moreover, themore
details (i.e., the larger �h) in the image, the harder to recover
them. One may check that, when �h � 15, �r � 0:125, and
�e � 5, the EMF can only be the interval where the curve of
fðMÞ is above the lineM ¼ f in Fig. 6c, namely,M < 1:59.7

This means that, unless the image is “appropriate” (�h � 15)
and one can solve the problems of registration and denoising
very well (�r � 0:125 and �e � 5), the limit 1.6 is unbreak-
able.Unfortunately, these requirements are quite demanding
because:

. �h � 15 may correspond to an image without any
detail. Therefore, its resolution cannot be improved.
For example, the variation of Fig. 5a is 56.25. Even an
almost textureless image, Fig. 5b, has a variation of
44.40 gray levels.

. �e � 5:0 is equivalent to a peak signal to noise ratio
(PSNR) that is higher than 34.15dB. Such a PSNR is
relatively high in image processing community.
Although much higher performance was reported in
the literature, only synthetic imageswith knownnoise
typewere tested in order to obtain theground truth. In
the practice of superresolution, neither the ground
truth nor the noise type is known.

. With a relatively high level of noise, noise removal
cannot be achieved very effectively without strong a
priori knowledge8 of the image content and the noise
type. Moreover, image registration cannot be very
accurate.

. The nonlinearity of camera response makes the
linear relation (3) invalid unless the computation is
totally done on radiometric domain, namely, reco-
vering the irradiance at every pixel. Unfortunately,
this is seldom considered in the practice of super-
resolution. This makes the denoising even harder.

As a result, we may consider 1.6 as the fundamental limit
under practical situations. This means that if onewants to try
a magnification factor larger than 1.6, then, instead of
computing at such a largemagnification factor directly, there
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6. Note that we never claim that any magnification factor inside these
intervals is effective. We just claim that all EMF should be inside these
intervals.

7. The peak at M ¼ 2:5 just touches the line. However, a bit more careful
treatment in estimating jjPþjj can easily invalidate M ¼ 2:5. We choose not
to bother the reader with such minute details.

8. Otherwise, recognition techniques will replace superresolution.

Fig. 5. The sensitivity of resolution to deviation. (a) A high-resolution

image. (b) The blurred image of (a). The average deviation between (a)

and (b) is only 18.55 gray levels.



is a better way, namely, computing at a relatively small
magnification factor, say 1.6, first, then interpolating
the resulting image to the desired magnification factor.
Nevertheless, M ¼ 2:5 is the best choice that is worth trying
if one is very optimistic about his noise reduction and is eager
to try a magnification factor that is larger than 1.6. Unfortu-
nately, people have never realized this and usually try 2.0.

5 THE SUFFICIENT NUMBER OF LRIS

It is intuitive that increasing the number of LRPs can help
resolution improvement. In this section, we will show that
such improvement quickly becomes marginal. Conse-
quently, people need not collect too many LRIs.

Consider five LRPs with gray level Li ði ¼ 1; 2; � � � ; 5Þ:

Li ¼ Pt
iHþ Ei;

where Pt
i are the corresponding row-vectors of P and Ei are

the corresponding entries of E, respectively. Note that as
long as their influence regions are the same (Fig. 7a), the
coefficient vectors Pi ði ¼ 1; 2; � � � ; 5Þ are linearly depen-
dent. For brevity, in the sequel, we simply say that the five
LRPs are linearly dependent. Suppose the fifth LRP is a
convex linear combination of the other four:

P5 ¼ ðP1 P2 P3 P4Þb;

where the entries of b are all nonnegative, then L0
5 ¼

ðL1 L2 L3 L4Þb is usually more accurate than L5 for the fifth
LRP, as it is well known that a convex linear combination is

a low-pass filtering process and suppresses noise. On the
other hand, it is well known that the standard deviation of
the average of N independent and identically distributed
random variables reduces by a factor of 1=

ffiffiffiffiffi
N

p
. The

reduction of this factor is stagnant when N > 4. Therefore,
the improvement from the fifth LRP is marginal. In this
viewpoint, if we have already captured a set V of LRPs such
that every LRP is a convex linear combination of some LRPs
in V , then the improvement from extra LRPs is marginal.
Such V is the vertices set of all LRPs.

It is easy to see that, when M is not an integer, then the
LRPs with RDs at ð0; 0Þ, ð0; 1� "Þ, ð1� "; 0Þ and ð1� "; 1� "Þ
form the vertices set (Fig. 7b). Therefore, the sufficient
number of LRPs is 2� ceilðNh �MÞ½ �2. Unfortunately, in
practice, we cannot capture pixel by pixel. Instead, a set of
LRPs that forms an LRI is acquired simultaneously and, in
general, the RDs of these LRPs are quite different except for
some specialM. Therefore, we cannot obtain the vertices set
conveniently and economically for an arbitraryM. However,
things become simplewhen the fractional part ofM is 0.5: To
capture the vertices set, the camera only needs to be shifted
ð2MÞ2 times, at a stepsize that equals half the size of theHRP,
to make it run through an area of LRP. Hence the sufficient
number of LRIs is 4M2.

For an integer M, the LRPs with RDs at ð0; 0Þ form the
vertices set (Fig. 7c). One only needs to shift the camera
M2 times, using a stepsize that equals the size of the HRP.
The sufficient number of LRIs is thus M2.
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Fig. 6. The plot of gðMÞ and the intervals that effective magnification factors distribute on. In (b) and (c), EMF must be in the intervals where the
curve of fðMÞ is above the line M ¼ f. (a) The curve of gðMÞ. (b) For synthetic data, M 2 ð1; 1:93Þ [ ð2:10; 2:89Þ [ ð3:15; 3:84Þ [ ð4:20; 4:80Þ
[ ð5:27; 5:68Þ. (c) Under practical situations, 1 < M < 1:59.

Fig. 7. The linear dependency among LRPs and the vertices sets. The white squares in dotted lines represent the HRPs. (a) The fifth LRP is a convex

linear combination of numbers 1 to 4 LRPs. The overlapped and shaded large squares represent the LRPs. (b) The simplest vertices set when

M ¼ 5=4 and Nh ¼ 3. The dots indicate the top-left corners of the LRPs in the vertices set. (c) The simplest vertices set when M ¼ 2 and Nh ¼ 3.



6 EXPERIMENTS

In the synthetic experiments, for the sake of visual
comparison and in order to produce sharp HRIs, we only
use the box function to filter a large image (Fig. 8a) to obtain
36 LRIs (Figs. 8b and 8c). The translation between nearby
LRIs is only 1/7 pixels. Each LRI is of size 23� 23 pixels.
Moreover, no noise except the rounding error is introduced
to the LRIs and the registration is exact.

We compute superresolution results via MAP or ML.
The MAP algorithm follows [8] and [12], in which the
solution minimizes:

�ðHÞ ¼ ðL�PHÞtðL�PHÞ þ �Ht��1H; ð15Þ

where ��1 corresponds to a Laplacian operator that
penalizes discontinuities:

��1 ¼
XN2

h

m¼1

dmd
t
m;

and dm is the coefficient vector that corresponds to
computing the Laplacian at the mth HRP:9

dmðnÞ ¼
1; if n ¼ m;

�1=4; if pixel n is one of the 4-neighbors of pixel m;

0; otherwise:

8><
>:

The MAP solution HMAP satisfies:

ð���1 þPtPÞHMAP ¼ PtL: ð16Þ

When � ¼ 0, the MAP solution reduces to the ML solution.
We first use all 36 LRIs for superresolution at various

magnification factors, fromM ¼ 1:5 toM ¼ 3:0. The results
are shown in the second and fifth rows of Fig. 9, where all are
ML solutions except Figs. 9e and 9l because the correspond-
ing ML solutions exhibit completely random patterns due to
the degeneracy of their coefficient matrices. Instead, the
MAP solutions are shown there. The corresponding ground-
truth images are shown in the first and fourth rows of Fig. 9.
Theyare all scaledbybicubic interpolation to the sizeof Fig. 9l
for better visual comparison.

We see that the resolution increases fromM ¼ 1:5 (Fig. 9a)
to M ¼ 1:9 (Fig. 9c). Then, the noise becomes unacceptable
when M ¼ 1:98 (Fig. 9d) and M ¼ 2:02 (Fig. 9f). Therefore,
these twomagnification factors need smoothness regulariza-
tion. The MAP solution at M ¼ 2:0 (� ¼ 5� 10�14) does not
exhibit a resolution that is higher than that of theML solution
at M ¼ 1:9. The criterion of choosing � is that the resultant
noise is approximately the same as that in the corresponding
image inFig. 9c. Smaller�s could result in sharper images, but
the noise will also increase and, hence, more human knowl-
edge is required to differentiate useful features from noise.
Starting from M ¼ 2:15 (Fig. 9g), the resolution increases
again until M ¼ 2:8 (Fig. 9j). Again, the noise in Fig. 9k is
unacceptable and, hence, needs regularization.Moreover, the
resolution of the MAP solution at M ¼ 3:0 (� ¼ 5� 10�2) is
not higher than that of the ML solution at M ¼ 2:8 either.
Note that 1.98, 2.0, 2.02, 2.94, and 3.0 all fall outside the
existence intervals of EMFs and, when M is inside those

intervals, a larger M does produce higher resolution. The
statistics in Table 2 also show that, when M is inside those
regions, the RMSE from the ground truth is well-controlled
and jjPþjj is relatively small; when M is outside those
regions, the RMSE and jjPþjj increases drastically.Moreover,
all the exact jjPþjj�1s are well bounded by our estimation.

We also perform superresolution with the vertices sets
only, where the members of the vertices set are found pixel
by pixel. The results are shown in the third and sixth rows
of Fig. 9. We see that the resolution difference from those
from 36 full LRIs is negligible.10 The RMSEs in Table 3
show that, in general, these results are closer to the ground
truth. Note that the number of pixels (N2

l ) in the vertices
sets are much less than the total number of LRPs in the
36 LRIs. This testifies to the conclusion in Section 5 that the
vertices set can suppress noise better and using LRPs
beyond the vertices set can only improve the resolution
marginally. Again, the exact jjPþjj�1s are well-bounded by
our estimation.

To carry out real experiments, we utilize a computer-
controllable vertical XY-table shown in Fig. 10a, where a
monochromic CCD camera (white box in Fig. 10a) is attached
vertically to the XY-plane. The camera can be moved at a
stepsize of 0.025mmand the error is below 0.2 percent. In our
experiments, we place a piece of paper, printed with texts
(Fig. 10b), about 2 meters away from the camera. When the
camera moves 10,000 steps in both horizontal and vertical
directions, the disparities are 190
 1 and 186
 1 pixels,
respectively. Therefore,we can register the images at a higher
accuracy than any existing registration algorithms, such as
[15]. On the other hand, multiple images (20 images in this
experiment) can be captured at the same place in order to
suppress the random noise by simple averaging. Hence, we
waive the vision and image processing techniques for
registration and denoising.

We set the gamma of the CCD camera to be 1 and
captured 12� 12 images (Fig. 10c) of the texts, where the
horizontal and vertical disparities between successive
images are 0.0950 and 0.0934 pixels, respectively. The
superresolution results on the region of interest are shown
in Fig. 11, where all are MAP solutions and theMs are 1.5, 2,
and 2.5, respectively. The second to fourth rows are the
results with box PSFsensor only. The first and third columns
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Fig. 8. The ideal image and its low-resolution images. (a) The ideal image

used for generating LRIs. (b) One of the LRI. (c) Bicubic interpolation of

(b) to the size of Fig. 9l for better visual comparison.

9. Minor adjustment is required when pixel m is on the image border.

10. The noise in the superresolution result Fig. 9k with the vertices set
seems acceptable. This is because the rounding error happens to be quite
small. We have tested that, when there is no rounding error, even the results
of M ¼ 1.98 and 2.02 are very good. Note that the limits are found by
assuming that the rounding error is uniformly distributed between 0 and 0.5.



use those 36 images whose horizontal and vertical indices

are both even, while the second and fourth columns use

those images that are closest to the corresponding vertices

sets, namely, Figs. 11d and 11f use images whose horizontal

and vertical indices are both 0, 3, and 6. Figs. 11h and 11j use

images whose horizontal and vertical indices are both 0 and

5, while Figs. 11l and 11n use images whose horizontal and

vertical indices are both 0, 2, 4, 6, and 8.We see that, whenM
increases, the resolution remains the same.11 Moreover,

using 36 full images does not produce resolution that is

higher than that using vertices sets.12

To verify the resolution dominance of fine-resolving, we

also take PSFlens into consideration. The results are shown

in the fifth to seventh rows of Fig. 11, where the

configurations are the same as those of previous three

rows. The PSFlens is assumed to be a Gaussian and its � is

estimated as 0.7 by examining the “i” dots in the image.

When PSFlens is involved, the coefficient matrix P in (15)

and (16) should both be replaced by PB, where B

corresponds to the blur introduced by PSFlens.
We see that, when M increases, the resolution still does

not improve. Therefore, PSFlens does not influence the

limits of superresolution. Again, using more images than

the vertices set only gives marginal improvement.
The relevant data are also shown in Table 4. In both

cases, our experiments do not break the limit 1.6.
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11. Someone may think that the resolution at M ¼ 2:5 is the highest.
Actually, there are block artifacts.

12. The results of using vertices set are not as good as those in Fig. 9
partly because the LRPs used are not exactly the vertices set due to finite
capturing resolution.

Fig. 9. The ground truth and superresolution results. The first and fourth rows are the ground truth images. The second and fifth rows are
superresolution results using 36 LRIs. The third and sixth rows are superresolution results using the vertices sets only. They are all ML solutions except
the second and third images of (e) and (l), which are MAP solutions with �s: 5� 10�14, 5� 10�15, 5� 10�2, and 5� 10�2, respectively. The criterion of
choosing �s is that the resultant noise is approximately the same as that in the corresponding images in (c) or (j) in order to compare the resolution in a
fair manner. Their corresponding ML solutions are random patterns and, hence, not shown here. The magnification factors are: (a) M ¼ 1:5.
(b) M ¼ 1:8. (c) M ¼ 1:9. (d) M ¼ 1:98. (e) M ¼ 2:0. (f) M ¼ 2:02. (g) M ¼ 2:15. (h) M ¼ 2:3. (i) M ¼ 2:5. (j) M ¼ 2:8. (k) M ¼ 2:94. (l) M ¼ 3:0.



7 CONCLUSIONS AND FUTURE WORK

We analyze reconstruction-based algorithms for super-

resolution under local translation and give explicit limits

under both practical and synthetic conditions. Under

practical conditions, the limit is found to be 1.6 if the

denoising and registration is not good enough, while, under

synthetic conditions, it is 5.7 and the effective magnification

factors distribute on disjoint intervals. We also find that if

the vertices set has been captured, then it is hard to further

improve the resolution by adding more LRIs. Furthermore,

when the fractional part of M is 0.5, the sufficient number

of LRIs is 4M2. When the magnification factor is an integer,

the sufficient number of LRIs is M2. Our experiments have

verified all these conclusions. Our analysis indicates that to

achieve superresolution at large magnification factors,

RBAs are not favorable. One should try other kinds of

superresolution algorithms, such as recognition-based

algorithms [1].

Our analysis is based on the assumption of local

translation. We believe that allowing higher order motion,

such as rotation and perspective transformation, will make

the limits larger, but they are still bounded. Moreover, in

recent years, component-wise perturbation theory [13] has

been developed for more accurate estimation. We hope this

novel theory could improve our results. In addition, we also

want to extend our analysis to the case that PSFsensor is not a

box function. Finally, the analysis on other kinds of

superresolution algorithms, such as frequency-domain

methods [14] or learning-based methods [1], [10], or

motionless superresolution, such as superresolution from

defocus [20], is also attractive.

APPENDIX A

PROOF OF (12)

Proof. Since the PSF is also separable, we may discuss the
1D case first and then derive in 2D. For each RD, there are
exactly NxNy LRPs that are inside the ROI, where

Nx ¼ Nh � ceilðMþ�xÞ þ 1;

Ny ¼ Nh � ceilðMþ�yÞ þ 1;

Suppose there are K different RDs, then H and L are
column vectors of sizes N2

h � 1 and N2
l � 1, respectively,

where

Nl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
k¼1

N
ðkÞ
x N

ðkÞ
y

vuut :

For the kth RD �xðkÞ ¼ ð�xðkÞ;�yðkÞÞ, let MðkÞ
x +1 be the

width of the influence region of an LRP (Fig. 12), then
MðkÞ

x ¼ ceilðMþ�xðkÞÞ � 1 ¼ Nh �NðkÞ
x and the hori-

zontal portions of the HRPs inside the LRP are
M�1xðkÞ

n ; ðn ¼ 0; � � � ;MðkÞ
x Þ, respectively, where (Fig. 12)

xðkÞ
n ¼

1��xðkÞ; if n ¼ 0;
1; if 0 < n < MðkÞ

x ;
M� ðMðkÞ

x ��xðkÞÞ; if n ¼ MðkÞ
x :

8<
:

Then, the value of the base LRP is

L
ðkÞ
0;0 ¼ ðM�1LðkÞ

x ÞðM�1LðkÞ
y Þ ¼ M�2LðkÞ

x LðkÞ
y ;
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TABLE 3
Some Information of Superresolution with the Vertices Sets

Fig. 10. The device and images in the real experiment. (a) The vertical XY-table and the CCD camera (white box) in our experiments. (b) The content
of the LRIs. (c) One of the LRIs captured and the region of interest (white box).

TABLE 2
Some Information of Superresolution with 36 Full LRIs



where LðkÞ
x ¼

PM
ðkÞ
x

n¼0 x
ðkÞ
n !n (Fig. 12) and LðkÞ

y is defined

similarly. As the value of other LRP with the same RD

inside an HRP ðl;mÞ is LðkÞ
l;m ¼ !lþmL

ðkÞ
0;0, the norms of low

and high-resolution vectors are

jjL!jj ¼
PK
k¼1

PNðkÞ
y �1

l¼0

PNðkÞ
x �1

m¼0

jM�2L
ðkÞ
x L

ðkÞ
y j2j!j2lþ2m

 !1
2

¼ M�2j1�j!j2j�1

�PK
k¼1

jLðkÞ
x L

ðkÞ
y j2ðj!j2N

ðkÞ
x �1Þðj!j2N

ðkÞ
y �1Þ

�1
2

; if j!j6¼1;

NlM�2jLðkÞ
x L

ðkÞ
y j; if j!j¼1;

8<
:

and

jjH!jj ¼
XNh�1

l¼0

XNh�1

m¼0

j!j2lþ2m

 !1
2

¼ j1� j!j2j�1jj!j2Nh � 1j; if j!j 6¼ 1;

Nh; if j!j ¼ 1;

(

respectively.

To estimate jjPþjj, as explained in Section 3.3, ! can be

chosen to be !1, !2, and !3 that satisfy one of the equations

in (11), respectively. For!1,which is oneof the solutions to:
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Fig. 11. Superresolution of the ROI by MAP with � ¼ 0:5. (a) and (b) Blowup of the ROI. (c)-(n) Superresolution with only the box PSFsensor being

considered. The magnification factor is shown on the left. The first and third columns use 36 full images, (d) and (f) use nine full images, (h) and (j)

use four full images only, and (l) and (n) use 25 full images. The configurations of (o)-(z) are the same as those of (c)-(n), except that PSFlens is also

considered. All images are enlarged to the size of (z) by bicubic interpolation.



XM�1

n¼0

!n þ "!M ¼ 0; ð17Þ

we can prove that j!1j > 1 and

1. If x
ðkÞ
0 � ", then MðkÞ

x ¼ M (Fig. 13a), hence

LðkÞ
x ¼ x

ðkÞ
0 þ

XM�1

n¼1

!n
1 þ x

ðkÞ
M !M

1

¼ x
ðkÞ
0 þ ð�"!M

1 � 1Þ þ ð1þ "� x
ðkÞ
0 Þ!M

1

¼ ðxðkÞ
0 � 1Þð1� !M

1 Þ:

Therefore,

jLðkÞ
x j ¼ jxðkÞ

0 � 1jj1� !M
1 j � ð1� "Þj1� !M

1 j
¼ jð1� "Þð1� !M

1 Þj:

From (17), we have

1� !M
1

1� !1
þ "!M

1 ¼ 0:

or, equivalently,

1� !M
1 þ "!M

1 � "!Mþ1
1 ¼ 0:

Hence,

jLðkÞ
x j � jð1� "Þð1� !M

1 Þj
¼ j � "þ "!Mþ1

1 j ¼ "j1� !Mþ1
1 j:

2. Else MðkÞ
x ¼ M þ 1 (Fig. 13b), then

LðkÞ
x ¼ x

ðkÞ
0 þ

XM
n¼1

!n
1 þ x

ðkÞ
Mþ1!

Mþ1
1

¼ x
ðkÞ
0 � "!Mþ1

1 þ ð"� x
ðkÞ
0 Þ!Mþ1

1

¼ x
ðkÞ
0 ð1� !Mþ1

1 Þ:

Therefore, we always have jLðkÞ
x j � "j1� !Mþ1

1 j. Similarly,

jLðkÞ
y j � "j1� !Mþ1

1 j. Consequently,

jjPþjj�1 � jjL!1
jj=jjH!1

jj

¼
M�2 j1�j!1 j2 j�1

PK
k¼1

jLðkÞx L
ðkÞ
y j2ðj!1 j

2N
ðkÞ
x �1Þðj!1 j

2N
ðkÞ
y �1Þ

� �1
2

j1�j!1 j2 j�1 jj!1 j
2Nh�1j

� M�2"2j1 � !Mþ1
1

j2
PK
k¼1

j!1 j
2N

ðkÞ
x �1

j!1 j
2Nh�1

j!1 j
2N

ðkÞ
y �1

j!1 j
2Nh�1

� �1
2

� "2M�2j1 � !Mþ1
1

j2j!1j�MNlN
�1
h ;

where we have used the inequality

a2Nx � 1

a2Nh � 1
� Nx

Nh
aNx�Nh � Nx

Nh
a�M; 8 a > 1:

To best estimate jjPþjj�1, !1 should be chosen such that

it satisfies (17) and, on the other hand, minimizes

j1� !Mþ1
1 j2j!1j�M .

In the second and third steps, we choose !2 and !3 to

be any one of the solutions to
PM�1

n¼0 !n ¼ 0 andPM
n¼0 !

n ¼ 0, respectively. Mimicking the previous proof,

we have:

jjPþjj�1 � jjL!2
jj=jjH!2

jj � "2M�2NlN
�1
h ;

jjPþjj�1 � jjL!3
jj=jjH!3

jj � ð1� "Þ2M�2NlN
�1
h :

Summing up, we have (12). tu
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TABLE 4
Some Information of Real Experiments

Fig. 12. The notations and graphical illustrations for matrix norm

estimation. �x is the relative displacement of the LRP. Mx þ 1 is the

width of the influence region. xi (i ¼ 0; � � � ;Mx) are the portion of an

HRP inside the LRP.

Fig. 13. The graphical illustrations of different cases in estimating jjPþjj�1. (a) When x0 � ", the LRP coversM þ 1 HRPs. (b) When x0 < ", the LRP

covers M þ 2 HRPs.



APPENDIX B

PROOF OF (13)

Proof. Inheriting previous notations, suppose the base LRP

is at �xðkÞ in the first HRP and it is registered at �~xxðkÞ,

relative to the same HRP (Fig. 14a). Now, �~xxðkÞ is not

constrained to satisfy 0 � �~xxðkÞ;�~yyðkÞ < 1.). We can

prove (see Appendix C) that the difference of pixel

values at these two registrations is:

j�LðkÞ
x j ¼ jLðkÞ

x � ~LLðkÞ
x j � j�xðkÞ ��~xxðkÞj!4ð1� !M

4 Þ
� "ðkÞx !4ð1� !M

4 Þ;
ð18Þ

where 0 � "ðkÞx � M�r and M�r is the maximum

registration error. Similarly, j�LðkÞ
y j � "ðkÞy !4ð1� !M

4 Þ,
where 0 � "ðkÞy � M�r. Both "ðkÞx and "ðkÞy can be viewed

as a random variable uniformly distributed between 0

andM�r. Therefore, expectations of "
ðkÞ
x and "ðkÞy are both

M�r=2 and jj�Pjj can be estimated as:

jj�Pjj � jj�L!4
jj=jjH!4

jj

� !2
4ð1� !M

4 Þ2�2
r=4

XK
k¼1

1� !2N
ðkÞ
x

4

1� !2Nh

4

1� !
2N

ðkÞ
y

4

1� !2Nh

4

0
@

1
A

1
2

� !2
4ð1� !M

4 Þ2�2
r=4NlN

�1
h ;

where we have used the inequality

1� a2Nx

1� a2Nh
� Nx

Nh
; 8 0 � a < 1:

To best estimate jj�Pjj, !4 should be chosen such that it

maximizes !ð1� !MÞ, or !4 ¼ ð1þMÞ�
1
M . As a result,

jj�Pjj � �2
r=4 Mð1þMÞ�ð1þ 1

MÞ
h i2

NlN
�1
h :

Thus, we have (13). tu

APPENDIX C

PROOF OF (18)

Proof. Since theweights for an LRP changewith its influence

region, we should differentiate various combinations of

�xðkÞ and�~xxðkÞ. If we constrain the registration error to be

less than one pixel size of the HRP, i.e., M�r < 1, then

there are 10 possible cases in total. So, we only take one

nontrivial case for example. The other cases can be

analyzed similarly. ForM�r � 1, j�LðkÞ
x jwill be larger.

Suppose that �xðkÞ < 1� " and �~xxðkÞ > 1 (Fig. 14b),

then x
ðkÞ
0 � " and from M�r < 1, we have " < ~xx

ðkÞ
0 < 1.

Therefore,

jLðkÞ
x � ~LLðkÞ

x j ¼ j½xðkÞ
0 þ

XM�1

n¼1

!n
4 þ ð1þ "� x

ðkÞ
0 Þ!M

4 �

� ½~xxðkÞ
0 !4 þ

XM
n¼2

!n
4 þ ð1þ "� ~xx

ðkÞ
0 Þ!Mþ1

4 �j

¼ ð1þ x
ðkÞ
0 � ~xx

ðkÞ
0 Þ!4ð1� !M

4 Þ
þ ð1� !4Þ½xðkÞ0 ð1� !M

4 Þ þ "!M
4 �

> ð1þ x
ðkÞ
0 � ~xx

ðkÞ
0 Þ!4ð1� !M

4 Þ
¼ ð�~xxðkÞ ��xðkÞÞ!4ð1� !M

4 Þ:

tu

APPENDIX D

PROOF OF THE RESOLUTION DOMINANCE

OF FINE-RESOLVING

Proof. In this appendix, we will show that, if two blurred
images are of the same resolution and so are their
blurring kernels, then, after deblurring, the two images
are still of the same resolution. With such a conclusion,
we are freed from considering PSFlens.

Let Ui ði ¼ 1; 2Þ be the images fine-resolved using

smaller pixel sizes, Bi be the blurring kernels that

correspond to PSFlens and Hi be the high-resolution

images after deblurring, namely,

U1 ¼ B1H1;

U2 ¼ B2H2:
ð19Þ

Suppose that the magnification factor ofH2 is larger than
that of H1 and the resolution of U2 is the same as that of
U1, namely, there exists an interpolation matrix T such
that U2 ¼ TU1. In order not to drown the reader with
complex notations, in the sequel we prove the 1D case
only. Then, we may write down the entries of the ideal
interpolation matrix:

Tk;l ¼ sincðxk � lÞ;

where xks are the coordinate of pixels ofU2 and the pixel
size of U1 is assumed to be 1. Then, because:X

k

sincðxk � lÞsincðxk � nÞ

�
Z

sincðx� lÞsincðx� nÞdx ¼ sincðl� nÞ ¼
1; if l ¼ n;

0; otherwise;

�
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Fig. 14. Registration error of an LRP. The rectangle within solid lines is the correctly registered LRP, while the rectangle enclosed in dotted lines is
the misregistered LRP. (a) An LRP at relative displacement �x is misregistered at �~xx. (b) The case that the correct and wrong registrations are in
nearby HRPs and both cover M þ 1 HRPs.



we have:

TtT � I;

where I is the identity matrix. If the blurring kernel B2

is also the interpolation of B1, namely, B2 ¼ TB1T
t,

then U2 ¼ TU1 ¼ TB1H1 � B2ðTH1Þ. This implies that
the solution H2 to (19) is close to TH1, or the
interpolation of H1, due to the smoothness regulariza-
tion used in deblurring algorithms. Therefore, there is
little resolution improvement. tu
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