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Abstract

Signature verification is a challenging task, because only
a small set of genuine samples can be acquired and usually
no forgeries are available in real application. In this pa-
per, we propose a new two-stage statistical system for au-
tomatic on-line signature verification. Our system is com-
posed of a simplified GMM model for global signature fea-
tures, and a discrete HMM model for local signature fea-
tures. To be practical, we introduce specific simplification
strategies for model building and training. Our system re-
quires only 5 genuine samples for new users and relies on
only 3 global parameters for quick and efficient system tun-
ing. Experiments are conducted to verify the effectiveness of
our system.

1. Introduction

Signature verification as a technique to authenticate the
signer’s identity has a long history in human society. Sim-
ilar to other biometrical information, such as speech and
fingerprint, signature conveys distinguishable characteris-
tics that indicate personal identity. Signature verification
aims at using such properties for making reliable authenti-
cation. However, automatic signature verification is a chal-
lenging task due to practical constraints. For example, we
cannot collect large amount of signatures for training pur-
pose, while handwriting or speech recognition does. And
negative samples cannot be captured when the system is
used. On the other hand, there are increasing security de-
mands on identity verification in the field of finance, se-
curity, etc. Therefore, automatic signature verification de-
serves deep investigation.

The existing methods of signature verification can be
classified into two categories: off-line and on-line. Off-line
methods acquire data by scanning signatures and process

them as static images. On-line methods capture signature
tracks in time-variable sequences, such as positions, pres-
sure, and pen tilt. On-line methods usually achieve higher
accuracy than off-line ones do because they can make use
of dynamic information (speed, pressure, etc.) that is miss-
ing in static images.

For on-line signature verification [4], dynamic time
warping (DTW) [10][17][6][8] is one widely-used method
to find the similarity between the input signature pat-
terns and the stored templates. The signature pattern
is usually represented by a sequence of feature vec-
tors defined on every sample point of the signature.
Huang [5] built a structure graph for each signature con-
sidering stroke correlation, and did segment-to-segment
matching by DTW. Hidden Markov Model (HMM) is an-
other common technique for signature verification in re-
cent years, because it has been successful in modeling
time-variable sequences for speech and on-line handwrit-
ing recognition. Yang [18] evaluated different HMM mod-
els over the same signature dataset. In [3][7][9][11][14]
various segmental features are proposed for HMM veri-
fication. Richiardi [17] applied Gaussian Mixture Model
(GMM) for signature distribution estimation. These mod-
els (DTW, HMM, and GMM) focus on local properties of
signatures such as local moving direction and shape cur-
vature. Global features like writing time or signature
length may be incorporated to speed up verification proce-
dure and improve accuracy.

In the practical applications, users may feel uncomfort-
able if required to provide lots of samples. Only small set of
signature samples can be acquired, say 5 ~ 6 genuine sig-
natures [14][19]. This demands the ideal signature verifica-
tion system to be simple because complex system usually
needs large training sample set. On the other hand, many
existing systems require false samples, i.e., forgery signa-
tures, for system training. But it is actually hard to collect
forgery signatures for every user in practice. So the practi-
cal system would be more applicable if it uses forgery sam-
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ples as few as possible.

Due to the above-mentioned two considerations, we pro-
pose a two-stage statistical system for on-line signature ver-
ification. Our system is composed of a simplified GMM
model built on global signature properties and a left-to-
right HMM model based on segmental features. Note that
the general GMM model and HMM model are complex for
this specific application, so we introduce specific strategies
to do model simplification and initialization. Our system de-
pends on three global parameters to control its performance.
We estimate those parameters globally for all users such that
forgeries are only needed for system tuning. When put into
real use, for any new user, our system needs only 5 genuine
signatures and no forgery samples. Our system achieves
good performance considering that it uses few training sam-
ples.

The rest of the paper is organized as follows. Section
2 gives an overview of the proposed system and its main
components. Section 3 describes how to build a simplified
GMM model to estimate the distribution of global features.
Section 4 discusses the HMM model estimation based on
segmental features. In Section 5, the experiments are re-
ported. Finally, Section 6 concludes the paper and discusses
the future work.

2. System overview

Figure 1 illustrates the structure of our system. The right
part (indicated by dashed lines) shows the training proce-
dure. For each signer, two models are processed separately,
corresponding to global and local signature information. In
global modeling, we use a Gaussian mixture to estimate the
distribution of global features, such as time duration and av-
erage speed. In local modeling, we build an HMM model
based on both piecewise information and structural relation
between strokes.

The left part (indicated by solid lines) shows the veri-
fication procedure. The input signature is first fed into the
GMM classifier. If the confidence is below a threshold, the
signature is rejected as a forgery. For signatures that pass the
first test, we extract segmental feature sequences and feed
them into the HMM classifier. The signature is accepted as
genuine when it also passes the HMM verification test.

We list the highlights of our system in the following:

e Given the well-established system, it only uses few
genuine signatures as training data for a new user. No
forgeries are needed in the training stage.

e Discriminative features are proposed at global and lo-
cal levels, respectively.

e Our system adopts a two-stage statistical structure,
where the global level features can rule out obvious
forgeries quickly.
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Figure 1. Block diagram of our signature ver-
ification system

e The system can be easily tuned since there are only
three global parameters involved.

3. First stage: GMM for global verification

It is reasonable to assume that signatures of the same
writer are very similar. In other words, global information
of signatures, such as width and height, are consistent for
the same signer. Global verification aims at ruling out ob-
vious forgeries quickly using the consistent global informa-
tion. In this section, we first introduce global features and
then discuss how to build a simplified Gaussian Mixture
Model (GMM) over reference samples.

3.1. Global feature extraction

We extract two kinds of global features, spatial and dy-
namic features. The spatial features include: (i) width and
height; (ii) total length of signature strokes, (iii) stroke
count and number of self-intersection points; (iv) segment
count and (v) total curvature. Spatial features are usually
enough for detecting random forgery, i.e., signatures from
other signers. However, they may fail for skilled forgeries,
which result from purposely imitation and may have a sim-
ilar shape to the signer’s genuine signatures.

Dynamic features, on the other hand, have good discrim-
inative power beyond shape features, because they are hard
to be imitated by observing the signature shape only. We
propose a set of dynamic features: (i) the average speed and
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the maximum speed; (ii) the average pressure and the max-
imum pressure difference between two sample points, (iii)
total duration time, and (iv) ratio of pen-down time to to-
tal writing time.

This group of spatial and dynamic features has low cor-
relation, which makes model simplification possible as will
be discussed later.

3.2. GMM modeling

GMM model is a weighted combination of multi-
ple Gaussians. A distinct property of GMM model is
its power to approximate any probability density. De-
note an M-component GMM model by the notation
0 = {(au, ;%) : 1 = 1,...,M}. It has the gen-
eral form as equation 1,

p(z|©) Zal

where x is an n-dimensional feature vector, o is the coef-
ficient with oy = P(1|©), Xy = 1, and y; and X are the
mean vector and the covariance matrix of the /-th Gaussian
component, respectively. Each component’s distribution is
an n-variable Gaussian function.

The GMM complexity is controlled by component count
M and covariance matrix ¥. Larger M and full covari-
ance matrix ¥ define a complex GMM model. Obviously
one complex GMM can approximate a sample distribution
more accurately. However, the complex model has many un-
known parameters to estimate, which needs many training
samples. We have to simplify the model to meet the num-
ber constraint of signature samples.

The first simplification is to represent the distribution
variance by a diagonal matrix. The diagonal covariance ma-
trix compared to a full covariance matrix may lose some in-
formation. When feature vectors are not considerably corre-
lated, the lost information can be neglected. As mentioned
previously, the global features we selected have low corre-
lation to each other. Therefore we may use diagonal ma-
trix safely. Another advantage of using a diagonal matrix is
great reduction in the computational load.

The further simplification is to choose fewer Gaussian
components. Note that only 5 genuine samples are col-
lected as the training set. Such a set size is far from enough
for a complex GMM model. Therefore, we choose a 2-
component GMM in practice.

In order to avoid GMM learning from being stuck into
local extrema, K-means clustering is usually applied for
“good” initialization. Because our simplified GMM model
contains just 2 components, we propose a simple method to
initialize the GMM. There are 10 different combinations for
5 samples being separated into 2 classes. We may choose

(|, %) (D

the best combination with small intra-class distance and
large inter-class distance by exhaustive search. Note that the
feature vector does not have the same unit in each dimen-
sion. We should normalize each dimension before comput-
ing the distance matric between two feature vectors.

Then EM algorithm [2] is then applied for GMM model
learning. Given an incomplete data set X = {z1,..., 2k},
where K is the number of samples, and z j, is the global fea-
ture vector, the GMM log-likelihood is computed as,

log(p(X|0)) Zlog (z1]©)) 2)

The EM algorithm updates the initial model and guaran-
tees that the log-likelihood of the new model increases. The
new model is in turn used for the next iteration. This iter-
ative process continues until the log-likelihood of the new
model converges.

4. Second stage: HMM for local verification

Compensating for global properties, local information
offers signature details, spatial or dynamic, discriminative
for different signers [17]. Those local features are incorpo-
rated with DTW or HMM techniques for signature verifica-
tion. DTW-based systems may resample the signature into
an equal-distant point sequence before string matching. But
this resampling process may result in loss of important lo-
cal details. Our system uses non-resampled signature data
in experiments.

4.1. Local feature extraction

Local features in the system are extracted at segment
level. We first adopt Sklansky’s algorithm [15] to segment
the input signature at points of high curvature. From each
segment a set of local features are computed including (i)
count of sample points, (ii) segment length and direction,
(iii) average pressure and maximum pressure difference,
(iv) time duration, and (v) relative position/direction with
respect to other segments.

Denote the segmental features extracted from the k-th
signature as ¥,

and yf: (ftlaft27"-7ftD):

where T}, is the number of segments, f}, is the d-th fea-
ture for the ¢-th segment’s feature vector yt’c and D is the di-
mension of segmental feature vector. After local features,
ie. {Y*¥ k=1,..., K}, from all training samples are ob-
tained, we start to train a discrete left-to-right HMM model.
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4.2. HMM modeling

A discrete HMM X [13] has five elements: the state
number N, the number M of distinct observation sym-
bols per state, the states transition probability distribution
A = {a;;}, the observation symbol probability distribu-
tion B = b;(k) in state ¢, and the initial state distribution
m={m}.

Several factors have impact on the complexity of the
HMM model, such as the underlying model structure, dis-
tribution form (continuous or discrete), and the number N
or M. Given a discrete HMM, the underlying model struc-
ture determines the number of unknown parameters. The
more complex the structure is, the more parameters there
are, and the more training samples are required. Consider-
ing the small size of our training set, we employ a first-
order left-to-right no-skip DHMM model with N = 6 and
M = 16.

Before HMM learning [13], we should convert feature
sequence Y'* to an HMM’s observation sequence O*. Such
conversion can be realized by vector quantizer. We adopt a
modified K-means clustering algorithm [12] to group seg-
mental feature vectors into M (the number of HMM obser-
vation symbols) clusters, and take the cluster centers as the
codebook. Accordingly the sequence Y * can be encoded
into a series of code index or symbol:

ok = (o’f,...,o’%k)

where of is the class label for the ¢-th segment of the k-th
signature. In turn, OF is taken as the observation sequence
for HMM learning.

Similar to GMM, HMM model may reach rapid and
proper convergence in iterative learning process if start-
ing from a good initial estimate of the parameters. For our
DHMM model, A = {a;;} can be selected randomly, but
n = {m;} must be fixedas 7y = 1, m; = 0, i # 1. As
for B = {b;(k)}, we employ a segmental K-means training
procedure [13] to optimally search the initial values. The
EM algorithm is then applied to train the HMM model.

S. Experiment results and discussions

Our system is built on the Tablet PC, and also works for
other electronic writing devices, such as PDA. The signa-
ture sample has two kinds of raw data, position (z,y) and
pressure p. We apply a Gaussian filter to smooth z/y/p
respectively. This technique eliminates some unexpected
noise from original signature data. Special attention should
be paid to rotation. In practice, the user may sign his/her
signature in an arbitrary orientation. Therefore, the system
detects writing direction, the average estimation from two
methods, principal component analysis [16] and linear re-
gression, and rotates the signature to horizontal. Signature

samples undergo the above preprocessing steps before train-
ing or verification.

A test signature z is identified as genuine if it passes both
global and local verification tests. Specifically, we first eval-
uate its GMM likelihood as p(z|©) . It passes the global ver-
ification and undergoes local verification if

p(x]©) > ¢, min(p(zx|0)) 3)

where xy, is k-th training signature and c,, is a global coef-
ficient.

Denote the observation sequence corresponding to the
test signature x by O, and the joint log-likelihood of se-
quence O against the HMM by P(O|\). The test sample
passes HMM test when it satisfies

P(O[A) > cp min(p(Ox|A)), “4)

where ¢, is another global coefficient and Oy, is the obser-
vation sequence of the k-th sample signature.

The HMM probability P(O|)) already takes the se-
quence length into account. However, we found that obser-
vation sequences of short length may have large likelihoods,
though the corresponding signatures may be forgery. It is
partly because short sequences enjoy smaller penalty than
long sequences. Therefore, we impose an additional con-
straint on sequence length L(O):

L(0) > ¢;min(L(Oy)) )

where L(Oy,) is the length of the observation sequence Oy,
and ¢; is a global coefficient. If the condition 5 is not satis-
fied, the test signature x is rejected as a forgery.

The three coefficients (cy, cp, ¢;) affect the system per-
formance. We can find the optimal values for each signer
individually or for all signers globally. In other words, they
are different for various signers in the former case, and the
same in the latter case. In our experiment, we find the global
optimal (cy, cp, ¢;) by exhaustive search for all registered
signers. Two sets of coefficients (cg, cp, ;) are determined
for verification with or without pressure, respectively.

The signature data in test contains 25 volunteers. Each of
them provided 15 genuine signatures, and they were asked
to imitate signatures of another three subjects, each in 5
times as skilled forgeries. We also randomly selected 15 sig-
natures from others for each signer as random forgeries. In
total, each signer has 15 genuine signatures, 15 random and
15 skilled forgeries. Although no public signature database
is available for testing, our database is comparable to that
used in Signature Verification Competition [1].

The signature model for one signer gets trained by 5
genuine signatures randomly selected. The rest samples are
used for parameter tuning. Currently we search for the op-
timal parameters using the testing samples, and the verifi-
cation results are actually ones after threshold tuning. With
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pressure information, the accuracy is 93.3%; without pres-
sure information, the accuracy is 89.7%. These numbers are
not the highest among those reported in the literature. How-
ever, one should be reminded that our system requires much
less samples than many other systems do.

For further testing generalization performance of the sys-
tem, we would like to collect more signature data from other
signers. At that time, the global system coefficients (cg, cp,
;) are fixed, and only genuine samples are required for new
signature model training.

6. Conclusions and future work

In this paper, we propose a new signature verification
framework, the two-stage statistical model. It requires very
few user samples, yet achieves good performance. The sys-
tem consists of a simplified GMM and a discrete left-to-
right HMM. The two signature models work in a sequential
order. We use GMM verification to quickly rule out obvi-
ous forgery signatures by computing global features in this
stage. Then we evaluate the signatures that pass the global
verification against HMM model. Our system works well
for small training set.

There are still many open problems. We have noticed that
a user’s signatures may change along the time due to the
change in physical and psychological conditions. It would
be attractive if we could update the verification system
dynamically based on previous verification results. Such
a consideration can make automatic signature verification
system more applicable. Moreover, by selecting discrimi-
native features, we expect that the performance of our sys-
tem will be even better.
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