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Abstract
In this paper, we present a family of circular or square optimal polynomial filters for pre-filtering 2D polygons and
images. The criterion of designing polynomial filters is to maximize the energy concentration within a period of the
spectra of the filters. The filters are non-negative and can have arbitrary radius and order. For a given radius, the
filters converge very fast when the order increases, making low-order filters suffice for high-quality pre-filtering. With
polynomial filters, it is convenient to evaluate the integral over the parts of polygons within the filter mask with closed-
form solutions, or generate look-up tables quickly via analytic evaluation. The experiments demonstrate the excellent
anti-aliasing performance of our polynomial filters.

1 Introduction

Anti-aliasing is a fundamental problem in computer graphics, in which choosing a good low-pass filter is critical to
remove undesirable artifacts. Filter design has a long history in signal processing. For eliminating high frequencies, it
is well known that the sinc function is the ideal filter. Unfortunately, it is of infinite support and is unusable in practice.
Therefore, people have been searching for its alternatives. As simple filters can save much computation, box, conical,
Gaussian, and cubic (including splines) filters are commonly used in computer graphics, either explicitly or implicitly.
McCool proposed prism splines [7], but the evaluation is very complex and expensive. The Mitchell-Netravali filters [8]
are also popular as people have found that they have good anti-aliasing performance [2, 4, 3]. The practitioners usually
choose among the above-mentioned filters via visual examination on the rendered results. Therefore, the chosen optimal
filter might be biased towards the experimental examples and be subjective.

This paper is motivated by our work on a high-quality pre-filtering algorithm for 2D polygons [6], which evaluates
the integral inside the filter mask by breaking the integral region into basic component regions bounded by a polygon
edge, a radius passing one of the edge ends and the filter boundary. Our goals are to have filters that objectively minimize
aliasing, and that can provide closed-form solutions to or generate a look-up table analytically for the basic component
integral, i.e., the integral over the basic component region. We have developed a family of circular or square low-order
polynomial filters that maximize the energy concentration in a period of their spectra. These filters can be used for
pre-filtering polygons as presented in [6], and for processing discrete images as will be illustrated in this paper.

2 Filter Design

We follow two criteria to design filters. First, the filter should minimize aliasing. Second, it must provide closed-form
solutions to the basic component integral when a look-up table is not preferred.

For the first criterion, we have to measure the “amount” of aliasing. It is well known that after sampling, the spectrum
of a continuous signal replicates in the spectral domain. When the sampling is on a 2D square grid, the period is 2Ω =
2π/T in both x and y directions, where T is the sample spacing in the spatial domain, normalized to 1 in our problem.
The amount of aliasing can be measured by the energy of the spectrum outside the square Ω = [−Ω, Ω] × [−Ω, Ω]
in the spectral domain. Therefore, we should make the spectral energy most centered on the square. This leads to an
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optimization problem:

h = argmax
h

∫ Ω

−Ω

∫ Ω

−Ω

|[F(h)](ωx, ωy)|2dωxdωy∫ ∞

−∞

∫ ∞

−∞
|[F(h)](ωx, ωy)|2dωxdωy

, (1)

where [F(h)] denotes the Fourier transform of the filter h. This is similar to the aliasing energy in [5]. The difference
is that we use a ratio instead. Without any constraint, the solution to (1) is the well-known sinc function and the energy
concentration is 1. However, in practice we want the filter be finitely supported. Under such a constraint, the solution to
(1) becomes the prolate spheroidal wave function of order zero [9]. Unfortunately, the prolate spheroidal wave functions
do not have closed-form solutions, even power-series solutions are unavailable.

For the second criterion, among all elementary functions, only polynomials are possible to have closed-form solu-
tions to the basic component integral.

Following the above considerations, we design optimal polynomial filters, either square or circular, respectively. We
only present these two types of filters because they are most commonly used. However, the same idea is applicable to
other shapes of filters.

2.1 The optimal circular polynomial filters

For circular polynomial filters, we may assume that h(r, θ) =
M∑

k=0

hkr
k , where r ∈ [0, R] and θ ∈ [0, 2π). Then the

numerator of (1) is given by

ΓΩ ≡
∫ Ω

−Ω

∫ Ω

−Ω

|[F(h)](ωx, ωy)|2dωxdωy =
M∑

k,l=0

hkhlΨkl,

where

Ψkl =
∫ Ω

−Ω

∫ Ω

−Ω

ψkψldωxdωy,

and ψm is the Fourier transform of rm (0 ≤ r ≤ R):

ψm(ωx, ωy) =
∫ R

0

rm+1dr

∫ 2π

0

e−ir(ωx cos θ+ωy sin θ)dθ = 2π
∫ R

0

rm+1J0(r|ω|)dr,

in which J0(·) is the 0-th order Bessel function and |ω| =
√
ω2

x + ω2
y .

By Parseval’s theorem on Fourier transform, the denominator of (1) is given by

Γ ≡
∫ ∞

−∞

∫ ∞

−∞
|[F(h)](ωx, ωy)|2dωxdωy = (2π)2

∫ ∞

−∞

∫ ∞

−∞
|h(x, y)|2dxdy = (2π)2

M∑
k,l=0

hkhlΦkl,

where

Φkl =
∫ 2π

0

∫ R

0

rk+l+1drdθ =
2πRk+l+2

k + l + 2
.

The maximization of γ = ΓΩ/Γ can be achieved by utilizing the Lagrangian multiplier:

∂(ΓΩ − λ(Γ − 1))
∂hk

= 0, and
∂(ΓΩ − λ(Γ − 1))

∂λ
= 0. (2)

This leads to an eigenvector problem:

Φ−1Ψh = λh, (3)

and hT Φh = 1, (4)

2



Table 1: Some data on low-order polynomial filters.
Filter Type Circular Square

Radius 1 2 1 2
h0 0.56904256713865 0.26412404360302 0.71247167744650 0.45090000658189

h1 0.05056692464147 −0.03455158299490 −0.79090785614255 −0.22055267318930

h2 −0.91026906187835 −0.15934681709384 0.25582137300511 0.02911569510537

h3 0.42672641722501 0.05631744983035

Energy Con- 0.93801371604876 0.99950079154631 0.96260897769620 0.99888861744658

centration
Maximum

Energy Con- 0.93801385499638 0.99965857174068 0.96261252017346 0.99988655625306

centration
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Figure 1: The central cross sections of the circular polynomial filters. (a) Filters with radius 1, where the top, middle
and bottom curves correspond to M = 1, M = 2 and M ≥ 3, respectively. (b) Filters with radius 2, where the bottom,
top and middle curves correspond to M = 1, M = 2, and M ≥ 3, respectively. Note that the curves for M > 3 are
nearly indistinguishable from that for M = 3.

where Φ = (2π)2 (Φkl), Ψ = (Ψkl), and h = (h0 h1 · · · hM )T . For maximization, h must be chosen as the
eigenvector that corresponds to the maximal eigenvalue of Φ−1Ψ and be normalized according to (4).

Though the energy concentration improves when M increases, the convergence to the maximum energy concen-
tration is very fast, especially when R ≤ 2. Because polynomials can approximate arbitrary continuous functions
uniformly, the fast convergence indicates that our low-order optimal polynomial filters are actually very close to the
prolate spheroidal wave function. Our numerical computation shows that M = 3 is enough for the corresponding filter
to achieve over 99.98% of the maximum energy concentration at a given radius, achieved by the prolate spheroidal wave
function. Figure 1(a) is the central cross section of the optimal circular filters with R = 1, where the top, middle and
bottom curves correspond to M = 1, M = 2 and M ≥ 3, respectively. We can see that the curves for M > 3 are nearly
indistinguishable from that for M = 3. Similar results are observable in Figure 1(b), where R = 2. The coefficients of
the optimal circular polynomial filters at different radius are listed in the left part of Table 1.

Now we give the closed-form solution to the basic component integral. For circular filters, the basic component
region is shown in Figure 2(a). By defining a new coordinate, where the t-axis is along the marching direction of the
polygon edge so that the interior is on the right hand side of the edge and the d-direction is π/2 behind the t-direction,
the basic component region can be parameterized by the coordinate of the polygon vertex V in the new coordinate, i.e.,
the distance d from the pixel center to the polygon edge and the distance t between the vertex V and the projection of the

center onto the polygon edge. The basic component integral is I(d, t) =
M∑

k=0

hkIk(d, t), where Ik(d, t) is the integral of
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Figure 2: The basic component region (shaded area) is bounded by one polygon edge, one radius passing the polygon
vertex and the filter boundary. (a) For circular filters, the parameterization (d, t) is 2D. (b) For square filters, the
parameterization (θ, d, t) is 3D.

rk over the same region. Converting to polar coordinates (Figure 2(a)), we have 1:

Ik(d, t) =
∫ φ

φmin

dξ

∫ R

d
cos ξ

rk+1dr =
1

k + 2

∫ φ

φmin

[
Rk+2 − dk+2(cos ξ)−(k+2)

]
dξ

=
1

k + 2
{
Rk+2(φ − φmin) − dk+2[Pk+2(φ) − Pk+2(φmin)]

}
,

where

φ = arctan(t/d), φmin = − arccos(d/R), and Pk(ξ) =
∫

(cos ξ)−kdξ.

By partial integral, Pk(ξ) can be computed via the following recursion:

Pk(ξ) =
1

k − 1
(tan ξ)(cos ξ)−(k−2) +

k − 2
k − 1

Pk−2(ξ).

2.2 The optimal square polynomial filters

For square polynomial filters, it is easy to see that h(x, y) must be symmetric with respect to lines x = 0, y = 0, and

y = x. Therefore, we may assume that h(x, y) =
M∑

p=0

M∑
q=0

hpqx
2py2q, with hpq = hqp, where |x|, |y| ≤ R. Then

ΓΩ ≡
∫ Ω

−Ω

∫ Ω

−Ω

[F(h)](ωx, ωy)|2dωxdωy =
M∑

p,q,k,l=0

hpqhklΨ2p,2kΨ2q,2l,

where

Ψ2m,2n =
∫ Ω

−Ω

ψ2mψ2ndω,

and ψ2m is the Fourier transform of x2m (|x| ≤ R):

ψ2m(ω) =
∫ R

−R

x2me−ixωdx.

By partial integral, ψ2m(ω) can be computed via the following recursion:

ψ2m(ω) =
2(Rω)2m−1

(2m)!

[
R sin(Rω) +

2m
ω

cos(Rω)
]
− ψ2m−2(ω).

1For simplicity we do not discuss all possible (d, t), such as the case where d > R or t < −√R2 − d2. Section 2.2 also follows this convention.
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The computation of Γ is similar, where Ψ2m,2n changes to

Φ2m,2n =
∫ ∞

−∞
[F(x2m)](ω)[F(x2n)](ω)dω = 2π

∫ R

−R

x2mx2ndx =
4πR2(m+n)+1

2(m + n) + 1
,

in which Parseval’s theorem is applied again.
Utilizing the Lagrangian multiplier as in (2), we have:

ΨHΨ = λΦHΦ, (5)

and trace(HΦHΦ) = 1, (6)

where Φ = (Φ2i,2j), Ψ = (Ψ2i,2j), H = (hij), and trace(X) is the trace of matrix X. Equation (5) can be rewritten
as:

(A ⊗ A)vec(h) = λ · vec(h),

where A = Φ−1Ψ, ⊗ is the Kronecker product [1] of matrices, and vec(X) is the vectorization [1] of matrix X. Let λ̃
be the largest eigenvalue of A and h̃ = (h̃0 h̃1 · · · h̃M )T be the corresponding eigenvector, then λ̃2 is the maximum
eigenvalue of A ⊗ A and vec(h̃h̃T ) is the corresponding eigenvector ([1], more general theorem exists). Therefore,
we may choose separable H = h̃h̃T , where h̃ is normalized via h̃TΦh̃ = 1. This leads to a separable 2D filter

h(x, y) = h(x)h(y), where h(x) =
M∑

k=0

h̃kx
2k.

Again, the convergence of h(x) is fast when M increases. Our numerical experiments show that M = 2 is sufficient
for the corresponding filter h(x, y) to achieve over 99.9% of the maximum energy concentration when R ≤ 2. The
coefficients of h(x) are listed in the right part of Table 1.

For square filters, the basic component region is shown in Figure 2(b), where an extra parameter θ, which is related
to the polar sweep angle of the d-axis, is required for the parameterization. The basic component integral is I(θ, d, t) =
M∑

m=0

M∑
n=0

hmnI2m,2n(θ, d, t), where I2m,2n(θ, d, t) is the integral of x2my2n over the basic component region. Due to

symmetry, we may assume that d ≥ 0 and 0 ≤ θ ≤ π/4. Breaking the basic component region into two shaded regions
shown in Figure 2(b), we have

I2m,2n(θ, d, t) =

y0∫
ymin

y2ndy

R∫
d−y sin θ

cos θ

x2mdx +

ymax∫
y0

y2ndy

R∫
αy

x2mdx

=
R2m+1(y2n+1

max − y2n+1
min )

(2m + 1)(2n + 1)
− α2m+1(y2(m+n+1)

max − y
2(m+n+1)
0 )

2(2m+ 1)(m + n + 1)

− 1
(2m+ 1)(cos θ)2m+1

2m+1∑
k=0

(−1)kCk
2m+1(sin θ)

kd2m+1−k y
2n+k+1
0 − y2n+k+1

min

2n + k + 1
,

where

y0 = d sin θ + t cos θ, x0 = d cos θ − t sin θ,

ymin = max
{
d−R cos θ

sin θ
,−R

}
, ymax =

{
max {min{R/α,R},−R} , if x0 > 0,
R, if x0 ≤ 0,

α =
x0

y0
, Cn

m =
m!

n!(m− n)!
.

3 Experimental Results

Figure 3 shows a wheel and a checkerboard rendered by our rendering system 2, SplitRender [6], using the square
polynomial filter with radius 2. There are 180 triangles in Figure 3(a), while Figure 3(b) has 92,100 quadrilaterals,

2The full-resolution images for Figures 3∼5 are available online at http://www.acm.org/jgt/papers/LinEtAl04.
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(a) (b)

Figure 3: The rendering results of SplitRender using the square polynomial filter with radius 2, closed-form solution
used.

most of which are extremely small and are at the top of the image. The rendering results are almost aliasing-free. For
comparisons of our polynomial filters against various filters when pre-filtering polygons, please see [6].

Our polynomial filters can also be applied to filtering images. We now compare the anti-aliasing performance of
various filters over discrete images. The test image is Figure 3(a) and will be scaled down by 1.8 times using various
filters. The chosen filters include: square polynomial filters (M=2), circular polynomial filters (M=3), square Gaussian
filters, circular Gaussian filters, conical filters, box filters and the Mitchell-Netravali filters [8]. The radii of the former
6 kinds of filters can be either 1 or 2, while those of the Mitchell-Netravali filters can only be 2. For Gaussian filters,
we change σ from 0.1 to 1.2 to find the best filtering results, which should have good balance between eliminating
aliasing and keeping the image sharp. For Mitchell-Netravali filters, the chosen (B,C) are: (1/3, 1/3), (0, 1), and (0,
0.5), respectively, as they have been mentioned in the literature [2, 4, 3]. The resultant images are computed via the
following formula:

Ir(p, q) =

∑
||(m̃−p,ñ−q)||≤R

h(m̃− p, ñ− q)It(m,n)

∑
||(m̃−p,ñ−q)||≤R

h(m̃− p, ñ− q)
,

where It and Ir are the test image and resultant image, respectively, (m̃, ñ) is the coordinate of pixel (m,n) of image
It in image Ir , and

||(x, y)|| =
{ √

x2 + y2, if the filter is circular,
max{|x|, |y|}, if the filter is square.

Figures 4 are closeups of the down-scaling results of filters with radius 1, where σ = 0.3 for Gaussian filters. We
see that square and circular polynomial filters (Figures 4(a) and (b)) result in least aliasing. The performance of square
Gaussian (Figure 4(c)), circular Gaussian (Figure 4(d)) and conical filters (Figure 4(e)) is very close, and the box filter
(Figure 4(f)) is the worst.

Figures 5 are closeups of the down-scaling results of filters with radius 2, where σ = 0.9 for Gaussian filters. We see
that square and circular polynomial filters and square Gaussian filters (Figures 5(a)∼(c)) have the least aliasing. Circular
Gaussian (Figure 5(d)) and conical filters (Figure 5(e)) come next, and again the box filter (Figures 5(f)) is the worst.
The results of Mitchell-Netravali filters (Figures 5(g)∼(i)) are very close to each other. They look sharper than the other
images but their Moiré patterns are also more severe. It is interesting to compare them with our polynomial filters with
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Figure 4: Closeups of downscaling Figure 3(a) by 1.8 times using various filters with radius 1. (a) Square polynomial
filter. (b) Circular polynomial filter. (c) Square Gaussian filter with σ = 0.3. (d) Circular Gaussian filter with σ = 0.3.
(e) Conical filter. (f) Box filter.

radius 1 (Figures 4(a) and (b)). Figures 4(a) and (b) are as sharp as Figures 5(g)∼(i), but their aliasing effect is slightly
less severe.

From the above comparisons, and from the polygon-filtering comparisons in [6], we may draw the following con-
clusions:

1. Our low-order optimal polynomial filters do have excellent anti-aliasing performance.

2. The anti-aliasing performance of our polynomial filters with radius 1 is comparable with that of the Mitchell-
Netravali filters, which has a radius 2 and negative lobes. This makes our polynomial filters with radius 1 very
useful because, without sacrificing performance, smaller radius often saves computation and at the same time its
non-negativity can avoid the problems of clipping and ringing artifact that may result from the negative lobes of
other filters.

3. Filters using closed-form evaluation are more suitable for high-quality anti-aliasing. Using look-up tables or
super-sampling always introduces random noise if the sizes of graphical objects are beyond their precision. 3
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(d) (e) (f)

(g) (h) (i)

Figure 5: Closeups of downscaling Figure 3(a) by 1.8 times using various filters with radius 2. (a) Square polynomial
filter. (b) Circular polynomial filter. (c) Square Gaussian filter with σ = 0.9. (d) Circular Gaussian filter with σ = 0.9.
(e) Conical filter. (f) Box filter. (g) Mitchell-Netravali filter with B = 1/3, C = 1/3. (h) Mitchell-Netravali filter with
B = 0, C = 0.5. (i) Mitchell-Netravali filter with B = 0, C = 1.
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