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Abstract

Recently, many pen-based devices have enabled people to input digital ink naturally. Often, there is smear and correction when writing.
This not only makes the document dirty and look unpleasant, but also affects the handwriting recognition when recognition is called for.
As the first paper to address the ink cleanup problem, we present our ink cleanup system that removes the smear and correction, so that the
document becomes cleaner and more legible and the handwriting recognition rate could also be improved. The algorithms are rule-based
and are capable of dealing with the most common cases that may happen during writing, including self-overtracing of a single stroke,
inter-overtracing between strokes, correction, touch-up, insertion and wrong writing order. Experimental results show that our system is
effective in cleaning the ink note and is promising in increasing the recognition rate as well.
© 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Handwriting is the most important way to expand human
memory and facilitate communication. With the increase of
the computing power of computers, people are relying more
on handwriting recognition technologies [1-6] to convert
documents into texts and graphics so that the documents
can better be stored, shared, retrieved, and so on. Recently,
the flourish of mobile working, particularly the emergence
of PDA, Tablet PC, etc., are enabling people to produce
more and more handwritten words and even ink documents.
When writing on such devices, it is common that people
write something erroneous and then fix them. The resultant
smear and correction not only make the words or document
dirty and look unpleasant, but also decreases the recognition
accuracy if such function is called for. Although both off-
line and on-line handwriting recognition have been studied
by many scholars during the past decades [3—6], to our best
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knowledge, we have not seen that the handwriting cleanup
problem is addressed in the literature. Usually, the prepro-
cessing of an on-line handwriting recognizer only includes
data smoothing, signal filtering, dehooking and break cor-
rections [4], etc. This may be partly because the cleanup
problem is not very important in the past as there is still room
for improving the recognition accuracy for those “clean”
words. Another reason may be that in the past the smeared
or corrected words were relatively few so that people did not
take them seriously. The third reason may lie in the belief
that the training process of the handwriting recognizer can
automatically deal with the smearing and correction as long
as these cases happen in the training samples. Unfortunately,
such a belief is just a misconception because the deteriorated
words account for relatively small portion of the training
samples and thus will have little effect on the training. The
fourth reason may be that cleanup is a much less severe
problem in off-line handwriting recognition and people may
convert on-line recognition to off-line recognition to bypass
this problem. However, the accuracy of off-line recogni-
tion is usually lower than that of on-line recognition [3,4].
Nowadays, the increasing demand on higher recognition
accuracy disallows such conversion. Therefore, we have
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Fig. 1. The cases dealt with by our ink cleanup system and the corresponding desired results. (a) and (b) Self-overtracing by folding and looping,
respectively. After cleanup, the overtracing parts are simplified. (c) Inter-overtracing. The overtracing parts are merged. (d) Correction. The background
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a” is replaced by the foreground “e”. (e) Touch-up. Two strokes become one stroke, with the writing order shown in grey curve on the right. (f)
Insertion. “e” is inserted between “h” and “llo”. The single stroke for “hllo” is broken into two strokes (black and grey stroke on the right). (g) Late
stroke. The t-bar and i-dot are rearranged near to their stems. In the example, the t-bar is arranged before its stem because its stem is the first downward
stroke piece of the stroke. And the i-dot is right after its stem. Note that the stroke containing the i-stem is broken into two strokes.

to consider the recognition with degraded words. And
our another motivation is to make the on-line ink doc-
uments more readable. In this paper, as primary investi-
gation, we seek to handle these two issues in a unified
system.

Our system adopts rule-based approaches because the
data collection is a hard problem. Although theoretically
the deteriorated words can be collected from large amount
of data set, detecting the words that we want is not trivial.
For example, collecting words with incorrect writing order
of strokes may require the visualization of the stroke order
and heavy human examination. Moreover, data labeling is
also hard, e.g., specifying what the cleaned strokes should
be and the correct writing order for the cleaned words is
not easy. Due to such difficulties, we have to apply com-
plicated rules that are summarized from our observations
to clean the “bad” words. As a result, our rule-based algo-
rithms can only work on English handwriting. In addition,
as we conceive our system as the preprocessing of general
handwriting recognizers, we do not utilize any recognition
results to assist our processing. Therefore, we can only an-
alyze the geometric shapes of strokes and their relationship
in detail. Finally, as the number of “bad” words are usu-
ally less than “good” words, we have to make the algo-
rithms conservative so that those “good” words will not be
processed.

Our system is designed to deal with the following kinds
of word quality degradation (Fig. 1) that we believe are the

most common when writing English words or documents:

e Self-overtracing, i.e., the folding and looping of a single
stroke. The “duplicated” parts of a stroke will be simpli-
fied (Figs. 1(a) and (b)).

e Inter-overtracing, i.e., the overlapping of two strokes. The
two strokes will be merged into one (Fig. 1(c)).

e Character correction, i.e., the replacement of characters.
Some characters will be replaced by others that are written
later at the same position (Fig. 1(d)).

e Touch-up, i.e., changing a character by adding a short
stroke. The two strokes will be merged and the writ-
ing order within the merged stroke may be rearranged
(Fig. 1(e)).

e Insertion, i.e., adding a missing character between two
characters that are already written. The strokes will be
inserted at their intended position so that the time order
corresponds to their horizontal order (Fig. 1(f)). When the
two characters around the missing character are written in
one stroke, the stroke will be broken at a specific point.

e Late stroke, i.e., the dot and the bar of “i”, “t”, and so on,
are not written right before or after their stems (Fig. 1(g)).
The late strokes will be rearranged so that the temporal
order complies with the spatial order. Their stems may be
severed if they are connected to other characters.

The rest of this paper is organized as follows. Section 2
describes the pre-processing of the cleanup algorithms and
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introduces several global features used in cleanup. In Sec-
tion 3 the main steps of the cleanup algorithms are de-
scribed in detail, including self-overtracing cleanup, inter-
overtracing cleanup, correction cleanup, touch-up cleanup,
insertion cleanup and late stroke re-ordering. Experimental
results are presented in Section 4. Finally we give conclu-
sion and future work in Section 5.

2. Pre-processing of ink cleanup

Pre-processing of ink cleanup involves dot transformation,
extraction of some style features, stroke processing and the
generation of indexing bitmap. We assume that the word
or line grouping task, i.e., determining which strokes are a
word or a line, has been done by other independent system,
e.g., the advanced parser developed by Microsoft Research,
Asia.

2.1. Dot transformation

Dot transformation, i.e., changing some little circles into
short strokes, is unique in our system. We have noticed that
some people always draw the dots of “i” and “” as small
circles, which may lead to the failure of the handwriting rec-
ognizer. For example, in Fig. 2(a), “ink” is mis-recognized
as “pond” if there is no special treatment. To overcome such
situation, our system detects such dots according to the sizes
and the vertical positions of their bounding boxes and the
ratio of their lengths to the sizes of their bounding boxes,
and changes them into short strokes that are the diagonals
of their bounding boxes. Dot transformation cannot be done
after polygonal approximation and equi-distance resampling
(Section 2.3) because the small circles will become a single
dot.

2.2. Writing style feature extraction

There are several user-dependent features that need to be
extracted for the later cleanup procedure.

Dynamic information: The required dynamic information
includes: 1. The timestamps of the strokes. 2. The writing
speed at each point. 3. The local direction at each point. 4.
The local curvature at each point.

Slant estimation: The writing slant will be used in cleanup
of correction, insertion and late strokes. To estimate the slant,
we first find the downward pieces of the strokes, discard
those short pieces, and estimate their principal directions by
linear regression (Fig. 3 (a)). We then average the directions
of the downward pieces. If the angle between the average
direction and the vertical direction is within a range, the
average direction is accepted as the writing slant. Otherwise,
we simply regard the vertical direction as the writing slant.

Average character width estimation: The average charac-
ter width W, will be used by the dynamic grouping in
correction cleanup so that multiple-stroke characters can be

Ik o

Fig. 2. The necessity of dot transformation. Some people like to write
the dots of “i” or “j” in circles, which may cause recognition error. (a)
“ink” is recognized as “pond” without dot transformation. (b) After dot
transformation, “ink” is correctly recognized as “ink”. Note that the small

circle of the i-dot has been changed into a short stroke.

M[o

Fig. 3. Downward pieces and the local maxima and minima of the strokes.
(a) Black strokes are the downward pieces of the word. (b) Solid dots
and hollow dots are the local maxima and minima, respectively. Note that
the local extrema indicated by squares are not used because they are of
low curvature.

grouped correctly. The estimation procedure is as follows.
First, find the local minima that are below the central axis
of the writing word. Then sort their x-coordinates and find
the x-distance between successive points. Finally, the largest
zlL and the smallest 4—1‘ distances are discarded' and the rest
are averaged. The average distance is taken as the average
character width.

After all the above features are extracted, a benchmark
threshold 7}, is taken as the height of the word or the line.
In the sequel, all spatial thresholds will be scales of it, and
all temporal thresholds are scales of the speed.

2.3. Polygonal approximation and equi-distance
resampling

Then, we apply Sklansky’s polygonal approximation [7]
to each input stroke and equi-distantly resample them. The
following cleanup steps are all processed on the resampled
strokes. However, the original strokes are still kept because
only those parts that need cleanup will be replaced.

2.4. Indexing bitmap generation

To determine the overlapping parts of the strokes, the
system also generate an “indexing bitmap” for each stroke,
which records the information of the adjacent stroke points
for fast local information collection.

T As we do not want to distract the reader with too many details,
we choose not to present how we deal with the corner cases so that the
reader can focus on the general ideas of our algorithms. The rest of this
paper also follows this convention.
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Fig. 4. Indexing bitmap generation. A very important information recorded
in each pixel is the number of stroke fragments inside its 3 x 3 (or 5 x 5)
neighborhood. In the above example, for pixel Pp, the stroke fragments
inside its 5 x 5 neighborhood are indicated by the heavy curves. Therefore,
the number of stroke fragments is 5.

Given the stepsize used in stroke resampling, we first
build a bitmap whose pixel size is twice the resampling
stepsize of strokes. Then each pixel stores: 1. how many
fragments of the strokes inside its 3 x 3 (or 5 x 5, depending
on the threshold to define overtracing) neighborhood; 2. the
local direction of every point on the stroke fragment; 3. the
indices of the strokes; 4. the indices of the points on their
corresponding strokes; 5. a flag indicating whether the points
are inside the pixel. Note that the number of stroke fragments
equals the times that the pentip passes nearby the pixel, e.g.,
in Fig. 4 the number of fragments inside the darker 5 x 5
window is 5.

The information in each pixel is gathered by travelling
along the strokes. The required information is filled into all
the neighboring pixels that are not the neighbors of the pixel
containing the previous point. Take Fig. 4 for example, the
information of P; contributes to all the darker pixels but that
of P, only affects the lighter pixels.

3. Ink cleanup algorithms

Our ink cleanup system consists of six engines. Each en-
gine is for one case of cleanup described in Section 1. They
are assembled in order. Each engine detects whether the case
of interest exists. If not, the engine will change nothing. As
we can only analyze the geometric shapes and the relation-
ship between strokes, it is not guaranteed that the cleanup
will be correct. Therefore, the cleanup algorithms are made
conservative.

3.1. Self-overtracing cleanup

Self-overtracing cleanup is to reduce the parts that a stroke
unduly overlaps itself multiple times into a thin stroke or
stroke fragment. Note that the backtracing of “I”, “p”, and

[73e 1]

m”, etc., should not be processed. Such considerations

poses self-overtracing cleanup a non-trivial problem when
there is no recognition.

People may think that changing the stroke into bitmap
first and then thinning it by erosion may solve this problem.
However, thinning is very sensitive to noise, and recovering
the writing order is still an unsolved problem [8—11], which
usually involves exponential number of search. Moreover,
if there is no special treatment involved, those backtraced
“1”, “p”, and “m”, etc., may very likely be mis-processed.
Another possibility may be the principal curve [12], which
seeks the middle axis of a cluster of point. However, the
current available algorithm [12] is too computationally ex-
pensive. Therefore, we choose to pose some constraint and
process in a different way. We assume that:

(1) The overtracing part is nearly completely occupied by
ink strokes. This avoids some characters like “m” be
detected as self-overtracing when they are written com-
pactly. In Fig. 5, cases (a) and (b) will be processed,
while cases (d) and (e) will not be processed because
there is much space that is not occupied by the strokes.

(2) The local direction of stroke implies the direction of
the cleaned stroke. In Fig. 5, case (c) is valid self-
overtracing, while case (d) is not because the local di-
rection does not comply with the global direction.

The flow of self-overtracing cleanup is shown in Fig. 6.
We first use the indexing bitmap to detect the self-overtracing
parts, i.e., classify the stroke points into overtracing points
or non-overtracing points. For each point P of the stroke,
suppose the pixel containing P is X and F~ is the set of
stroke fragments that are recorded in X but P is not on them.
We count the number M of how many fragments in F~ that
contain a point whose local direction is nearly the same or
inverse to that of P. Mark P as an overtracing point if:

(1) M>2, or

(2) M =1 and the local direction is nearly the same as that
of P, or local direction is nearly inverse to that of P but
not close to vertical. The latter condition prevents the
backtracing of “1” and “p”, etc., from being processed.

Then we have a sequence of states indicating whether the
corresponding point is an overtracing point or not. To be
robust, short sub-sequences should be flipped.

Next, we compute the average stroke piece for each se-
quence of overtracing point. For each non-visited (we will
define what is “visited” shortly) overtracing point P, define
its searching line L as a line passing P and with direction
D that is usually perpendicular to the local direction of P if
the stroke does not turn abruptly at P. However, if the stroke
turns sharply at P, then D should be modified as the local
direction at P. Fig. 7(a) illustrates the dependence of D on
the local curvature.

Then starting from P, find, in both directions of the
searching line L, the next pixel that the line passes and
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Fig. 5. Supported and non-supported self-overtracing cases. The left three cases are supported, while the right three cases are not.
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Fig. 6. The flow chart of self-overtracing cleanup.
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Fig. 7. Compute the average point of overtracing points. (a) The direction of the searching line is dependent on the local curvature. If the curvature is
small, the direction of the searching line is perpendicular to the local stroke direction. Otherwise, it is the same as the local stroke direction. (b) For
every non-visited point P, collect relevant point along the searching line. (¢c) The small dots near the searching line are the points to be averaged. (d)
The dot is the average point of the dots found in (c) and projected onto the searching line.
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Fig. 8. Generate the average stroke for the overtracing part. (a) Dots of the same shape should be linked to each other successively. (b) Link the average
point sequences into average stroke pieces. The arrow direction denotes the direction of the average stroke piece. However, this direction may not be the
same as that of the final average stroke. (c) Short average stroke pieces are deleted. (d) Connect the rest average stroke pieces into one stroke so that

the total length is minimal.

contains at least one stroke point whose direction of search-
ing line is close to D. The stroke point is not necessary in
the current overtracing sequence or non-visited. The search
ends when there is no such next pixel. Finally, we average
this group of points (the small dots in Fig. 7(c)) and project
it onto the searching line L to have an average point A (the
dot of Fig. 7(d) and the dots in Fig. 8(a)). Accordingly, the
collected stroke points are labelled as “visited”.

The average points are linked to each other successively,
in the order they are computed, into an average stroke piece
(Fig. 8(b)) until the next stroke point to be processed is
visited. Note that with such a linking strategy, a sequence
of overtracing points may result in several average stroke
pieces (Fig. 8(b)). Then after deleting short average stroke
pieces (Fig. 8(c)), the rest pieces are connected into a single
stroke by a branch-and-bound searching so that the total
length is minimal (Fig. 8(d)).

After the average stroke is generated for each sequence
of over-tracing points, it should be linked to the original
stroke, before which the writing order within the average
stroke must be determined. We have to differentiate two
cases of the average stroke: closed and non-closed. If the
starting point and the ending point of the average stroke are
close to each other, it is considered to be closed. Otherwise,
it is not closed. There are several basic criteria to determine
the writing order. First of all, the whole average stroke must
be traced. Second, the total length should be the shortest.
Third, the direction follows the initial direction of the orig-
inal stroke if the overtracing part is at the beginning or the
end of the original stroke.

To determine the writing order, we define P; as the end-
ing point of the previous non-overtracing part, P, the start-
ing point of the next non-overtracing part, and L; and L,
be on the average stroke which are nearest to P; and P,
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Fig. 9. The rules to recover the writing order, indicated by the dashed lines, in the average stroke. The arrows indicate the direction. (a)—(c) The rules
for non-closed average strokes. (d)—(f) The rules for closed average strokes. (c) and (f) When P; and P, are both null, assign the writing direction as
the initial direction of the original stroke and the starting point as the starting point of the original stroke.

respectively. Note that P; and P> could be null. In this case,
L or L5 is also null. The rules of recovering the writing or-
der within the average stroke depend on whether the stroke
is closed and whether P; and P> are null. The details are il-
lustrated in Fig. 9. We are not to explain them literally due
to page limit.

After determining the writing order of the average
stroke, we then connect the average stroke back to the non-
overtracing parts and smooth the junctions and the average
strokes. Thus, we have finished the self-overtracing cleanup
of a single stroke.

3.2. Inter-overtracing cleanup

Inter-overtracing cleanup is to merge the overtracing parts
between two strokes. Currently our system cannot treat the
inter-overtracing among more than two strokes because the
data structure and algorithm will be much more complex.
Moreover, our system only deals with five cases (Fig. 10),
which have characteristics in common that there is only
one inter-overtracing part between the strokes and among
the four end points of the two strokes there are at most
two end points that are not on the inter-overtracing part.
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Fig. 10. Supported and non-supported inter-overtracing cases. (a)—(e) are supported while (f)—(h) are not.
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Fig. 11. The flow chart of inter-overtracing cleanup.
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Fig. 12. Inter-overtracing of two original strokes. (a) After the self-overtracing cleanup, the two strokes may not inter-overtrace again. (b) The original
overtracing part of the black stroke. In this example, the original overtracing parts are discontinuous in time on the black stroke. (c) The original overtracing
parts of the black stroke do not belong to the same sequence of self-overtracing point (see section 3.1), so this inter-overtracing will not be processed.

The stroke pairs in these cases can be merged into a single
stroke correctly. For the rest kinds of inter-overtracing, e.g.,
Figs. 10(f)-(h), we are not very sure about how to determine
the writing order after merging the two strokes. Nevertheless,
the cases in Figs. 10(f)—(h) may be treated as touch-up if
they meet the conditions of touch-up cleanup.

Fig. 11 is the flow of inter-overtracing cleanup. We have to
detect the common overtracing part between the two strokes.
This is non-trivial because the individual overtracing parts
detected on the two strokes individually may not coincide.

The overtracing parts should be detected on original
strokes without self-overtracing cleanup. Otherwise, the two
strokes may appear non-overtracing after self-overtracing
cleanup (Fig. 12(a)).

Given two strokes S| and S», where S; is later than S.
First, we find the original overtracing parts on each stroke.
Take S; for example, for every point P on Sy, if the pixel of
the indexing bitmap that contains P also contains points on
S> whose local directions are close or nearly reverse to that
of P, then P is marked as an overtracing point on S;. Thus,
we can obtain a sequence of states indicating whether points
of Sy are overtracing points. Again, to remove possible noise,
very short sub-sequences are flipped. Each consecutive se-
quence of overtracing points form an original overtracing
part of S7 (Fig. 12(b)). If S; has several original overtrac-
ing parts that do not belong to the same sequence of self-

overtracing points2 (Fig. 12(c)), then it is not the case that
the system is designed to deal with.

We then find the individual and common overtracing parts
of each stroke. Suppose the self-overtracing-cleaned strokes
of Sy and S, are S| and S5, respectively. For Sy, its individual
overtracing parts are obtained from projecting, by finding
the nearest point, the original overtracing parts onto S¢, as
shown in Fig. 13(a). For each stroke, its common overtracing
part is defined as the union of its individual overtracing parts
and the projection of the individual overtracing parts from
the other stroke (Fig. 13(b)). If the common overtracing
parts on one of the two strokes are not connected to each
other (case (f) of Fig. 10), then the inter-overtracing is not
supported by our system and we just leave them alone.

Finally, we merge the common overtracing parts of the
two strokes. We first judge which case of Fig. 10 happens
in the current inter-overtracing, based on the number N of
the end points that are not on the common overtracing part.

e For N >2 (case (g) or case (h)), they are unsupported
inter-overtracing cases.

o If N =0, this means that S and S5 are completely over-
lapping (case (e)). Let the curve length parameterization

2 Please refer to Section 3.1 for the concept of sequence of self-
overtracing points.
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Fig. 13. Get the individual and common overtracing parts of strokes. The strokes on the left of the arrow are the original strokes S; and S,. Those
on the right are the self-overtracing-cleaned strokes Sf and S;, and the solid and dashed thick lines are the individual overtracing parts of Sy and S,
respectively. (a) The individual overtracing part is the projection of the original overtracing part onto Sf and Sg , respectively. (¢) The common overtracing
part of stroke S is the union of its individual overtracing part (solid thick line) and the projection of the individual overtracing part from the other

stroke (dashed thick lines).

A

Fig. 14. If one of the inter-overtracing strokes is a loop, its starting point
(the heavy dot) should be moved to the ending point of the common
overtracing part. Otherwise, the common overtracing part will become
self-overtracing part of the merged stroke.

of the two strokes be S () and S5(r) (0<z<1), respec-
tively, then the merged stroke is (S§(1) + S5(1)) /2.

e For cases (a)-(d), merge the common overtracing parts
using linear combination as case (e) and then concatenate
it with the original non-overtracing part.

Note that the direction of S> might be reversed so that
the direction of its common overtracing part is the same as
that of S;. Moreover, if one of the strokes is a loop, then
its starting point should be moved to the ending point of
the common overtracing part so that there will be no self-
overtracing in the merged stroke (Fig. 14). After connecting
the merged stroke to the non-overtracing part, the junctions
and the merged stroke are smoothed, and the timestamp of
the new stroke is assigned to be the same as that of Sj.

3.3. Correction cleanup

Correction cleanup is to use the characters written later
(“foreground” character) to replace those written “under”
it (“background” character). The main difficulty is to de-
cide, using no recognition information, which strokes form
the foreground character and which stroke pieces form the
background character. It consists four key steps, as shown
in Fig. 15.

3.3.1. Dot and bar binding

This step binds the dots of “i”, “§” and bars of “t” and
“f”, etc., with their stems, so that these characters can be
made complete. Otherwise, some problems may occur. For
example, after stroke replacement the dot of “i” may remain
if it is the background character. Or the bar of “t” may be
removed as background if people write t-bar first and the t-
stem next. Unlike the late stroke re-ordering, the timestamps
of these short strokes are unchanged.

To detect the dots and bars, we check the size and shape
of the strokes, and test whether the slant projection, i.e.,
projection along the writing slant of the word, of these short
strokes overlap with a downward stroke piece, which may
be their stems. Finally, the relative vertical position and the
intersection relationship between the short strokes and their
stem candidates are tested.

If a short stroke is above its stem candidates and has no
intersection, then it should be a dot. If the dot has only one
stem candidate (Fig. 16(a)), then the dot is bound with the
stem. Otherwise, the dot may have several stem candidates
(Fig. 16(b)) and it should be bound with the candidate right
on the left of the dot.

If a stroke is close to a horizontal bar and intersects
its stem candidates at moderate height and the intersection
points are not close to its ends, then it should be a bar, and
will be bound with all the unbound stems. Note that it is
possible that a t-bar may have several stems (Fig. 16(c)). In
this case, the bar should be divided by the number of the
stems so that when replacement occur, only part of the bar
is removed.

3.3.2. Stroke grouping

This step groups the strokes that are arranged in time order
into possible characters by the standard dynamic program-
ming, which is a perfect algorithm to combine local optima
to get a global optimum. To apply dynamic programming to
stroke grouping, we have to define the probability p(i, j) of
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Stroke
Dot & Bar

Binding Programming

— Grouping by Dynamic

Vertical Bar L Stroke
Binding Replacement

Fig. 15. The flow chart of correction cleanup.

(a) (b) ©

Fig. 16. Examples of dots and bars and their stem candidates. (a) A dot
has only one stem candidate. (b) A dot has two stem candidates. (c) A
bar has two stem candidates. It should be divided into two sub-bars in
order to be bound with the two stems.

the stroke sequence (i ~ j) being a correct grouping. For
a stroke sequence (i ~ j), we first compute the following
features.

e Width feature f, (i, j):

Sw(, )
1 ifn=1,
exp(—|w/ Wepar if n>1and w> Wepar,
= —1|/ow.1)
op2+ (1 —0y2) ifn>1and w< Wepgr,
xw/ Wenar

where n = j — i + 1 is the number of strokes in the
sub-sequence (i ~ j), w is the total width of the stroke
group (the width of their slant bounding box, whose ver-
tical edge is in the direction of the writing slant), W, is
the average character width (Section 2.2), and the param-
eters 0y,1 >0 and ¢, 2>1 control the steepness of the
feature function. Obviously, this feature function encour-
ages grouping under W, and the width of the grouped
strokes should be as narrow as possible.
e Height feature f3,(i, j):

S, )=1+h/Ty,

where £ is the height of slant bounding box of the stroke
group, and 7} is the height of the handwriting word or
line (Section 2.2).

Note that the dots and bars detected in previous step are
still taken into consideration when computing the bound-
ing boxes of the sub-groups. However, they are not consid-
ered when counting the number of strokes with each sub-
group. The final fuzzy function is p(i, j)=Af, (0, j) fn(, j),
where A € (0, %). The smaller the 4 is, the more encouraged
the stroke grouping is. With p(i, j), the probability P (i, j)
of the optimal segmentation of stroke sequence (i ~ j)

can be computed by the following recursion:
P@i,i)=p(,i),

P(i, j) = max({p(i, k) x P(k + 1, j)|i <k < j}
UtpG, DY, Jj>i.

The optimal segmentation can be found by back-tracing the
indices k’s that produces P (i, j) in each recursion.

3.3.3. Vertical bar binding

After stroke grouping, a major problem is that the verti-
cal bars of “B”, “D”, “E”, “F”, “K”, “H”, “M”, “N”, “P”,
and “R”, etc., may not be grouped by dynamic grouping be-
cause the width of these capital letters are often larger than
Wenar- Vertical bar binding then binds the vertical bars with
appropriate capital letters.

If the length of an isolated vertical bar is longer than a
threshold, it is bound with its neighbor, as described below:

e If there are two temporally neighboring ungrouped vertical
bars, check if the stroke just before or after them is a
horizontal bar between them. If so, bind these three strokes
together. This is to deal with “H”.

o If the vertical bar intersects its next stroke group or does
not enlarge the bounding box of its next stroke group
much, then bind them. This is to deal with “K”, “P”, “R”,
“B”, “D”, “E”, “F”, etc.

e Otherwise, if the vertical bar intersects its previous stroke
group or does not enlarge the bounding box of its previous
stroke group much, then bind them. This is to deal with
“K”, “B”, “D”, “E”, “F”, etc., that are written in a reversed
order.

3.3.4. Stroke replacement

At this stage, we assume that the character grouping has
been completed. Stroke replacement then removes the back-
ground stroke pieces.

The correction-area is first detected at the level of stroke
groups. If the slant bounding boxes of two stroke groups
overlap, a correction may occur between them. Let S stands
for the latter stroke group and S the previous stroke group.
Stroke replacement is done as follows:

e If S5 is a single-stroke group, and its bounding box is flat,
and the vertical position of the bounding box is higher than

a threshold, then S, might be an undetected or unbound

bar. Just leave S> and S as they are.

e If the width of the slant bounding box of §; is small

enough, replace S; with 5.
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{
!

Fig. 17. Procedure of stroke replacement. (a) Find y-min-max points (solid dots). (b) Segment the stroke into pieces. Note that short pieces are merged
with longer pieces. (c) Find the overlapped part of S; (from P; to P) that should be removed. (d) The overlapped part of S; is replaced by the

foreground strokes.

o

(al) (a2) (a3) (ad)
Ve /7
(a6) @7)

s aXe T

(a5) (b1)

\x/\\,7

(b2) (03)

Fig. 18. Supported and non-supported touch-up cases. (al)—(a7) are supported and (b1)—(b3) are not. (al)—(a5) touch at least one high-curvature or end
point and (a6) and (a7) have only one overlapping part at each end point. (bl) has a vertical stroke, while (b2) and (b3) have overlapping parts that are

not at the end points.

e Otherwise find the overlapping part of S; and replace it
with S».

(1) First segment S into pieces at y-min—max points or
very high curvature points (Fig. 17(a)). Merge the
short segments with the pieces right before or after
them (Fig. 17(b)).

Then, starting from the beginning and the end of S,
find the first piece P; and the last piece P, whose
slant bounding boxes overlap that of S,, respectively
(the dashed lines of Fig. 17(c)). Delete the part of
S1 from P; to P, (Fig. 17(d)).

Finally, delete the remaining dots or bars if their
stems are deleted.

2

3)

3.4. Touch-up cleanup

Touch-up cleanup is to merge two strokes that touch each
other into a single stroke with correct writing order. For
convenience, the stroke written earlier is called “touched-up”
stroke and the other stroke is called “touching-up” stroke.
Not all cases of two strokes touching each others will be
treated because erroneous writing order can occur if features
are not salient. Our system only treats touch-up that meets
the following constraints:

(1) The touching-up stroke should be relatively short and
slow and does not intersect with the third stroke.

(2) Both the touching-up stroke and the part on the touched-
up stroke between the touching points are relatively sim-
ple. At least they should not have self-intersection and
fluctuation.

(3) At least one of the touching points on the touched-up
stroke is a high-curvature point or an end point (Figs.
18(al)—(a5)). If only one of the touching point is an end
point or a high-curvature point, the stroke piece of the
touched-up stroke containing the touching points should
not be a near vertical straight line, in order to avoid
mistreatment on “p”, “b”, “d”, etc (Fig. 18(bl)).

The inter-overtracing can only occur near the end points
of the touching-up stroke (Figs. 18(a6) and (a7)).

“4)

As a result, in Fig. 18, the cases on the left are treated,
while those on the right are not supported.

After the touch-up strokes are detected according to the
above criteria, where the inter-overtracing parts can be de-
tected using the indexing bitmap, we try to merge them into
a single stroke with correct writing order. There are two
cases to deal with: 1. there are two touching points so that
the touch-up parts form a loop; 2. there is only one touching
point.

We first find the touching points. Let S; and S> be
the touched-up and touching-up strokes, respectively. The
touching point(s) on S; are where the two strokes begin to
diverge. Then we find the point(s) C; and C, which are
within a distance from the touching points and are either
with the highest curvature or the end points of Sj.

If there are two touching points, we find the points P; and
P> on S, that are closest to C1 and C», respectively. Then the
sub-stroke S of S between C; and C, and the sub-stroke
S§Sy of §> between Py and P, form a closed loop whose
orientation should usually be counter-clockwise unless SS»
is on the right of §S; and the stroke piece of S; containing
S8 is a short straight line, because in this case the loop
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Fig. 19. Six cases of the writing order, indicated by the dashed curves, within the loop when inserting the loop into the broken S;, considering appropriate

backtracing. C1 and C; are the highest curvature within a distance from the touching points.

writing directions.

N L s,
5 SE,
s
. !
SE, KSE1

(@ (b)

Fig. 20. Two cases of concatenating two touch-up strokes with only one
touching point. The writing order is indicated by the dashed curves. (a)
SE is short and nearly vertically downward, so backtrace SE; and
concatenate SE;. (b) In the rest cases, SE, is backtraced and inserted
into Sj.

may be part of “p” or “b” and hence the loop should be
clockwise. Next, we determine the writing order within this
loop so that the loop can be connected back with S;. There
are 6 cases in total (Fig. 19), depending on whether C; is
before C, after re-orientation and whether C; and C, are
the end points. At last, this loop is connected back to the
broken Sj.

If there is only one touching point, we denote by SE the
part from the touching point on S; to the ending point and
by SE, the part from the touching point on S, to the ending
point. If SE is short and nearly vertically downward, then
backtrace S E| and concatenate S E; (Fig. 20(a)). Otherwise,
backtrace SE; and insert it into S (Fig. 20(b)).

Finally, the junctions are smoothed.

3.5. Insertion cleanup

This step inserts the strokes that are written later at their
intended places so that their time order complies with their
spatial order. There are two features to decide whether a

“End point” is the end point of Sj. The arrows are the

Insertion point
Insertion point

Lo

Py

—— -y

() (W)

Fig. 21. Insertion cleanup. (a) The black stroke “1” is judged as a
to-be-inserted stroke by checking the bounding boxes of it and that of
its previous strokes. (b) and (c) Find the pair of downward pieces (the
thick lines) containing the to-be-inserted stroke and insert it at the best
insertion point.

stroke is a to-be-inserted one.

(1) It should not be dots and bars for these late strokes
will be processed in late stroke re-ordering. These late
strokes can be filtered by checking the sizes of their
bounding boxes and their vertical positions.

(2) Its timestamp is either before the stroke piece at its left
or after the one on its right (Fig. 21(a)).

If a to-be-inserted stroke S is detected, we should find the
correct insertion point and then re-order the strokes.

First of all, find the pair of downward stroke pieces P;
and P, so that S is at the right of P; and at the left of P,
and the distance between them is the shortest in all pairs
encompassing S (Figs. 21(b) and (¢)). P and P, can be null,
meaning that there are no appropriate stroke pieces before
or after S. If P, is null, insertion cleanup is not performed.

Then, collect the sub-sequence of strokes after S so that
all of them are between P; and P,. They together with S
form a group of to-be-inserted strokes SS that should all be
inserted between P and P,. This group is rearranged in the
order of left-to-right and bottom-to-top.
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Finally, insert SS at the best position among other strokes.
If Py is null, insert SS before the rest strokes. If P; and P, are
disconnected, then insert SS right after the stroke containing
Py (Fig. 21(b)). Otherwise, break the stroke containing P
and P, at their mid-point and insert SS after the mid-point
(Fig. 21(c)).

3.6. Late stroke re-ordering

Late stroke re-ordering rearranges the late strokes so that
they are right before or after their stems. There are four types
of late strokes:

(1) The dots of “i”, “j”;

(2) The bars of “t” and “f”;

(3) The slash of “x”, and the possible dot of handwritten
lowercase “z”;

(4) Single quotation mark *;

Since the late strokes of “x” and “z” are actually treated
in insertion cleanup, they are not discussed here. The rest
kinds of late strokes are detected using the similar method
introduced in Section 3.3.1, but more criteria are used. First,
a candidate of late stroke should be written later than its stem
candidate. Second, the time interval between a late stroke
candidate and its previous stroke should not be too large.
Third, the writing speed of the late stroke candidate should
not be too slow.

All detected late strokes will be re-ordered, i.e., their
timestamp will be rearranged. Generally the insertion posi-
tion of a late stroke is right after its stem. But if its stem is
the first downward piece of the stroke containing the stem,
this late stroke will be put before the stroke, not after its
stem (Fig. 22).

Re-order the dots of “1”, “j” and *“’”

Table 1
The performance of ink cleanup algorithm

Fig. 22. Insertion points for late strokes. Usually the late strokes are
inserted right after their stems. However, if the stem is the first downward
piece of the stroke containing the stem, then the late stroke should be
inserted right before the stroke. In the above example, the dot of “i”
is inserted after its stem (black line on the right), while the bar of “t”
becomes the first stroke among the three strokes for “think”.

If a late stroke is detected as the dots of “i”, “j” or /7, it
will be re-ordered as below:

e If there is only one stem candidate, then insert the late
stroke after the stem. The choice of insertion point is the
same as that in insertion cleanup.

e If there are two stem candidates, check whether the first
candidate and its next stroke piece form a circle (to detect
handwritten “a” and “0”). If so, insert the late stroke after
the second stem candidate.

e If the stem candidates belong to the same late stroke, then
insert the late stroke after the stem that is closer to the
center of the late stroke.

e Otherwise, insert the late stroke after the stem that is just
before its center.

Re-order the bars of “f” and “t”

If a late stroke is detected as the bars of “f” or “t”, we
just check whether it has stem candidates. If so, it is inserted
after the last stem. Otherwise, it should have been dealt with
in insertion cleanup.

4. Experimental result

To evaluate our ink cleanup system, we collect 24 ink
notes written in English, all of which are of multiple pages.

Writer #Labelled #Reco #Reco #Suc- #Failing #Non- 9%Suc- YoFailing
ID Words Fail w/o Fail w/ cessful Cleanup effective cessful Cleanup
Cleanup Cleanup Cleanup Cleanup Cleanup
1 301 45 40 14 9 14 31.1% 3.5%
2 191 56 61 5 10 35 8.9% 7.4%
3 284 52 53 10 11 26 19.2% 4.7%
4 251 57 55 10 8 34 17.5% 4.1%
5 215 30 26 8 4 13 26.7% 2.2%
6 319 107 110 17 20 44 15.9% 9.4%
7 332 53 56 9 12 21 17.0% 4.3%
8 389 67 73 8 14 26 11.9% 4.3%
Total 2282 467 474 81 88 213 17.3% 4.8%

#Reco Fail w/o Cleanup refers to the number of words failed to be recognized without cleanup. #Reco Fail w/ Cleanup refers to the number of words
failed to be recognized after cleanup is applied. #Successful Cleanup refers to how many words that fail to be recognized without cleanup but are
successfully recognized after cleanup. #Failing Cleanup is the number of words that are recognized without cleanup but fail to be recognized after
cleanup. #Non-effective Cleanup is the number of words that fail to be recognized irrespective of whether cleanup is applied. %Successful Cleanup is
defined as #Successful Cleanup/#Reco Fail w/o Cleanup, which is the percentage of correcting the wrong recognition result. %Failing Cleanup is defined
as #Failing Cleanup/(#Labelled Words — #Reco Fail w/o Cleanup), which is the percentage of making the correct recognition erroneous.
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Fig. 23. Some examples of the effect of ink cleanup. The first column are input strokes. The second column indicates the temporal order of strokes
before cleanup is applied. The third column are the cleanup results. Note that the temporal order is labelled at the beginning of each stroke and the
strokes are drawn in different colors. Below each figure is the labelled result (first column) or recognition result (second and third columns).

They are taken from eight different writers, who are told to
write in their most natural ways without any explicit con-
straint. Almost all the notes are written in cursive style. The
words are then manually labelled. The testing data set con-
tains 2282 English words in total.

The effect of ink cleanup on recognition is shown in
Table 1, where the recognition engine is mshwusa.dll that
is released internally on April 29, 2003 and is usually in
C:\Program Files\Common Files\Microsoft Shared\Ink if
a user is using Windows XP® SP1. From the column of
#Successful Cleanup, where they are the numbers of words
that fail to be recognized without cleanup but are success-
fully recognized with cleanup, one can see that the cleanup

algorithm can indeed help recognition. Unfortunately, al-
though we have made our ink cleanup algorithms conserva-
tive, it still incur undesired results, i.e., some correct recog-
nition results are made incorrect. And this negative effect is
comparable with the positive effect in word counts (see the
column of #Failing Cleanup). As a result, the overall recog-
nition rate decreases slightly. The main reason is that the
correctly recognized words are much more than those incor-
rectly recognized. Therefore, even a very small percentage
of failing cleanup can bring about considerable number of
words. If we look at the percentages listed in the last two
columns of Table 1, one immediately sees that the percent-
age of successful cleanup is much higher than that of failing
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cleanup. Nevertheless, more effort should be made to further
reduce the rate of failing cleanup.

Fig. 23, shows some examples of ink cleanup, on both
recognition and visual appearance. We see that our algo-
rithms do have positive effects on both aspects.

5. Conclusions and future work

In this paper, we present our rule-based ink cleanup algo-
rithms for on-line ink notes. They aim at fixing the smear
and correction that often happen during the process of writ-
ing so that the ink notes can appear cleaner and more legi-
ble. Our system is capable of dealing with the most common
handwriting problems that exist in on-line ink notes, includ-
ing self-overtracing, inter-overtracing, correction, touch-up,
insertion and wrong writing order of strokes. If one is inter-
ested in improving the document legibility only, s/he may re-
move the dot-transform, touch-up cleanup, insertion cleanup
and late stroke re-ordering as the latter three kinds of cleanup
virtually do not change the overall appearance of strokes.

Moreover, our system can also act as the pre-preprocessing
of handwriting recognition. As a primary investigation, our
current system already has a fairly low rate of failing cleanup
and a high rate of successful cleanup. Like other rule-based
systems, the performance of our ink cleanup system depends
heavily on the exactness and completeness of rules that are
found. Statistical methods may also be conceived, but only
when the training data, whose collection and labeling is not
a trivial task, are available can they be tried.

While enriching and improving the existing rules, we are
also considering to remove some conservative assumptions
in self-overtracing cleanup, inter-overtracing cleanup, and
touch-up cleanup. We are fully optimistic that adding more
sophisticated and complete rules to our system will eventu-
ally improves the recognition accuracy. This is, to the best

of our knowledge, the first time that ink cleanup problem is
seriously studied.
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