
First Order Approximation for Texture Filtering

Zhouchen Lin
Microsoft Research, Asia
zhoulin@microsoft.com

Lifeng Wang
Microsoft Research, Asia
lfwang@microsoft.com

Liang Wan
The Chinese University of Hong Kong

lwan@cse.cuhk.edu.hk

Abstract

Texture mapping is a core technique in 3D graphics and
is important for computer vision applications as well. The
major challenge of texture mapping is high quality anti-
aliasing at a reasonably high speed. Previous approaches
do not address this problem adequately, since they do not
precisely model the anisotropic and spatially variant nature
in texture mapping.

In this paper, we handle this problem using signal
processing and sampling theory. We first describe an an-
alytic framework to deduce the ideal filter and the corre-
sponding weight distribution for texture filtering. Since the
ideal filter does not have a closed-form solution, we further
propose a filter that is the first order, yet of high precision,
approximation of the ideal filter and makes a closed-form
solution possible. This first order approximating (FOA) fil-
ter has excellent anti-aliasing capability and a reasonably
high rendering speed. The comparison with some well-
known filters (box, cubic, EWA, and fast footprint MIPmap-
ping, etc.) also testifies that our filter does have better anti-
aliasing performance.

1. Introduction

Texture mapping is critical to all 3D graphics rendering
systems by making rendered objects more realistic. This
technology is also important for computer vision, especially
analysis-by-synthesis techniques for extracting model para-
meters. Examples include image-based triangulation [10]
and facial modeling fitting [7]. The major challenge of tex-
ture mapping is anti-aliasing. The ideal texture filter is im-
practical as it requires weighting among infinite number of
samples. Therefore, finding a practical texture filter with
high anti-aliasing capability and relatively high rendering
speed is very useful.

Generally speaking, the process of texture mapping can
be considered as resampling a source texture to create a
destination texture according to a mapping function. Many
well known kernels, such as the box, the tent, and the cu-

bic interpolation kernels, are spatially-invariant and inde-
pendent of the mapping function. They are known to pro-
duce aliasing when filtering textures with high frequencies.

In contrast, spatially-variant filters are better at reduc-
ing the aliasing. Among them, MIPmap [14] is widely
used because of its low computational cost. It creates tex-
ture pyramids to manage texture level-of-detail (LOD) but
uses square pixel approximation with poor weighting, hence
resulting in overly-blurred and poor off-angle quality tex-
tures. Texture potential MIPmap [1] overcomes the problem
of texture over-blurring by building a pyramid of potential
maps, and finding the texture values by simple subtraction
operations.

Several hardware anisotropic filtering algorithms can
produce better results than MIPmap, such as Textram [11],
Feline [8], fast footprint MIPmap [6], and Talisman [12].
Texram assumes a square pixel shape with a parallelo-
gram footprint, and computes with equal weights. Fe-
line uses several isotropic probes along a line to imple-
ment an anisotropic filter with Gaussian weights. Fast foot-
print MIPmap also adopts the square pixel assumption with
quadrilateral footprint using MIPmap data. It computes the
weights in the quadrilateral footprint with a Gaussian ker-
nel. Talisman applies hardware acceleration, and assumes a
square pixel shape with quadrangle footprint. The weights
are achieved from pre-computed MIPmap.

Previous filters, however, typically treat texture mapping
in a ratherad hoc fashion. The elliptical weight average
(EWA) filter [4, 5, 2] is considered as a benchmark against
which all texture mapping methods are compared. It uses
circular pixel shape (with elliptical footprint) and Gaussian
weights to calculate mapped textures. The EWA filter could
be proven from the sampling theory to be close to, but still
not, the ideal filter for either reconstructing or prefiltering
continuous signals. Thus the EWA filter still produces alias-
ing effects when filtering textures with very high frequen-
cies and artifacts when up-sampling low frequency signals.
Effort has been made to approximate the ideal filter [13, 3],
but only partial approximations are obtained.

In this paper, we start from basic signal processing and
sampling theory to derive the ideal weight distribution for

texture mapping. Next, we derive a first order approximat-
ing (FOA) filter which is a good approximation to the ideal
filter. We also analyze this filter thoroughly and show that
it has a closed-form solution. Finally we compare our pro-
posed filter with typical texture mapping methods in 2D/3D
scenarios.

2. Theory of texture filtering

Texture mapping is a procedure that warps a source tex-
turef onto a surface through a transformT , and prefilters
the warped texture to produce the anti-aliased destination
texture f̃ . It is actually a resampling process. Ideally, to
compute the ideal filter associated withT , we identify the
following steps [15]:

• Reconstruct a continuous signalfc from a discrete sig-
nalf using a sinc filter, i.e.,

fc(x) =
∑

k

f(k)sinc(x− k). (1)

• Map the continuous signalfc to the desired continuous
signalf̃c using the transformT , i.e.,

f̃c(x̃) = fc(T (x̃)). (2)

• Filter f̃c using a sinc function so that it is band-limited,
i.e.,

f̃ bl
c (x̃) =

∫
f̃c(t̃)sinc(x̃− t̃)dt̃. (3)

• Samplef̃ bl
c to produce the discrete outputf̃ , i.e.,

f̃ (̃l) = f̃ bl
c (̃l). (4)

These four steps are illustrated in Figure 1, where we use
the embellishment(˜) to indicate those variables in the des-
tination domain. By plugging (1), (2), and (3) into (4) re-
cursively, we have:

f̃ (̃l) =
∑

k

f(k)
∫

sinc(T (t̃)− k)sinc(̃l− t̃)dt̃.

We refer to

h(x̃,k) ≡
∫

sinc(T (t̃)− k)sinc(x̃− t̃)dt̃ (5)

as the ideal filter, and its discrete version:

W (̃l,k) =
∫

sinc(T (t̃)− k)sinc(̃l− t̃)dt̃ (6)

x~

)
~

(
~

lf

)~(
~

xf bl
c)~(

~
xf c

f(k)

x

Reconstruct

Warp Prefilter

Sample fc(x)

x x~ x~

Figure 1. Steps involved in resampling.
Adapted from [15].

as the ideal weighting function. It determines the interpola-
tion weights from a source pixelf(k) to a destination pixel
f̃ (̃l).

Unfortunately, equations (5) and (6) have no closed-form
solutions unlessT is special. The numerical evaluation is
impractical, considering the intensive computational cost
due to the infinite support of the sinc function. As a result,
approximations should be performed so that a closed-form
solution is possible. In our approach, we take the first order
approximation ofT to produce a closed-form solution. The
resultant filter is very close to the ideal one and produces
excellent visual results compared to the previous ones.

3. First order approximating (FOA) filter

We use the first order Taylor series expansion to locally
linearize the transformT in (6), which produces a local
affine transform [4, 5, 8, 9]. Based on our analysis and
experimental results, this first order approximation is good
enough. More importantly, this makes possible a closed-
form solution of (6).

The first order approximation ofT (t̃) is:

T (t̃) = T (̃l + (t̃− l̃)) ≈ T (̃l) + J(̃l)(t̃− l̃),

whereJ is the Jacobian matrix ofT . Such an approximation
has a reasonably high accuracy. Event̃ is far from l̃, the
deviation from the exact value is still quite small, since the
modulation of sinc(̃l − t̃) in (6) decays quite fast. So we
have:

W (̃l,k)

≈
∫

sinc(T (̃l) + J(̃l)(t̃− l̃)− k)sinc(̃l− t̃)dt̃

=
∫

sinc(J(̃l){[J(̃l)]−1[T (̃l)− k] + (t̃− l̃)})sinc(̃l− t̃)dt̃.

Let t̂ = l̃− t̃. We can rewrite the interpolation kernel as

W (̃l,k) =
∫

sinc(J(̃l){[J(̃l)]−1[T (̃l)− k]− t̂})sinc(t̂)dt̂

= [sinc(J(̃l)x̃)⊗ sinc(x̃)]
∣∣∣
x̃=[J(̃l)]−1[T (̃l)−k]

,

where⊗ is the convolution. Denote

h(x̃) = sinc(J(̃l)x̃)⊗ sinc(x̃). (7)

It is the first order approximating filter. Then

W (̃l,k) = h([J(̃l)]−1[T (̃l)− k]), (8)

which is the first order approximating weight distribution.
To find the closed-form solution for (8), we apply the

Fourier transform. It is well known that with the Fourier
transform, convolution becomes product and a sinc function
corresponds to a BOX function over a unit cube C. LetF
denote the Fourier transform, then

F [sinc(J(̃l)x̃)⊗ sinc(x̃)](ω)
= F [sinc(J(̃l)x̃)](ω) · F [sinc(x̃)](ω)
= |[J(̃l)]−1|BOXC([J(̃l)]−1ω)BOXC(ω)
= |J(̃l)|−1BOXC̃(ω)BOXC(ω)
= |J(̃l)|−1BOXC̃∩C(ω),

whereC̃ = [J(̃l)]C is the parallelogram transformed from
C via the JacobianJ. Therefore,

h(x̃) = F−1[|J(̃l)|−1BOXC̃∩C(ω)](x̃)
= |J(̃l)|−1F−1[BOXC̃∩C(ω)](x̃).

(9)

In the following, we present the closed-form solutions
in the 1D and the 2D cases, respectively. For higher di-
mensions, it is theoretically possible to find the closed-form
solutions to the FOA filters, but the solutions may be much
more complex, as can seen from the 2D case. However, for
our goal, i.e. texture mapping, the investigation on the 2D
case is already sufficient1.

× =

)(BOX)(BOX]1,1[],[ωω −− ×JJ)(BOX]1,1[ω−

× =

)(BOX)(BOX]1,1[],[ωω −− ×JJ)(BOX],[ωJJ−

Figure 2. Explanation of prefiltering with two
1D sinc functions.

1Note that texture mapping onto a mesh in a 3D space is still a 2D
mapping if considered locally.

For a 1D signal (Figure 2),̃C is simply a scaled version
of C, then

h(x̃) =
1

J(l̃)
F−1[BOXmin{J(l̃),1}(ω)](x̃)

=
min{J(l̃), 1}

J(l̃)
sinc(min{J(l̃), 1}x̃).

Therefore,

W (l̃, k) =
min{J(l̃), 1}

J(l̃)
sinc

(
min{J(l̃), 1}

J(l̃)
[T (l̃)− k]

)

=





sinc(T (l̃)− k) if J(l̃) ≤ 1
1

J(l̃)
sinc

(
1

J(l̃)
(T (l̃)− k)

)
otherwise

.

For the 2D case,̃C is a parallelogram. Figure 3 shows the
common part of̃C and C after clipping against each other.
We find that there is a closed-form solution to the inverse
Fourier transform of the clipped box function.

x

y

x

y

x

y

x =

BOXC̃(ω) × BOXC(ω) = BOXC̃∩C(ω)

Figure 3. Explanation of prefiltering with two
2D sinc functions. The spectrum of the ideal
kernel is the common part of two box func-
tions over C and C̃ = JC, respectively. C̃ is
associated with the warping of the input sig-
nal while C is associated with the pre-filtering
of the output signal.

Suppose that C hasN vertices outsidẽC, andC̃ hasÑ
vertices outside C. Then there are 6 cases:

(
N

Ñ

)
=

(
4
0

)
,

(
0
4

)
,

(
2
4

)
,

(
4
4

)
,

(
2
2

)
,

(
4
2

)
.

Case 1 (Figure 4(a)): C̃ is completely inside C. This
happens when|J11| + |J12| ≤ 1 and |J21| + |J22| ≤ 1,
whereJij are the entries of the Jacobian:

J =
[

J11 J12

J21 J22

]
.

��� ��� ���

C
C
~

CC ∩~

��� ��� ���

����������	
��
�	����

�����	���

Figure 4. Six cases of the common part of C and C̃ in the 2D case. (a) C̃ is completely inside C. (b) C
is completely inside C̃. (c) All vertices of C̃ are outside C but C has only two vertices outside C̃. (d)
All vertices of C̃ are outside C, so does C. (e) Both C̃ and C have two vertices outside each other. (f)
All vertices of C are outside C̃ but C̃ has only two vertices outside C.

In this case,

h(x̃) = |J(̃l)|−1F−1[BOXC̃(ω)](x̃)
= |J(̃l)|−1F−1[BOXC([J(̃l)]−1ω)](x̃)
= F−1[BOXC(ω)]([J(̃l)]x̃)
= sinc([J(̃l)]x̃).

This means that the pre-filtering by sinc(x̃) has no effect at
all and hence can be waived. A simple example is image
zoom-in. As a result,

W (̃l,k) = sinc(T (̃l)− k).

Case 2 (Figure 4(b)): C is completely insidẽC. Since
a linear transform keeps the relationship of inclusion, by
applyingJ−1 to both C and̃C, this case is equivalent tôC =
J−1C being completely inside C= J−1C̃. This happens
when|J11|+ |J21| ≤ |J| and|J12|+ |J22| ≤ |J|, where|J|
is the determinant ofJ. Thus,

h(x̃) = |J(̃l)|−1F−1[BOXC(ω)](x̃)
= |J(̃l)|−1sinc(x̃).

This means only prefiltering is necessary. A simple example
is image zoom-out. Accordingly,

W (̃l,k) = |J(̃l)|−1sinc([J(̃l)]−1[T (̃l)− k]).

Cases 3 and 4 (Figures 4(c) and (d)): All vertices of̃C
are outside C but C is not completely insidẽC. In these
cases, it is more convenient to clip C againstC̃, i.e.,

F−1[BOXC̃∩C(ω)](x̃)
= F−1[BOXC(ω)](x̃)−F−1[BOXclipped parts(ω)](x̃).

The clipped parts are allregular right-angled triangles,
whose sides that form the right angle are either horizontal or
vertical. The formula of the inverse Fourier transform over
a regular right-angled triangle can be found in Appendix A.
Due to the symmetry nature of the clipped parts with re-
spect to the origin, we should compute the triangles in pairs
by utilizing the following property of Fourier transform:

F−1[BOXA∪(−A)(ω)](x̃)
= 2REAL

(F−1[BOXA(ω)](x̃)
)
,

where A is an arbitrary region,−A is symmetric to A with
respect to the origin and A∩ (−A) = ∅, andREAL(x) is
the real part ofx.

Cases 5 (Figure 4(e)): C̃ and C both have two ver-
tices outside each other. In this case, it is also a little
more convenient to clip C against̃C. The clipped parts
are two symmetric irregular concave quadrilaterals. How-
ever, each of them can be decomposed intofour regu-
lar right-angled triangles as shown in the lower part of
Figure 4(e). Applying the inverse Fourier transform over
regular right-angled triangles, the closed-form solution of
F−1[BOXC̃∩C(ω)](x̃) is possible.

Case 6 (Figures 4(f)): Four vertices of C are all outside
C̃, but C̃ has only two vertices outside C. In this case, it
is more convenient to clip̃C against C. The clipped parts are
two triangles that can be decomposed into two regular right-
angled triangles as shown in the lower part of Figure 4(f).
Similar to the previous three cases, we can find the closed-
form solution for this case.

Note that in our analysis, if we use a Gaussian function
instead of the sinc function in (7)2, we get the EWA filter
(since the convolution of two Gaussians is also a Gaussian).
However, the Gaussian function is not as good as the sinc
function in removing aliasing. Our experiments will testify
to this point. Readers may find that our analysis seems simi-
lar to that in [13, 3]. However, both the work therein simply
approximated the ideal filter withseparable2D sinc func-
tions, while our analysis is much more refined and com-
plete. Our analysis shows that the optimal first order ap-
proximation has six cases, and for the latter 4 four cases
shown in Figure 4 the optimal FOA filter isnot a separable
2D sinc function.

4. Experimental results

In this section, we compare results of our FOA filter (9)
with the box, cubic, EWA, and fast footprint MIPmap fil-
ters, etc., in different scenarios. Since the length of the filter
is infinite, we truncate the corresponding FOA filter so that
its radius is 2 pixels. Moreover, we also compute the ideal
weighting function (6) with numerical evaluation. It is re-
ferred to the numerically evaluated ideal (NEI) filter below.

Down sampling images We show the downsampled re-
sults in Figure 5. The rendering task is downsampling an
image from1000 × 1000 to 200 × 200. Note that the NEI
and the FOA filters (Figures 5(e) and (f)) have better quality
than other filters. The EWA filter (Figure 5(d)) has compa-
rable result with our approach, but the quality of other filters
(Figures 5(a)∼(c)) is apparently inferior to that of ours.

Table 1. Speed (fps) comparison of different
methods.

box cubic MIPmap EWA NEI FOA
80.4 69.7 375.1 12.0 0.06 4.2

The experiments were run on a 1.4GHz PC with a
Geforce III graphics card. Table 1 compares the speeds of
various filters. It is notable that the NEI weighting function
(6) is highly computation-intensive. Using our first order
approximation improves the speed by about 70 times, while
the RMSE error is less than 0.02 greylevel, which is much
less than the quantization error. The EWA filter is faster
than our FOA filter but its speed is at the same order of
magnitude as ours. MIPmap is by far the fastest, since it is
a hardware implementation.

2In [5], the covariance matrix isΣ = σI , whereσ is chosen as 2 andI
is the identity matrix.

Rendering 2D planes Figure 6 compares the results of
filtering a real604 × 784 image in a perspective view. Our
FOA filter (Figure 6(d)) has very similar results with the
NEI filter (Figure 6(c), the RMSE error is less than 0.15
greylevel) but at significantly faster speed. As can be seen,
both our FOA filter and the NEI filter retain the high fre-
quency components without resulting in aliasing. The cu-
bic kernel (Figure 6(a)) results in a highly aliased image,
while the EWA filter (Figure 6(b)) overly smoothes the im-
age. Furthermore, when the image plane moves, for exam-
ple, rotates, our FOA filter also has very similar results with
the NEI filter, and both suffer less from temporal aliasing
than other methods.

Rendering 3D meshes Figure 7 shows the results of ren-
dering a texture-mapped 3D teapot. The isotropic filter
(with MIPmap off, Figure 7(a)) produces serious aliasing.
MIPmap (Figure 7(b)) produces a better result, but it is
overly smooth in some areas or aliased in others. The EWA
filter (Figure 7(c)) generates a much better result than Fig-
ures 7(a) and (b), but it is still a little blurred in some areas
(for example, the area shown in the inset). Our FOA filter
(Figure 7(d)) performs slightly better than the EWA filter.

5. Conclusion

In this paper, by using the signal processing and sam-
pling theory, we derive the ideal weighting function for tex-
ture filtering. As there is no closed-form solution for the
ideal weighting function, we further propose the first order
approximating filter by approximating the texture transform
with its first order Taylor expansion. Such an approximation
makes the closed-form solution possible. Our FOA filter is
very close to the ideal filter, and is a generalization of the
EWA, a well-known filter. Our analysis and experiments
both testify that our FOA filter produces better rendering
results than traditional ones. In terms of rendering speed,
our FOA filter is much faster than numerically evaluation
of the ideal filter, and at the same magnitude as the EWA
filter.

6. Appendix A: Inverse Fourier Transform
over a Regular Right-Angled Triangle

Suppose the vertices of a regular right-angled triangle∆
are: (ωx0, ωy0), (ωx0, ωy1) and (ωx1, ωy0). Then the in-

(a) (b) (c)

(d) (e) (f)

Figure 5. Comparison of downsampling results using different filters. (a) ∼(f) are results of using box,
cubic, MIPmap, EWA, numerically evaluated ideal (NEI), and first order approximating (FOA) filters,
respectively.

verse Fourier transform over this triangle is:

F−1[BOX∆(ωx, ωy)](x, y)

=
1

4π2
sgnxy

∫ ωx0

ωx1

eixωxdωx

∫ ωy0

Aωx+B

eiyωy dωy

=
1

4π2
sgnxy

{
eiyωy0

xy

(
eixωx0 − eixωx1

)

− eiBy

y (x + Ay)

[
ei(x+Ay)ωx0 − ei(x+Ay)ωx1

]}

where

sgnxy = sgn(ωx0 − ωx1)sgn(ωy0 − ωy1),

A = −ωy1 − ωy0

ωx1 − ωx0
, andB =

ωx1ωy1 − ωx0ωy0

ωx1 − ωx0
.

References

[1] R. J. Cant and P. A. Shrubsole. Texture potential mip
mapping, a new high-quality texture antialiasing algorithm.
ACM Trans. Graph., 19(3):164–184, 2000.

[2] B. Chen, F. Dachille, and A. Kaufman. Forward image warp-
ing. IEEE Visualization, pages 89–96, 1999.

[3] K. Deng, L. Wang, J. Zhang, and B. Guo. Texture mapping
with a jacobian-based spatially-variant filter. InProceedings
of Pacific Graphics 2002, pages 460–461, 2002.

[4] N. Greene and P. Heckbert. Creating raster ominimax im-
ages from multiple perspective views using the elliptical
weighted average filter.IEEE Computer Graphics and Ap-
plications, 6(6):21–27, June 1986.

[5] P. Heckbert. Fundamentals of texture mapping and image
warping. Master’s thesis, CS Division, UCB/CSD 89/516,
U.C. Berkeley, 1989.

[6] T. Hüttner and W. Straßer. Fast footprint mipmapping.Pro-
ceeding of the 1999 EUROGRAPHICS/SIGGRAPH Work-
shop on Graphics Hardware, pages 35–44, 1999.

[7] S. Kang and M. Jones. Appearance-based structure from
motion using linear classes of 3-D models.Int’l J. of Com-
puter Vision, 49(1):5–22, August 2002.

[8] J. McCormack, R. Perry, K. I. Farkas, and N. P. Jouppi. Fe-
line: Fast elliptical lines for anisotropic texture mapping.
Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, pages 243–250, 1999.

[9] T. Möller, R. Machiraju, K. Mueller, and R. Yagel. Eval-
uation and design of filters using a taylor series expansion.
IEEE Transactions on Visualization and Computer Graph-
ics, 3(2):184–199, 1997.

[10] D. Morris and T. Kanade. Image-consistant surface triangu-
lation. CVPR, 1:332–338, June 2000.

[11] A. Schilling, G. Knittel, and W. Straer. Texram - a smart
memory for texturing.IEEE Computer Graphics and Appli-
cations 16(3), pages 32–41, 1996.

[12] J. Torborg and J. Kajiya. Talisman: Commodity realtime 3d
graphics for the pc.Computer Graphics proceeding, Annual
Conf., ACM SIGGraph’96, pages 353–363, 1996.

��� ��� ��� ���

Figure 6. Texture filtering on a perspective plane with a real picture. (a) Using cubic kernel. (b) Using the
EWA filter. (c) Using our NEI filter. (d) Using our FOA filter.

[13] L. Wang, S. Kang, H.-Y. Shum, and R. Szeliski. Optimal
texture map reconstruction from multiple views. InProceed-
ings of IEEE Conference on Computer Vision and Pattern
Recognition, pages 347–354, 2001.

[14] L. Williams. Pyramidal parametrics.Proceedings of the 10th
Annual Conference on Computer Graphics and Interactive
Techniques, pages 1–11, 1983.

[15] G. Wolberg.Digital Image Warping. IEEE Computer Soci-
ety Press, Los Alamitos, CA, 1990.

������

������

Figure 7. “Checker board” texture filtering on a 3D teapot. (a) Using OpenGL with MIPmap off. (b) Using
OpenGL with MIPmap on. (c) Using the EWA filter. (d) Using our FOA filter.

