
Real-Time Rendering of Realistic Rain

Lifeng Wang1 Zhouchen Lin1 Tian Fang2 Xu Yang3 Xuan Yu4 Sing Bing Kang5

1 Microsoft Research Asia, {lfwang|zhoulin}@microsoft.com 2 South China University of Technology, P.R. China
3 Nankai University, P.R. China 4 Shanghai Jiao Tong University, P.R. China 5 Microsoft Research, sbkang@microsoft.com

Abstract

We propose a new GPU based technique to render realistic rain in
real-time. It consists of two parts: off-line image analysis of rain
videos, and real-time particle-based synthesis of rain. Videos of
real rain are analyzed to extract the rain mattes; random samples of
these rain stroke mattes are then used for online synthesis. We in-
corporate pre-computed radiance transfer (PRT) in our particle sys-
tem to take into account the scene radiance. The transfer function
of a raindrop can be highly efficiently evaluated with a closed-form
solution. Our approach achieves high realism with low computa-
tion cost and a small memory footprint. Our technique applies to a
variety of scenarios, from synthetic 3D scenes to real videos.

1 Our Technique

A major challenge of rain simulation is the realism of the rain ap-
pearance, including the naturalness of the rain shape and the envi-
ronmental lighting effect on the rain. The existing techniques either
manually design limited number of the rain mattes (e.g. [ATI Demo
2005]) or simply assume straight rain strokes (as in traditional par-
ticle systems). Moreover, the rain color and intensity is either pre-
scribed (e.g. [Starik and Werman 2002]) or is computed using the
light sources only (e.g. [ATI Demo 2005]). Our technique aims at
enhancing the realism of the rain strokes by applying the rain mattes
extracted from rain videos and incorporating the effect of the whole
environment map on the rain strokes using a particle system that
utilizes the transfer function of the raindrops.

We formulate the rain extraction as an optimization problem:

(S,α ) = argmin
S,α

∑
i, j,k

(
Ik
i, j − (1−α k

i )Si, j −α k
i Cj

)2

+λ ∑
i, j

∣∣∣∣∇ Si, j
∣∣∣∣2 + µ ∑

i,k

(
∇ α k

i ·D0
)2

,

where indices i, j, and k are used for referencing pixels, color chan-
nels, and frames, respectively. I is the observed color, α is the
fractional blending weight due to rain, S is the color of the sta-
tic background, (CR,CG,CB) is the “color” of the rain (due to the
environment), D0 is the principal rain direction, and λ and µ are
weights. This is more effective than the naive median filter used
in [Starik and Werman 2002]. Some image processing techniques
such as morphological erosion and dilation and directional blurring
along D0 may be applied to remove noise and enhance the shape of
rain strokes. Then the best-looking individual rain strokes can be
easily cut out as samples.

In our particle system that computes the rain color and intensity in
real-time, each particle has a sphere model with the refractive index
of water, a random rain stroke matte, and other physical attributes
such as position and velocity. The particles are assumed to be uni-
formly distributed in space. The length of the matte shape is esti-
mated based on the particle’s current velocity and the exposure time
of the virtual camera. The matte shape is achieved by shrinking or
stretching its original shape accordingly through interpolation. The
diameter of the sphere that models the raindrop corresponds to the
width of the rain matte after being mapped to the scene coordinate.

Our rendering technique is purely GPU based. After the 3D po-
sition and orientation of each particle have been computed by a

Figure 1: Adding synthetic rain to a real video. Left: Part of an
original frame of resolution 720× 480. Right: Result of adding
rain. Notice how the synthetic rain was affected by the environ-
ment.

vertex shader, the next step is to color the particle. The GPU first
determines which part of the screen is to be shaded by mapping the
rain matte of the particle. A per-pixel PRT shader then computes
the intensity distribution in the rain matte of the particle, where
the location-dependent environment maps have been stitched from
the input video with the existing computer vision techniques and
the transfer vectors of raindrops can be highly efficiently evaluated
from a closed-form solution, which is derived using geometric op-
tics thanks to the roughly spherical shape of raindrops.

Finally, the GPU blends the appearance of the particle with the
background using the computed intensity and alpha distributions
of the rain mattes. If rough geometry of the scene is known, by ren-
dering a virtual scene surface (defined using a mesh of a synthetic
scene or the depth map of a real video) to the z buffer, the particle
will be automatically clipped by the rendering engine at the scene
surface. This gives a volumetric appearance of rain. The realism of
rain can be further enhanced if scene decoloring and darkening, and
rain fog, etc., are taken into account. Adding manually designed
rain splatters to the ground is also very helpful to the realism.

2 Results

Figure 1 shows an example of adding rain to a real video. Please
notice how the synthetic rain is affected by the environment. The
memory footprint dedicated to the lighting effect of the rain, namely
memory costs for the rain stroke samples and the raindrop transfer
vectors, is only 6MB (without compression).

We used a PC with Intel Pentium R©4 3.2GHz CPU, 1GB RAM, and
an nVIDIA R© GeForce 7800 GT graphics card. Even with 80,000
rain strokes for each frame (all the rain strokes are visible to the
virtual camera), the frame rate we obtained was 77 fps.

References

ATI DEMO, 2005. ATI Radeon series X1000, Demo: ToyShop.
http://www.noticias3d.com/articulo.asp?idarticulo=527&pag=10.

STARIK, S., AND WERMAN, M. 2002. Simulation of rain in video.
In Proc. 3rd Int’l Workshop on Texture Analysis and Synthesis,
95–100.


