
Table Detection in Online Ink Notes

Zhouchen Lin, Member, IEEE, Junfeng He,
Zhicheng Zhong, Rongrong Wang, and

Heung-Yeung Shum, Fellow,
IEEE

Abstract—In documents, tables are important structured objects that present

statistical and relational information. In this paper, we present a robust system

which is capable of detecting tables from free style online ink notes and extracting

their structure so that they can be further edited in multiple ways. First, the

primitive structure of tables, i.e., candidates for ruling lines and table bounding

boxes, are detected among drawing strokes. Second, the logical structure of

tables is determined by normalizing the table skeletons, identifying the skeleton

structure, and extracting the cell contents. The detection process is similar to a

decision tree so that invalid candidates can be ruled out quickly. Experimental

results suggest that our system is robust and accurate in dealing with tables

having complex structure or drawn under complex situations.

Index Terms—Table detection, table recognition, graphics recognition,

handwriting recognition, document analysis, pen-based computing.

�

1 INTRODUCTION

IN the past decades, great effort (e.g., the numerous references in [1],
[2]) has been spent on offline document analysis. With the advent of
pen-based devices such as Tablet PCs and Electronic White-boards,
where whole-page or even multiple-page ink notes can be produced
easily, the demand for analysis of online documents, as an
indispensable part of pen-based computing, has become greater
than ever. Online documents contain more information than offline
document images, such as stroke order and connectivity between
stroke points. Such extra information is very helpful for document
analysis, e.g., waiving the need for binarization and extracting
connected components [1], [2] and better for isolating overlapping
strokes. Therefore, although there has been notable success in offline
document analysis, it may be more efficient and robust to develop
online approaches for online documents.

Table analysis plays an important role in document processing
because tables are common in documents for their power in
describing statistical and relational information. Moreover, many
applications can be built upon table extraction, such as populating
databases which can then be queried or be converted into charts.
These would help to accelerate office automation.

There have been many papers focusing on table detection (e.g.,
[6], [7], [8], [9], [10], [12] and the references in [3], [4], [5], to name
just a few). Generally speaking, besides ASCII tables in electronic
documents, there are two kinds of tables in document analysis:
printed tables and handwritten tables. The latter can further be
classified as offline or online. A great deal of handwritten tables

exist in spite of many table creating/editing user interfaces (UIs)
provided by pen-based devices. Dedicated UIs, mainly driven by
gestures or menus, may be more effective in certain cases, but the
free-form table drawing has a significant advantage from the user
standpoint in that it does not require switching modes—the user
can simply write without concerning for whether the correct
drawing mode is enabled.

Most of the existing algorithms deal with printed tables, where
the detection usually starts from spotting the ruling lines and
separating space [7], [10] or block segmentation [8], [12], or using
some prior knowledge of layout style of the tables [6]. Much less
work has targeted the detection and recognition of handwritten tables
in handwritten documents, either offline or online. This kind of
detection and recognition is often more difficult than that in printed
documents, because the drawing styles are usually far more irregular
(Actually, the difficulty depends on the complexity of the document,
e.g., detecting semiruled [2] printed tables in a noisy document
image might be harder than detecting fully ruled handwritten tables
in a neat ink note.) Moreover, handwritten tables may be closely
surrounded or even overlaid by other contents so that white space is
no longer a robust feature to isolate tables. Perhaps due to these
reasons, we have not seen a paper that claims satisfactory
performance when the handwritten tables are complex in logical
structure and drawn in complex ways, e.g., having skewed
orientation (Fig. 5a), overtraced or concatenated ruling lines
(Figs. 4a, 4b, 4c, and 4d and Fig. 5a), and several ruling lines drawn
in a single stroke (Figs. 4a, 4b, 4c, and 4d and Fig. 5a). Nonetheless,
offline and online table detection can share some algorithms. For
example, after the logical structure of a table is determined, the cell
content can be identified similarly.

To date, very few papers discuss online approaches for general
online document analysis. As far as we know, only Jain et al. [9]
presents a hierarchical method for extracting homogeneous
regions in online documents, in which table detection is consid-
ered. His approach is quite efficient, but it is focused on tables with
simple physical and logical structure.1 As a result, it can only
detect ruled or unruled horizontal tables that are properly drawn
without overtracing, concatenation, etc., and with a rectilinear
structure, i.e., consisting of exactly m columns and n rows.

In contrast, there has been much research on the recognition of
handwritten graphical objects (e.g., [13], [14], [16]). However, in
the existing systems there are often some assumptions that restrict
the freedom of user input. For example, a math recognizer [16]
often assumes that all input are parts of mathematical formulae,
while a diagram analyzer [13], [14] usually assumes that every
stroke is related to some predefined shape. Therefore, the user can
neither draw a diagram in a math sketch pad nor write a
mathematical formula in a diagram sketch editor. Unfortunately,
in free style ink notes it is not known in advance whether an object
of interest is present or whether a stroke belongs to the object. This
makes object detection and recognition in free style ink notes a
more challenging task.

In this paper, we present a robust system that detects tables in
free style online documents. It is designed to be robust in dealing
with the following cases:

1. The table can have very complex logical structure that have
more than one row or column, but the table must be fully
ruled and the four corners of the table bounding box are the
only four L-type intersection points (Fig. 2d) among its
ruling lines.

2. The physical structure could be irregular and free-form. The
ruling lines can be nonstraight, overtraced, concatenated, or
finished in one or multiple strokes. A table can still be
detected after modification as long as it is still a table.

3. Multiple tables may exist on the same page. They can be
side by side, so that their bounding boxes are ambiguous,
or can be nonhorizontal.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 8, AUGUST 2006 1341

. Z. Lin and H.-Y. Shum are with Microsoft Research Asia, 5th Floor, Sigma
Building Zhichun Road #49, Haidian District, Beijing 100080, P.R. China.
E-mail: {zhoulin, hshum} @microsoft.com.

. J. He is with the Department of Automation, Tsinghua University, Haidian
District, Beijing 100084, P.R. China.
E-mail: heroson98@mails.tsinghua.edu.cn.

. Z. Zhong is with the Department of Electronics Science and Technology,
Nankai University, Weijin Road #94, Nankai District, Tianjin 300071,
P.R. China. E-mail: zhongzhicheng@vip.sina.com.

. R. Wang is with the Department of Computer Science and Engineering,
Fudan University, Handan Road #220, Shanghai 200433, P.R. China.
E-mail: rrwang@fudan.edu.cn.

Manuscript received 9 June 2005; revised 5 Dec. 2005; accepted 28 Dec. 2005;
published online 13 June 2006.
Recommended for acceptance by D. Lopresti.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0304-0605. 1. In this paper, many terminologies comply with [4].

0162-8828/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

Basically, the system first detects primitive structure, i.e., the ruling
lines and bounding boxes and then identifies the logical structure,
including table skeleton structure and table cell contents. A
decision-tree like detection scheme (Fig. 3) is adopted so that
invalid candidates can be ruled out quickly. The detector also
extracts the physical structure information so that table manipula-
tion can be supported. The methodology introduced in this paper
can be adapted for the detection of other structured graphical
objects. Tested on our online documents written on Tablet PCs, the
accuracies evaluated at both the cell level and the table level are all
well above 90 percent.

Our methodology is similar to the blackboard architecture
proposed in [14]. In theory, our system could be roughly viewed
as a realization of the architecture, which is a rather general and
intuitive framework. However, in implementation details, our
system does not exactly fit the architecture and is much more
optimized for table detection. For example, their primitive object
detection does not consider overtraced or concatenated strokes, our
table grammar is implicitly embodied in structure identification
(Section 3.2) and our candidate pruning exists in every step of the
detection (Section 4).

The rest of this paper is organized as follows: Sections 2 and 3
introduce the steps in structure detection and the features for
candidate selection and classification. Section 4 summarizes the
detection scheme and presents the classifier. Experimental results
are shown in Section 5. Finally, Section 6 provides our conclusions
and plans for future work.

2 PRIMITIVE STRUCTURE DETECTION

A graphical object usually has some primitive structure. For a
table, the primitive structure includes ruling lines and the
bounding box.

2.1 Ruling Line Candidate Detection

In this step, strokes which could serve as the ruling lines of tables are
detected. In printed table detection, the ruling lines are usually
spotted by tracing black pixels along nearly horizontal or vertical
directions [10]. Unfortunately, in online ink notes, the ruling lines
are usually drawn flexibly. To achieve fast detection, writing/
drawing classification and primary grouping should be done
beforehand. As our table detection system is a relatively indepen-
dent module of the more complete advanced ink parser developed
by Microsoft Research Asia, our system simply adopts the writing/
drawing classification and primary grouping results from previous
modules. However, our system can work without writing/drawing
classification and primary grouping results with some sacrifice in
speed and accuracy.

First, all the drawing strokes that are close to line segments are
collected. The linearity of a stroke is measured by:

fl ¼
Bw

Bh þ Bw
�Bw

L
;

where Bw and Bh are the width and the height of the skewed
bounding rectangle of the stroke, whose principal direction is
computed via least squares, andL is the length of the stroke. Since the
user may draw several ruling lines (such as the table bounding box)
in a single stroke, we should also examine whether a stroke is
composed of multiple line segments. If a stroke is not close to a line
segment, we first apply Sklansky’s polygonal approximation
algorithm [11] to approximate the stroke with a polyline, then
segment the stroke at high-curvature points so that each substroke
can be approximated by a line segment. If the number of
approximating line segments is less than 5 (because the user usually
draws no more than four ruling lines in a stroke when drawing
tables) and the turning angles between successive line segments are
close to either 0 degree, 90 degrees, or 180 degrees, then we accept
them as candidates for ruling lines. Thereafter, each accepted stroke
is represented by its approximating line segments in order to reduce
complexity and save computation. Our ruling line candidate
detection algorithm is different from that in [9] where the Hough
transform was used and, hence, short ruling lines might not be
detected.

Next, the accepted line segments are grouped into blocks
according to their spatial position in order to speed up detection,
because there may be multiple tables that may not be close to each
other. For each block, all line segments within it are stored in a line
list. Then a histogram is built to count the number of line segments
around each direction.

2.2 Bounding Box Candidate Detection

To detect the table bounding box, we first select line segments from
the histogram built in the previous step whose directions are close to
or perpendicular to the direction that corresponds to a peak. The
peaks of the histogram will be tested one by one from the highest to
the lowest. Rotation follows so that the selected line segments
become nearly horizontal or vertical. Then, we build the horizontal
line list and the vertical line list. As we need to deal with overtraced
and concatenated ruling lines, the line lists also store all composite
line segments that are a combination of some original line segments
that are nearly parallel and can be merged or concatenated. For a
composite line segment, its linearity fl is defined as the product of
the linearity of the component original line segments and the
concatenation strength between successive line segments defined as:

fcon ¼ 1� � � ðA � jpj þ BÞ � C � p � ð1þ jdjÞ2; ð1Þ

where (assuming that the line segments are nearly horizontal,
Fig. 1a): � is the acute angle between the two line segments, p is the
signed horizontal distance between the conjunction points, and d is 0
if the two line segments intersect each other; otherwise, d is the
vertical distance between the ends of the two line segments. In our
system, A, B, and C are chosen as 7, 0.5, and 3, respectively.

With the line lists, we first find all pairs of horizontal or vertical
line segments, original or composite, and check whether they can
be the opposite sides of a rectangle. This is done by computing
their pairability fp defined as:

1342 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 8, AUGUST 2006

Fig. 1 (a) Factors to compute the concatenation strength of two line segments. (b) Factors to compute how likely two line segments are the opposite sides of a rectangle.

(c), (d), and (e) Factors to compute the rectangularity of a possible bounding box. (c) The minimum distance between the line segments and the bounding rectangle.

(d) The acute angles between successive line segments. (e) The “valid” length and “total” length of line segments. (f) The dirty strokes are those that are outside the

bounding rectangle B1 and touch the sensitive box B2.

fp ¼ 1� j�1 � �2j
�=2

� �
� 1� jl1 � l2j

l1 þ l2

� �
� 1� jp1 � p2j þ jp3 � p4j

maxðl1; l2Þ

� �
;

where (assuming that the line segments are nearly horizontal,
Fig. 1b): �i 2 ð��=4; �=4Þ is the acute angle of the ith line segment, li is
the length of the ith line segment, and pj is the horizontal coordinate
of the end point of the line segment, ordered from left to right.

Next, test all possible combinations of pairable horizontal line
segments and pairable vertical line segments to check whether they
can form a rectangle. This is done by checking the shape, angle, and
length relationship among the four line segments, producing three
features:

fshp ¼ 1�4tþ4b
H

� �
� 1�4lþ4r

W

� �
;

fang ¼
1

2�

X4

i¼1

�i; flen ¼

P4
i¼1

0 0valid0 0 length i

P4
i¼1

0 0total0 0 length i

;

where 4b is the minimum distance between the end points of the
bottom line segment and the bottom of the bounding rectangle (4t,
4l, and4r are defined similarly (Fig. 1c)), H and W are the height
and width of the bounding rectangle of the four line segments,
respectively, �i is the acute angle between successive line segments
(Fig. 1d), the “valid” length is the smaller of the length of line segment
and the length of the part between successive line segments, and the
“total” length is the whole length of the line segment plus the possible
gap between its ends and its successive line segment (Fig. 1e).

The linear combination of the above three features produces the
rectangularity fr of the four line segments. If fr is above a threshold,
we further check whether the rectangle is well isolated from other
outside strokes. This is measured by the saliency fs defined as:

fs ¼ 1� number of dirty strokes

number of all strokes in B2
;

where the dirty strokes are those that are outside the bounding
rectangle B1 of the four line segments and touch the sensitive area
(Fig. 1f) defined as the area between B1 and the sensitive box B2,
whereB2 and B1 are concentric and the ratio of their sizes is greater
than 1. The computation of saliency could incorporate some
contextual information because usually tables should not be densely
enclosed by outside strokes.

If fs is also above a threshold, then the linearity, pairability,
rectangularity, and saliency are linearly combined to producePBF as
the likelihood of four line segments forming a bounding box of a
table.

Next, we extract the four line segments with the largest PBF and
decide that they form the bounding box of a table candidate if PBF

exceeds a threshold. Our bounding box detection algorithm does not
require the grouping of the four sides of a rectangle in advance as
done in [13]. Finally, all the line segments inside the bounding box are
collected as candidate ruling lines.

3 LOGICAL STRUCTURE DETECTION

3.1 Table Skeleton Normalization

In order to obtain the logical structure from the table candidate and
simplify the subsequent computation, this step decides whether a
nearly vertical line segment intersects a nearly horizontal one and
normalizes the tentative table skeleton so that the nearly horizontal
or vertical line segments are replaced by exactly horizontal or
vertical ones. After normalization, we can compute the feature
Pnorm, which is the linear combination of the following two
subfeatures that measure the quality of intersection and the
cleanness of the table skeleton (Fig. 2a), respectively:

fint ¼ 1� number of 00bad00 intersection points

number of all intersection points
;

fcln ¼ 1� number of 00invalid00 line segments

number of all line segments
:

fcln is computed because the system should reject a table candidate
if there are too many strokes overlaying the ruling lines. After
normalization, the invalid line segments and those that do not
intersect with any other line segment are discarded because they
do not contribute to the table structure.

3.2 Table Skeleton Structure Identification

Now, the intersection relationship among all ruling lines is
available. The detector then recognizes the logical structure of
the table by examining the type of intersection points.

There are three types of intersection points: cross-type, T-type,
and L-type (Figs. 2b, 2c, and 2d). Similar classification of crossings
has been used in [15] to register form images. Note that if an
intersection point is not one of the four corners of the bounding box,
then it can only be of cross-type or T-type. Therefore, the detector
will remove all “erroneous” intersection points (Fig. 2a), i.e., those
L-type intersection points that are not any of the four corner points
of the table bounding box, by abandoning some line segments that
form the intersection points until the remaining ruling lines form a
valid table skeleton structure. The erroneous intersection points can
also be fixed by inferring virtual ruling lines as done in [10].
However, this strategy is more reasonable for offline tables but less
reasonable for online tables because for offline tables the ruling lines
may be missing due to scanning and binarization, while for online
tables every stroke forming the table should be available.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 8, AUGUST 2006 1343

Fig. 2. (a) An “invalid” line is a line that has only one intersection point. A “bad” intersection point is one that two line segments do not really intersect each other. An

“erroneous” intersection point is an L-type intersection point that is not the corner of the table bounding box. (b), (c), and (d) Three types of intersection points: cross-type,

T-type, and L-type. (e) An example of cell ordering. (f) The common area Cij (the larger shaded area) of the ith cell and the jth stroke.

Fig. 3. The process of decision. The detection proceeds only when the value of the corresponding feature is above its threshold.

After all erroneous intersection points are removed, the logical

structure of the table candidate is determined. Then, the table cells

are ordered according to the coordinates of their top-left corner,

left to right and then top to bottom (Fig. 2e).
This step produces the confidence Pstr on the logical structure:

Pstr ¼ 1� number of erroneous intersection points

number of all intersection points
:

This will be used for the final table detection decision in Section 4.

3.3 Table Cell Content Extraction

This step finds the content of each cell in order to complete the table

information. It checks the bounding rectangle of each cell and those

of other objects by the proportion of their common area in the

bounding rectangle of an object (such as paragraph, line, word, and

stroke. Note that now the rotation for table bounding box (Section 2.2)

is also applied to the other strokes that are spatially close to the

bounding box.). This is done from the top level to lower levels.

Namely, if a writing paragraph is judged to be in a cell, the test stops.

Otherwise, we continue to test the writing line. The process may

continue to the stroke level. In [9], the cell content is identified by

collecting the writing strokes within each cell boundary and this is
done at the stroke level only.

This step produces the confidence Pcon on the content extraction
defined as:

Pcon ¼
XNcell

i¼1

XNstroke

j¼1

�ij � 1� Cij
minðAi;BjÞ

� �
;

where Ci;j is the common area of the ith cell and the bounding
rectangle of the jth stroke (Fig. 2f), Ai is the area of the ith cell, Bj is
the area of the bounding rectangle of the jth stroke, �ij is 0.7 when
the jth stroke is close to the corners of the ith cell and 1.0 when
otherwise, and Ncell and Nstroke are the number of cells and the
number of strokes that intersect the ruling lines of cells, respectively.
We introduce �ij due to the consideration that if a stroke is on a
ruling line, the confidence should decrease more when it is near the
ends of the ruling line than when it is near the center, because the
stroke is often an arrow head (Fig. 2f). Pcon is computed because a
table skeleton should not be overlaid with too many strokes, as
already mentioned in Section 3.1. Note that Pcon can be made more
accurate if the convex hulls or the skewed bounding rectangles of
strokes are used instead, at some price of the speed.

1344 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 8, AUGUST 2006

Fig. 4. Examples of detected tables with different structure. Please notice the overtracing, concatenation, modification, and several-in-one-stroke phenomena of the

ruling lines. Some degree of misclassification of writing/drawing from previous modules does not affect the table detection results.

4 OVERALL DETECTION AND CLASSIFICATION SCHEME

As one may have seen, our detection scheme is hierarchical and
procedural. A higher structure is detected only when lower
structure exists, and only when all the features PBF , Pnorm, Pstr,
and Pcon are above their corresponding thresholds can the system
reach the final classification step, which uses a linear classifier that
combines the four high-level features. If the classifier decides that it
is a table, then both the physical and logical structure information is
output, including the number of rows and columns, the sizes of the
table bounding box, the transform matrix between the local table
coordinate (the top-left corner of the table bounding box is the
origin) and the global coordinate, the coordinates of intersection
points among the ruling lines in the local table coordinate, a matrix
indicating whether a cell has content, and which part of a stroke that
forms the table skeleton corresponds to which ruling line, etc. Such
information is valuable for further table manipulation. Concep-
tually, our detection procedure resembles a decision tree (Fig. 3),
which is common in table detection and recognition [4].

5 EXPERIMENTAL RESULTS

Our testing data set has 378 ink notes, which contains 195 hand-
written documents written in English, 84 in Chinese, 44 in French,
and 55 in German. Many ink notes are of multiple pages. They were
collected from many people with different nationalities, by asking

them to rewrite, without any restriction on their writing styles (e.g.,
not necessary to write exactly in the horizontal direction), pages that
were selected by several people from books or magazines across
various categories. They may contain texts, graphics, diagrams, flow
charts, tables, etc. Tables can be drawn at random, large or small,
skewed or not, ruled or unruled. We only deem fully-ruled tables as
real tables. Those that are unruled or semiruled are currently
regarded as nontables because our system is not designed to detect
such kinds of tables.

We adopt the method developed in [17] to evaluate the detection
results quantitatively. This is done at the cell level, i.e., we count the
correspondence between cells of ground truth and those detected,
including correct (one-to-one match), splitting (one-to-many
match), merging (many-to-one match), missing (one-to-zero match),
false alarm (zero-to-one match), and spurious (many-to-many
match). It is easy for human to count the occurrence of different
kinds of cell-level correspondence by directly overlaying the
detected table skeleton over the ink note (Fig. 4 and Fig. 5). The
cell-level detection results are shown in the second row of Table 1.
We also test our system at the table level, i.e., as long as a table is
detected, it is regarded as correct, no matter whether the cells of the
table are all detected correctly. The results are shown in the third
row of Table 1. It can be seen that the accuracy is quite high at both
the cell level and the table level.

Figs. 4 and 5a shows some concrete examples of detected tables,
where the overlaid straight lines are the detected table skeletons.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 8, AUGUST 2006 1345

Fig. 5. Examples of table manipulation. (a) An ink note with a skewed table. (b) The re-orientation and cell right-justification of the table. (c) Resizing and cell left-

justification of the table. (d) Converting the table into a chart. Note that the ruling lines in (b) and (c) are still natural ink strokes.

TABLE 1
Performance of Our Table Detection System at the Cell Level and the Table Level

Please notice the overtracing, concatenation, modification, and
multiple ruling lines that are drawn in one stroke in those figures.
Moreover, some misclassified writing/drawing strokes do not
affect the table detection results.

After table physical and logical structure information is extracted,
table editing can be performed, such as rotation, scaling, moving the
whole table, and alignment of cell content. Some table editing
examples of our ink parser demo system are shown in Figs. 5b and 5c.
Note that the ruling lines therein are still natural ink strokes.
Working with a handwriting recognizer, a handwritten table can also
be converted to a printed table or other graphical objects, e.g., charts,
as shown in Fig. 5d.

Although our system is robust and accurate, there are still several
factors that can cause failure. For example, overly casual drawing of
the table skeletons (Fig. 6a) may make the bounding box or other
ruling lines undetectable, and incorrect grouping or writing/
drawing classification (Fig. 6b) may cause spurious or misdetection
of ruling lines. It is also interesting to note that semantic context also
matters. It is possible that locally an ink object is a table, but globally
it should not be regarded as a table (Fig. 6c). Similar phenomenon
also occurs in other situations, e.g., [16].

6 CONCLUSIONS AND FUTURE WORK

We have presented a robust table detection system that is capable
of extracting free style tables from online handwritten documents.
This is a nontrivial task in that the ruling lines and layout of hand
drawn tables are often far more irregular and complex than those
of printed tables. Our methodology can also be extended and
applied to other graphical objects, such as flowcharts, organization
charts, bar or pie graphs, and annotations, whose structure can be
defined without ambiguity. For example, when the primitive
structure of a graphical object is lines, rectangles, and circles (e.g.,
the diagram in Fig. 6c), our system could detect it with some
changes in detecting the primitive structure and logical structure.

As there are many parameters and thresholds in our system,
currently only a portion of them have been manually turned on our
specially designed test pages which have a dense population of
tables/nontables on each page to facilitate quick human examina-
tion of detection accuracy and speed. They are believed to have
significant influence on the accuracy and the speed. The rest are
fixed to our estimated values. As long as the thresholds are not too
high, it is the final classifier that mainly determines the detection
accuracy. We plan to apply genetic algorithms to tune the thresholds
and parameters in full scale, where the detection speed will also be
considered in order to make our system practical. We would also
like to try other kinds of classifiers other than the linear classifier in
use, such as support vector machines. Moreover, other kinds of
tables should also be considered, such as unruled or semiruled
tables2 [2]. This problem has been tackled for printed tables [6], [8],
[12], but is still not completely solved. Jain et al. [9] also present an
algorithm to detect unruled online tables by assuming that the white

space is sufficient for table isolation. However, for general hand-
written tables in handwritten documents, this problem is not trivial,
because the space that isolates the tables may not be salient and the
space between columns or rows may not be uniform since the
estimation of the directions of columns and rows is usually
inaccurate. For semiruled tables, the ruling lines may be hard to
distinguish from underlines if no a priori knowledge is available.
Hurst [18] also points out that without integrating linguistic
information, some inherent ambiguity in the table structure cannot
be resolved. Finally, the integration of offline or perceptual group-
ing [19] techniques is also valuable, e.g., for improving the treatment
of overtracing and faster spatial grouping and searching.

ACKNOWLEDGMENTS

Junfeng He, Zhicheng Zhong, and Rongrong Wang were visiting
students at Microsoft Research Asia when this work was done.

REFERENCES

[1] G. Nagy, “Twenty Years of Document Image Analysis in PAMI,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 38-62, Jan.
2000.

[2] J.C. Handley, “Document Recognition,” Electronic Imaging Technology,
E.R. Dougherty, ed., Bellingham, Wash.:IS & T/SPIE Optical Eng.,
chapter 8, pp. 289-316, 1999.

[3] D. Lopresti and G. Nagy, “A Tabular Survey of Automated Table
Processing,” Proc. Third Int’l Workshop Graphics Recognition, Recent Advances,
pp. 93-120, 1999.

[4] R. Zanibbi, D. Blostein, and J.R. Cordy, “A Survey of Table Recognition:
Models, Observations, Transformations, and Inferences,” Int’l J. Document
Analysis and Recognition, vol. 7, no. 1, pp. 1-16, 2004.

[5] D. Lopresti and G. Nagy, “Automated Table Processing: An (Opinionated)
Survey,” Proc. Third Int’l Workshop Graphics Recognition, pp. 109-134, 1999.

[6] J.H. Shamilian, H.S. Baird, and T.L. Wood, “A Retargetable Table Reader,”
Proc. IEEE Int’l Conf. Document Analysis and Recognition, pp. 158-163, 1997.

[7] E. Green and M. Krishnamoorthy, “Model-Based Analysis of Printed
Tables,” Proc. IEEE Int’l Conf. Document Analysis and Recognition, pp. 214-
217, 1999.

[8] T.G. Kieninger, “Table Structure Recognition Based on Robust Block
Segmentation,” Proc. Fifth SPIE Conf. Document Recognition, pp. 22-32, 1998.

[9] A.K. Jain, A. Namboodiri, and J. Subrahmonia, “Structure in On-Line
Documents,” Proc. IEEE Int’l Conf. Document Analysis and Recognition,
pp. 844-848, 2001.

[10] A. Laurentini and P. Viada, “Identifying and Understanding Tabular
Material in Compound Documents,” Proc. 11th Int’l Conf. Pattern Recogni-
tion, pp. 405-409, 1992.

[11] J. Sklansky and V. Gonzalez, “Fast Polygonal Approximation of Digitized
Curves,” Pattern Recognition, vol. 12, pp. 327-331, 1980.

[12] Y. Wang, I.T. Phillips, and R.M. Haralick, “Table Structure Understanding
and Its Performance Evaluation,” Pattern Recognition, vol. 37, no. 7, pp. 1479-
1497, 2004.

[13] L.B. Kara and T.F. Stahovich, “Hierarchical Parsing and Recognition of
Hand-Sketched Diagrams,” Proc. 17th ACM Symp. User Interface Software
and Technology, pp. 13-22, 2004.

[14] C. Alvarado, “A Framework for Multi-Domain Sketch Recognition,” Proc.
AAAI Spring Symp. Sketch Understanding, AAAI Technical Report SS-02-08,
Stanford Univ., pp. 1-8, 2002.

[15] S.L. Taylor, R. Fritzson, and J.A. Pastor, “Extraction of Data from
Preprinted Forms,” Machine Vision and Applications, vol. 5, pp. 211-222,
1992.

[16] J.J. LaViola Jr. and R.C. Zeleznik, “MathPad2: A System for the Creation
and Exploration of Mathematical Sketches,” ACM Trans. Computer Graphics,
vol. 24, no. 3, pp. 432-440, 2004.

[17] J. Liang, “Document Structure Analysis and Performance Evaluation,” PhD
thesis, Univ. of Washington, Seattle, 1999.

[18] M. Hurst, “Layout and Language: An Efficient Algorithm for Detecting
Text Blocks Based on Spatial and Linguistic Evidence,” Proc. Document
Recognition and Retrieval VIII (IS & T/SPIE Electronic Imaging), vol. 4307,
pp. 56-67, 2001.

[19] E. Saund, “Finding Perceptually Closed Paths in Sketches and Drawings,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 4, pp. 475-
491, Apr. 2003.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

1346 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 8, AUGUST 2006

2. Our current system can also detect ruled tables with incomplete
bounding boxes.

Fig. 6. Examples of failure cases. (a) Failure caused by overly casual drawing of

table skeletons. (b) Failure caused by incorrect grouping or writing/drawing

classification of the strokes. (c) Whether an ink object is a table is highly

dependent on the semantic context.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

