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Abstract

Structural perception of data plays a fundamental role
in pattern analysis and machine learning. In this paper, we
develop a new structural perception of data based on lo-
cal contexts. We first identify the contextual set of a point
by finding its nearest neighbors. Then the contextual dis-
tance between the point and one of its neighbors is defined
by the difference between their contribution to the integrity
of the geometric structure of the contextual set, which is
depicted by a structural descriptor. The centroid and the
coding length are introduced as the examples of descriptors
of the contextual set. Furthermore, a directed graph (di-
graph) is built to model the asymmetry of perception. The
edges of the digraph are weighted based on the contextual
distances. Thus direction is brought to the undirected data.
And the structural perception of data can be performed by
mining the properties of the digraph. We also present the
method for deriving the global digraph Laplacian from the
alignment of the local digraph Laplacians. Experimental
results on clustering and ranking of toy problems and real
data show the superiority of asymmetric perception.

1. Introduction

Given a set of data points, how are the structures of the
data perceived? From human perception, we can easily
identify two surfaces surrounded by noise points in Figure 1
(a). The correctly perceived structures in this figure consist
of two separated surfaces and a set of noise points (Figure
1 (b)). In this paper, we aim at developing algorithms that
can robustly detect structures of data.

1.1. Previous Work
Classical methods to structural analysis of data include

principal component analysis (PCA) and multidimensional
scaling (MDS) which perform dimensionality reduction by
preserving global structures of data, and non-negative ma-
trix factorization (NMF) [13] which learns local represen-
tations of data. K-means is also frequently employed to
identify underlying clusters in data. Recently, Ding et al.

[11, 12] showed the connection between PCA and K-means,
and NMF and spectral clustering. The underlying assump-
tion behind the above methods is that spaces where data
points (or samples) lie in are Euclidean.

Non-Euclidean perception of data was established by
Tenenbaum et al. [20] and Roweis et al. [17]. In their work,
nonlinear structures of data were modelled by preserving
global (geodesic distances for Isomap) or local (locally lin-
ear fittings for LLE) geometry of data manifolds. These two
methods directed the structural perception of data in mani-
fold ways [18].

In recent years, spectral graph partitioning has become
a powerful tool for structural perception of data. The rep-
resentative methods are the normalized cuts [19] for image
segmentation and the algorithm proposed by Ng et al. [16]
(NJW clustering) for data clustering. Meilǎ and Shi [15]
showed the connection between spectral clustering and ran-
dom walks. For traditional spectral clustering, the struc-
ture of data is modelled by undirected weighted graphs, and
underlying clusters are found by graph embeddings. The
theoretical feasibility of spectral clustering was analyzed in
[23, 4]. The method was detailed in [4] on how to find the
number of clusters from spectral properties of normalized
weighted adjacency matrices.

For semi-supervised structural perception, tasks are to
detect partial manifold structures of data, given one or more
labeled points on data manifolds. Zhou et al. [27, 28] and
Agarwal [1, 2] developed simple but effective methods of
performing transductive inference (or ranking) on data man-
ifolds or graph data. Belkin et al. [6] developed a compre-
hensive framework of manifold regularization for learning
from samples.

1.2. Limitations of Existing Methods
However, there are two issues untouched in the existing

spectral methods for the structural perception of data. The
first is the noise tolerance of algorithms, and the second is
the measure of distances. These two problems are tightly re-
lated. It was reported [5] that spectral methods in manifold
learning are not robust enough to achieve good results when
the structures of data are contaminated by noise points. We
have also found that almost all toy experiments on spectral
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Figure 1. Two half-cylinders data and its clustering and ranking results by existing representative methods. (a) Randomly sampled points
on two half cylinders. There are 800 points on each half cylinder. Then 800 noise points are mixed with these sample points. (b) Expected
structures consist of two half cylinders and a set of dispersed noise points. (c) Clustering by NJW clustering. (d) Clustering by normalized
cuts. (e) Ranking by Zhou’s method. The free parameter α is set to be 0.1 (We find that a large α for Zhou’s ranking yields bad ranking
results. The same case occurs in Section 5.2.). The large dot is the randomly labelled point on one half-cylinder.

−0.02
0

0.02

−0.04
−0.02
0

0.02
0.04

−0.02

0

0.02

0.04

0.06

0.4 0.6 0.8−0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) (b)
Figure 2. Embeddings of the two half-cylinders data. (a) NJW
clustering. (b) Normalized cuts.

clustering and ranking in the existing papers are performed
on clean data. In addition, traditional Euclidean based dis-
tances between two points may not cope with structural per-
ception well.

To see the limitations of existing methods, we illustrate
the results of clustering and ranking on the toy example
shown in Figure 1 (a). We can see that NJW clustering1

(Figure 1 (c)) and normalized cuts2 (Figure 1 (d)) fail to de-
tect the underlying clusters of the data and Zhou’s ranking
[27] (Figure 1 (e)) also yields the wrong transductive infer-
ence of the partial manifold structure. We further visualize
the new representations of data in the 3-dimensional Euclid-
ean space. These representations are produced by three
eigenvectors used in NJW clustering and normalized cuts,
respectively. As shown in Figures 2 (a) and (b), these two
methods cannot separate the hidden structures and noise
points.

To better understand the problem, we need the intuition
of visual perception. Figure 3 (a) shows a simple set of
nine points. The structure of the data is clear, which con-
sists of two clusters identified by the ‘•’ markers (Cluster
I) and the ‘+’ markers (Cluster II). One can retrieve the in-
formation at first sight. However, the Euclidean distances
between the point a and the other ones do not comply with

1For better visualization, we directly show the results without mapping
feature representations onto the unit sphere. Figures 4 (a) and 9 (a) are
treated in the same way.

2We run the Matlab codes of normalized cuts, available at
http://www.seas.upenn.edu/˜timothee.
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Figure 3. Two clusters of points and two kinds of distances. (a)
The data set. Clusters I and II consist of the ‘•’ markers and the
‘+’ markers, respectively. (b) Euclidean distances from the point
a to the other points. (c) Contextual distances, computed using the
coding length.
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Figure 4. 2D representations of two-cluster data in Figure 3 (a).
The presentations are derived by rows of two column eigenvectors
of weighted adjacency matrices corresponding to the second and
third largest eigenvalues. (a) By NJW clustering. (b) By normal-
ized cuts. (c) By perceptual clustering.

our perception (Figure 3 (b)): the distances between point
a and points #8, #9, #10 in Cluster I are larger than those
between point a and points #1, #2 in Cluster II. Figures
4 (a) and (b) illustrate that NJW clustering and normalized
cuts mix the two clusters.

From the above analysis and illustrations, we see that the
Euclidean-based distances between two points cannot cap-
ture the ‘correct’ structure of clusters. This should be the
main reason why traditional spectral methods cannot per-
form well on noisy data.

1.3. Our Contribution
To overcome the limitations of the existing methods, we

contend that the structural perception of data should be per-
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Figure 5. Illustration of a simple cognitive psychological experi-
ment on testing the influence of expectation on perception.

formed using local contexts. More specifically, our work is
different from previous ones in two aspects.
(1) The distance is no longer defined for every two sample

points and the distance is no longer Euclidean based
either. Rather, the distance is defined within contex-
tual sets only and the contextual distance between two
points is defined by the difference of their contribution
to the integrity of the geometric structure of the con-
textual set, where the contextual set consists of a point
and its nearest neighbors to provide the context for the
point.

(2) Furthermore, a digraph is built on the undirected data
to model the asymmetry of perception, which is in-
duced by the asymmetry of contextual distances. As a
result, structural perception can be performed by min-
ing the properties of the digraph. Thus, the applica-
tions of digraph theory can be extended from networks
and the web to general multi-dimensional data.

With contextual distances and digraph embeddings,
structures of data can be robustly retrieved even when there
is heavy noise.

2. From Pairwise Points to Contextual Sets
2.1. A Contextual View on Data Perception

We start with the two clusters in Figure 3 (a). Consider
the perceptual relationship between point b and Cluster I.
It makes sense to say that point b is an outlier with respect
to Cluster I. This is based on the observation that the set
of dot points has a consistent global structure. We consider
point b as an outlier by a comparison between the underly-
ing structures of point b and Cluster I. Equivalently, we re-
trieve the structural information of point b unconsciously by
taking Cluster I as reference. Therefore, we conclude that
the structural perception is relative and context-based. An
isolated point itself is not an outlier, but it may be an outlier
when its neighboring points are taken as reference. Thus,
the set of contextual points should be taken into account in
order to compute distances compatible with the mechanism
of human perception.

2.2. Cognitive Psychological Evidence
Our viewpoint that structural perception is relative and

context-based is also supported by cognitive psychology.
Bruner and Minturn [8] carried out a famous experiment

on testing the influence of expectation on perception. For
example, what is the central pattern in Figure 5 (a)? We per-
ceive 13 in the context of numbers (Figure 5 (b)), whereas
we perceive B in the context of letters (Figure 5 (c)). This
implies that the same physical stimulus can be perceived
differently in different contexts. This proves that the per-
ceptual relationship between two sample points heavily re-
lies on the contextual sets in which they belong to.

2.3. The Contextual Distance
In this section, we present the general definition of con-

textual distances3. It is only defined within contextual sets
of points.

Let S = {x1, . . . ,xm} be the set of m sample points
in Rn. The contextual set Si of the point xi consists of xi

and its nearest neighbors in the Euclidean distance sense,
i.e., Si = {xi0 ,xi1 , . . . ,xiK}, where xij is the j-th nearest
neighbor of xi and K is the number of nearest neighbors.
Here and in the sequel, we set i0 = i.

As we are interested in the geometric structure of Si, we
may have a structural descriptor f(Si) of Si to depict some
global structural characteristics of Si. We notice that if a
point xij complies with the structure of Si, then removing
xij from Si will not affect the structure much. In contrast, if
the point xij is an outlier or a sample in a different cluster,
then removing xij from Si will change the structure signifi-
cantly. This motivates us to define (1) as the contribution of
xij to the integrity of the structure of Si, i.e., the variation
of the descriptor with and without xij :

δfij = |f(Si)− f(Si \ {xij})|, j = 0, 1, . . . , K, (1)

where | • | denotes the absolute value for a scalar or a kind
of norm for a vector. The descriptor f(Si) is not unique.
However, f(Si) needs to satisfy the structural consistency
among the points in Si, in the sense that δfij is relatively
small if xij is compatible with the global structure formed
by sample points in Si and relatively large if not. Then the
contextual distance from xi to xij is defined as

p(xi → xij ) = |δfi − δfij |, j = 0, 1, . . . , K, (2)

where the notation→ emphasizes that the distance is from
xi to xij . Obviously, p(xi → xij ) ≥ 0 and the equality
holds if j = 0.

The contextual distance p(xi → xij ) defined above is
consistent with our contextual view on structural percep-
tion. The set Si, consisting of the point xi and its nearest
neighbors {xi1 , . . . ,xiK}, is taken as the context for com-
puting the distances from xi to its neighbors. The relative
perception is modelled by investigating how much the struc-
ture of Si changes by removing a point from Si. It is worth

3Precisely speaking, the contextual distance defined here is a kind of
dissimilarity instead of a formal distance in the mathematical sense. In
order to compare with the traditional Euclidean distance, however, we still
name it by the distance.



noting that the asymmetry is the special nature of the con-
textual distance defined in (2), because p(xi → xij ) is not
necessarily equal to p(xij → xi) as in the extreme case xi

may even not be in the contextual set of xij . The contextual
distance heavily relies on the structural characteristic of the
contextual set.

2.4. Examples of Contextual Set Descriptors
In this section, we present some examples of contextual

set descriptors which are applied for computing the contex-
tual distances.

2.4.1 Trivial descriptor
In fact, the Euclidean distance is a special case of our con-
textual distance. Let K = 1, and f(Si) = γxi+(1−γ)xi1 ,
where γ < 0 or γ > 1, and the norm in (1) be the Euclidean
norm ‖•‖. Then we have p(xi → xi1) = ‖xi−xi1‖. There-
fore, the contextual distance coincides with the Euclidean
distance in this special case.

2.4.2 Geometric Descriptor: Centroid
Here we present a simple yet effective descriptor of Si by its
centroid. Let K > 1 and x̄i(Si) denote the centroid of Si,
i.e., x̄i(Si) = 1

K+1

∑K
j=0 xij . x̄i(Si) is a type of simple

globally geometric characterization of Si. Removing xij

will cause relatively larger shifting of the centroid than the
other elements in Si if it is not compatible with the underly-
ing global structure of Si. So an alternative descriptor of the
set is f(Si) = x̄i(Si), which is a vector-valued descriptor.

2.4.3 Informative Descriptor: Coding Length
The coding length [14] L(Si) of a vector-valued set Si is
the intrinsic structural characterization of the set. This moti-
vates us to exploit L(Si) as a kind of scalar-valued descrip-
tor of Si, i.e., f(Si) = L(Si). The definition of L(Si) is
presented in Appendix. The allowable distortion ε in L(Si)
is a free parameter and L(Si) is not very sensitive to the

choice of ε. Here we empirically choose ε =
√

10n
K .

Figure 3 (c) illustrates the contextual distances from
point a to the others. We see that the distances to Cluster
II are much larger than those to Cluster I. Hence the contex-
tual distances are much closer to what a human perceives.

3. Digraph Modelling: Bringing Direction to
Data

The asymmetry of contextual distances among points
naturally induces a digraph model to the data. This brings
direction to the undirected data. It is worthwhile to note
that the method of digraph modelling presented here is also
applicable for general asymmetric or directed metrics.

3.1. Digraph on data
We may build a digraph for S. Each point in S is a vertex

of the digraph. A directed edge is put from xi to xj if xj is
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Figure 6. (a) Induced digraph of the two-cluster data in Figure
3 (a). Two nearest neighbors are searched for each point, i.e.,
K = 2. (b) Visualization of the associated W.

one of the K nearest neighbors of xi. The weight wi→j of
the directed edge is defined as

wi→j =




e−
[p(xi→xj)]

2

σ2 , if xj is a nearest neighbor of xi,

0, otherwise,
(3)

where → denotes that the vertex i points to the vertex j,
and σ is a free parameter. The direction of the edge from xi

to xj arises because the distance between them is asym-
metric. Locally, the point xi is connected to its nearest
neighbors {xi1 , . . . ,xiK} by a K-edge directed star (K-
distar). Hence the induced digraph on the data is composed
of m K-distars. Let W ∈ Rm×m denote the weighted
adjacency matrix of the weighted digraph, i.e., W(i, j) =
wi→j . W is asymmetric. Thus the structural informa-
tion of the data is embodied by the weighted digraph, and
data mining reduces to mining the properties of the digraph.
We summarize the algorithm of digraph modelling below.
Algorithm of digraph modelling on data
Given a set of data S = {x1, . . . ,xm}, the digraph can be
constructed as follows:

1. Search K nearest neighbors {xi1 , . . . ,xiK} for each
sample point xi, where K is a parameter.

2. Compute contextual distances p(xi → xij ) accord-
ing to formula (2).

3. Form the weighted adjacency matrix W according to
formula (3).

Here, we present the approach of estimating σ in (3).
Suppose that {p1, . . . , ps} are the s contextual distances
that randomly selecting from r local contexts (r points
along with their nearest neighbors). Obviously, we have
s = r(K +1). Let p̄ = 1

s

∑s
i=1 pi and σp = (1

s

∑s
i=1(pi−

p̄)2)
1
2 . The estimator of σ is given by σ = p̄ + 3σp.

A simple induced digraph on the two-cluster data is il-
lustrated in Figure 6 (a). The asymmetry of the associated
weighted adjacency matrix is shown in Figure 6 (b).



3.2. Global Digraph Laplacian and Alignment of
Local Digraph Laplacians

When the data are modelled by a digraph, data process-
ing reduces to mining the properties of it, which are in gen-
eral revealed by the digraph Laplacian. Therefore, we need
to derive the Laplacian of the digraph. It can be obtained by
the alignment of local digraph Laplacians defined on local
data patches. The procedure is as follows.

Let {xi0 ,xi1 , . . . ,xiK} be the neighborhood of xi and
the index set be Ii = {i0, i1, . . . , iK}, where i0 = i. Sup-
pose that Ỹi = [ỹi0 , ỹi1 , . . . , ỹiK ] is a kind of the rep-
resentations yielded by the digraph embedding. The lo-
cal weighted adjacency matrix Wi is a sub-matrix of W:
Wi = W(Ii, Ii). The local transition probability matrix
Pi of the random walk on the local digraph is given by
Pi = D−1

i Wi, where Di(u, u) =
∑

v Wi(u, v) and zeros
elsewhere. The corresponding stationary distribution vec-
tor πi is the left eigenvector of Pi corresponding to 1, i.e.,
πT

i Pi = πT
i and ||πi||1 = 1. Inspired by [9], we define an

energy function on the global digraph as the following:

R(Ỹ) =
∑m

i=1 αi∑m
i=1 βi

, (4)

where

αi = 1
2

∑K
u,v=0 ‖ỹiu − ỹiv‖2πi(u)Pi(u, v), and

βi =
∑K

v=0 ‖ỹiv‖2πi(v).
(5)

With simple manipulations, we can write αi =
tr(ỸiLiỸT

i ) and βi = tr(ỸiΦiỸT
i ), where

Li = Φi − ΦiPi + PT
i Φi

2
(6)

is the local digraph Laplacian defined on the i-th local patch
and Φi = diag(πi).

The global Laplacian is obtained by aligning all the local
Laplacians. To do so, let Ỹ = [ỹ1, . . . , ỹm], then for every
i, Ỹi should be a sub-matrix of Ỹ. So we can write Ỹi =
ỸSi, where Si is a binary selection matrix 4. Thus we have

α = Σm
i=1αi = Σm

i=1tr(ỸSiLiST
i ỸT ) = tr(ỸL̃ỸT ),

(7)
where

L̃ = Σm
i=1SiLiST

i . (8)

On the other hand, we have β =
∑m

i βi = tr(ỸΦ̃ỸT ),
where Φ̃ = Σm

i=1SiΦiST
i . Finally,R(Ỹ) can be written as

R(Ỹ) =
tr(ỸL̃ỸT )
tr(ỸΦ̃ỸT )

=
tr(YLYT )
tr(YYT )

, (9)

where Y = ỸΦ̃
1
2 is the embedding and L = Φ̃− 1

2 L̃Φ̃− 1
2

is the global Laplacian.
Actually, the global Laplacian can be defined in a dif-

ferent yet simpler manner. Define the global transition

4One can consult [26] for more details.

probability matrix P as P = D−1W, where D(u, u) =∑
v W(u, v) and zeros elsewhere. Let the stationary dis-

tribution of the random walk on the global digraph be π:
πT P = πT and ||π||1 = 1, and Φ = diag(π). In [9], the
digraph Laplacian is defined as L = I−Θ, where

Θ =
Φ

1
2 PΦ− 1

2 + Φ− 1
2 PT Φ

1
2 .

2
. (10)

It is derived by minimizing5

R(Ỹ) =
1
2

∑m
u,v=1 ‖ỹu − ỹv‖2π(u)P(u, v)∑m

v=1 ‖ỹv‖2π(v)
(11)

instead, which can be written as R(Y) = tr(YLYT )
tr(YYT ) . Note

that the two energy functions defined in (4) and (11) are
different. Therefore, the two global digraph Laplacians are
different.

By either definition, YT corresponds to the c eigenvec-
tors of the global Laplacian associated with the c smallest
nonzero eigenvalues. For convenience, we adopt the latter
definition for computation. In this case, the columns of YT

are also the c nonconstant eigenvectors of Θ associated with
the c largest eigenvalues.

Note that for digraphs modelled by our method, there
may exist nodes that have no inlinks. For instance, the bot-
tom node of the digraph in Figure 5 (a) has no inlinks. Thus
the elements in the corresponding column of the weighted
adjacency matrix are all zeros (Figure 5 (b)). And such dan-
gling nodes will not be visited by random walkers. To ad-
dress this issue, we apply the approach [7, 1] by adding a
perturbation matrix to the transition probability matrix

P← βP + (1− β)
1
m

eeT , (12)

where e is an all-one vector and β ∈ [0, 1].

4. Applications: Clustering and Ranking

In this section, we present two applications of the pro-
posed idea to unsupervised and semi-supervised learn-
ing associated with clustering and ranking, respectively.
Given a graph and its weighted adjacency matrix, Ng et
al. [16] proposed the clustering algorithm on an undi-
rected weighted graph, and Zhou et al. [28] formu-
lated the algorithms on how to perform clustering and
ranking on a digraph. Recently, Agarwal [1] extended
the principles of ranking on graph data. In effect,
the clustering algorithms are performed on the nonlin-
ear representations of the original samples that are de-
rived by graph embeddings. Inspired by their work, we
present the perceptual clustering and ranking algorithms.

5One can refer to [9] to know the process of the similar deduction.
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Figure 7. Perceptual clustering on two half-cylinders data. The number of clusters is set to three in advance. We first take mapped points
nearest to the origin as the cluster of noise. Then GPCA [22] is employed to identify the remaining clusters. In this experiment, K = 10.
(a) With 400 noise points. (b) With 800 noise points. (c) With 1200 noise points. (d) With 1600 noise points. The above results are based
on coding length. (e) Results based on centroid.

Algorithm of perceptual clustering
1. Model the digraph of the data and form Θ in (10).
2. Compute the c eigenvectors {y2, . . . ,yc+1} of Θ

corresponding to the first c largest eigenvalues ex-
cept the largest one. These eigenvectors form a ma-
trix Y = [y2, . . . ,yc+1]. The row vectors of Y are
the mapped feature points of the data.

3. Perform clustering on the feature points.

Algorithm of perceptual rankinga

1. Model the digraph of the data and form Θ in (10).
2. Given a vector v whose i-th element is 1 if it corre-

sponds to a labelled point and zeros elsewhere, com-
pute the score vector s = (I − αΘ)−1v, where α is
a free parameter in [0, 1].

3. Sort the scores of s in descending order. The sample
points with large scores are considered to be in the
same class as the labelled point.

aNote that the ranking algorithm is inherited from Zhou’s one [28].

Figure 4 (c) shows the 2D representations of the two-
cluster data in Figure 3 (a). We see that two clusters emerge
in the perceptual feature space: Cluster I is mapped onto a
line, and Cluster II is mapped nearly onto one point. This
simple example illustrates the advantage of contextual dis-
tances in the structural perception.

5. Experiment

We compare the results of traditional algorithms (based
on Euclidean distances) and our proposed algorithms (based
on contextual distances) on clustering and ranking.

5.1. Clustering
On toy data. Figure 7 shows the results of perceptual

clustering on the two half-cylinders data. We see that the
perceptual clustering algorithm detects the real structures
of the data. We observe an interesting phenomenon that
dispersed points in the sample space will be mapped near
the origin in the perceptual feature space. Therefore, the
noise points can be identified as those points near the ori-
gin. Figures 8 (a) and (b) show the 3D representations of
samples in the perceptual feature space. The two surfaces
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Figure 8. Embeddings of the two half-cylinders data in the percep-
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Figure 9. Visualization of handwritten digits clustering. Red dots
represent the digit ‘1’, green ‘2’, and blue ‘3’. (a) NJW clustering.
(b) Perceptual clustering I (based on coding length). (c) Perceptual
clustering II (based on centroid). K = 15 for both perceptual
clustering.

are mapped into two different linear subspaces and noise
points are mapped around the origin.

On handwritten digits. We use all samples of digits
1, 2, and 3 in the test set of the MNIST handwritten digit
database6. There are 1135, 1032, and 1010 samples, re-
spectively. We directly visualize the representations of sam-
ples in the associated feature spaces instead of a quantified
comparison as different clustering methods should be cho-
sen for different distributions of mapped points. Besides,
it is more intuitive for one to compare the distinctive char-
acteristics of the involved algorithms by visual perception.
As shown in Figure 9, the perceptual clustering algorithms
yield more compact and clearer representations of clusters
than the NJW clustering algorithm does. We observe that
different clusters are mapped approximately into different
linear subspaces by perceptual clustering. Such mixed lin-
ear structures can be easily identified by GPCA [22] and the
method in [14]. For each underlying cluster, we find the far-
thest samples from the origin and the nearest from it in the

6http://www.cs.toronto.edu/˜roweis/data.html
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Figure 11. Perceptual ranking on two half-cylinders data. One point is randomly labelled on one of the half cylinders for each trial. Then
we recolor the 800 points that correspond to the first 800 largest ranking scores to be green. In this experiment, K = 10 and α = 0.999.
(a) With 400 noise points. (b) With 800 noise points. (c) With 1200 noise points. (d) With 1600 noise points. The above are results based
on coding length. (e) Result based on centroid.

(a)

(b)
Figure 10. Distribution of handwritten digits in the perceptual fea-
ture space. The first ten-column digits are the farthest from the
origin and the second ten-column digits are the nearest to the ori-
gin. (a) Based on coding length. (b) Based on centroid.

perceptual feature space. The results are shown in Figure
10. As expected, noise samples are near to the origin and
‘good’ samples are far from it.

5.2. Ranking
On toy data. Figure 11 shows the results of perceptual

ranking on the two half-cylinders data. The perceptual rank-
ing algorithm accurately labels the points on the labelled
surface. The results are robust against noise. In contrast,
the result by Zhou’s ranking is not satisfactory (Figure 1
(e)).

On family photos. The database used in this experi-
ment is a collection of real photos of a family and its friends
[10, 21]. The faces in photos are automatically detected,
cropped, and aligned according to the positions of eyes.
There are all together 980 faces of 26 persons. Figure 12
shows one cropped face of each person. We first apply the
algorithm of local binary pattern (LBP) [3] to extract the
expressive features, and then exploit dual-space LDA [24]
to extract the discriminant features from the LBP features.
Then Zhou’s ranking and our perceptual ranking are per-
formed, respectively. The ratio of the number of correctly
ranked faces to the total number of faces in the first 50
ranked faces is considered as the accuracy measure. Specif-
ically, let Z denote the ranked faces and z the correctly
ranked ones. Then, the accuracy is defined as z

Z . Only the
photos of five members in the family are ranked. For each
person, the ranking experiment is performed for two hun-
dred trials, and the mean accuracy is illustrated in Figure 13

Figure 12. Family photos. The identities of first five photos in
the first row are Mingming, mama, papa, grandma, and grandpa,
respectively. The numbers of cropped faces of them are 153, 171,
152, 94, and 61, respectively.

(a), where perceptual ranking shows the superiority. Fig-
ures 13 (b) and (c) indicate that perceptual ranking is robust
with the variations of α and K .

6. Conclusion
We propose a new perspective on structural perception of

data. We locally define contextual distances between nearby
points based on the geometric descriptors of associated con-
textual sets. The asymmetry of contextual distances natu-
rally induces a digraph on data to model the global struc-
ture of data, whose directed edges are weighted by the ex-
ponential function of contextual distances. As a result, the
structural perception of data can be achieved by mining the
properties of the digraph. We test the proposed asymmetric
perception based algorithms on data clustering and ranking.
Experiments show the superiority of our approaches.
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Appendix
Coding Length. Let Xi = [xi,xi1 , . . . ,xiK ] and x̄i =

1
K+1Xie, where e is the K + 1 dimensional all-one vector.
Then the matrix of centered points is written as X̄i = Xi−
x̄ieT , where T denotes the transpose of a matrix. The total
number of bits needed to code Si is

L(Si) =
K + 1 + n

2
log det(I +

n

ε2(K + 1)
X̄iX̄T

i )

+
n

2
log(1 +

x̄T
i x̄i

ε2
), (13)
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Figure 13. Ranking results on family photos. (a) From left to right, the results correspond to the identities of Mingming, mama, papa,
grandma, and grandpa. In this experiment, K = 7 and α = 0.9 for both perceptual ranking, and α = 0.1 for Zhou’s ranking. (b) Variation
of accuracy with α in the case of K = 7. (c) Variation of accuracy with K in the case of α = 0.9. (b) and (c) are both the results of
perceptual ranking on Mingming’s photos.

where det(•) is the determinant operator and ε is the allow-
able distortion. In fact, the computation can be considerably
simplified by the commutativity of determinant

det(I +
n

ε2(K + 1)
X̄iX̄T

i ) = det(I +
n

ε2(K + 1)
X̄T

i X̄i)

(14)
in the case of K + 1 � n. One can refer to [14] for more
details.
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