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Abstract

In this work, we address the problem of performing class
specific unsupervised object segmentation, i.e., automatic
segmentation without annotated training images. We pro-
pose a hybrid graph model (HGM) to integrate recognition
and segmentation into a unified process. The vertices of a
hybrid graph represent the entities associated to the object
class or local image features. The vertices are connected
by directed edges and/or undirected ones, which represent
the dependence between the shape priors of the class (for
recognition) and the similarity between the color/texture
priors within an image (for segmentation), respectively. By
simultaneously considering the Markov chain formed by the
directed subgraph and the minimal cut of the undirected
subgraph, the likelihood that the vertices belong to the un-
derlying class can be computed. Given a set of images
each containing objects of the same class, our HGM based
method automatically identifies in each image the area that
the objects occupy. Experiments on 14 sets of images show
promising results.

1. Introduction

Object segmentation is one of the fundamental prob-
lems in computer vision. Its goal is to segment an image
into foreground and background, with the foreground solely
containing object(s) of a class (Figure 1). There are two cat-
egories of algorithms: supervised and unsupervised. Super-
vised algorithms require either manually segmented masks
in training images [10, 18, 22], specify shape templates
[7, 14, 18, 23, 24], or other kinds of priors (e.g., object part
configuration [21] or class fragments [4]). These algorithms
may be applicable to a particular object class [23], a range
of objects [14, 22], or object classes [4, 7, 10, 18, 21, 24]
provided that the class dependent priors are available. How-
ever, as a practical object recognition system needs to han-
dle a large number of classes of objects and most classes
may require many training samples due to significant intra-
class shape and appearance variances, it is important that
the learning does not involve any human interaction. This
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Figure 1. Our HGM based object segmentation. Inputs: A set of
images each consisting of objects (foreground) of a class and dif-
ferent backgrounds. Outputs: Regions solely containing objects of
the class. The whole process is fully automatic.

makes unsupervised algorithms more appealing. There has
been sparse research in this direction. Borenstein and Ull-
man [5] used the overlap between automatically extracted
object parts (or fragments) to determine the foreground and
the background. As individual parts are considered inde-
pendently, the approach is prone to wrongly judge back-
ground clutters as foreground parts. Winn and Jojic [19]
combined all images together to find a consistent segmenta-
tion based on the assumption that the object shape and color
distribution pattern are consistent within class and that the
color/texture variability within a single object of a class is
limited. Moreover, each image should only contain one ob-
ject of the class. Rother et al. [16] showed that it is possible
to use only two images to segment their common parts si-
multaneously. They required the common parts to have sim-
ilar shape and color/texture. Russell et al. [17] segmented
images in multiple ways and then borrowed techniques from
document analysis to discover multiple object classes. Their
assumption was that some regions in some of the segmenta-
tions are correct for each object. As segmentation precedes
class discovery, it is usually hard to have accurate segmen-
tation. Due to the limitations of these existing methods, we
aim at proposing a novel unsupervised algorithm that can
produce more accurate object boundaries for images of ob-
jects of the same class, where the assumption on the vari-
ance of object shape and color/texture is much weaker and
images can contain multiple objects.

To ensure robustness, we follow the doctrine that object
segmentation should be handled in parallel to object recog-
nition [10, 11, 18, 19, 21, 24] as they are strongly coupled
problems. Although no annotated training images are avail-



able, as long as there are enough images, the common pat-
terns of the object class will appear frequently and the effect
of the background will fade out as it is much less structured
compared to the objects. So our target is to segment a large
number of images simultaneously. As we will not assume
small intra-class shape variance (e.g., Figure 1(a)), unlike
[10, 18, 24], we do not expect that there will be a global
shape prior for recognition. Therefore, we adopt local shape
priors based on the work of Agarwal and Roth [2]. We first
extract the object parts using an interest points detector [9].
The object parts and the weak spatial relationship among
them form our shape priors. The local shape priors provide
very weak top-down constraint on the object shape, as the
object parts are only sparsely distributed across the objects,
and very often they also reside in the background. On the
other hand, like [11], we also oversegment the images into
superpixels [13] and group homogeneous superpixels into
relatively large subregions [20]. The image-based grouping
operators also provide a very weak bottom-up constraint on
the object shape. To combine the top-down and the bottom-
up information and bridge the gap between them, we pro-
pose a hybrid graph model (HGM, Figure 2) that describes
the relationship among the object parts and the superpixels.

The vertices of a hybrid graph represent the entities as-
sociated to the object class or local image features, e.g., ob-
ject parts and superpixels. The vertices are connected by
directed edges and/or undirected ones. A directed edge rep-
resents the dependence between the entities that it connects
(for recognition), while an undirected edge represents the
similarity between the entities (for segmentation). The like-
lihood that the entities belong to the underlying class can be
computed by solving an optimization problem that merges a
random walk on the directed subgraph and the minimal cut
of the undirected subgraph.

Using the HGM, we can integrate the recognition and
the segmentation in a unified framework and form a global
decision on the boundaries of objects. Compared to the pre-
vious unsupervised algorithms [5, 16, 19, 17], the main ad-
vantages of our HGM based method are:

- Larger variation in shape (including position, size,
pose, and profile) is allowed within a class.

- Larger variation in color/texture is allowed not only
within class but also within object.

- Multiple objects of the same class are allowed in each
image.

- More accurate output of object boundaries.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the general formulation of a hybrid graph
model. Section 3 details our HGM based object segmen-
tation approach. Section 4 presents an optional algorithm
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Figure 2. An illustration of the hybrid graph. A vertex denotes an
entity in reality. A directed edge represents the relation of condi-
tional dependence between a pair of entities. An undirected edge
represents the relation of homogeneous association between a pair
of entities. Between each pair of vertices, there are at most three
edges: two directed edges and one undirected edge. In some sce-
narios, it is possible that some vertices are isolated.

for performance improvement. Section 5 shows the experi-
ments and results. And Section 6 concludes this paper.

2. The Hybrid Graph Model
2.1. The Hybrid Graph

From previous observations, we need to model the rela-
tionship between shape and color/texture at the same time.
There are two types of relationship among the entities:

¢ Conditional Dependence
The conditional dependence represents the relation of
the occurrence of one entity being dependent on the
occurrence of the other. It is directed and asymmet-
ric. In our object segmentation task, it represents the
concurrence of the object parts.

< Homogeneous Association
The homogenous association usually measures the
“similarity” among entities. It is undirected and sym-
metric. In our case, it represents the color/texture sim-
ilarity and the spatial adjacency among superpixels.

Let V = {v1, -+ ,v,} be n entities. Then by considering
the above two types of relationship, we have two matrices:

1. Conditional Dependence Matrix P:

P = [pij]nxnv

where p;; measures the conditional dependence of v;
on vy .

2. Homogeneous Association Matrix A:
A= [aij]nxna

where a;; measures the homogeneity between v; and
Vj.

Therefore, a general hybrid graph (Figure 2) G = (V, E)
consists of a finite vertex set V" and an edge set £/ with each



edge connecting a pair of vertices. The weights assigned to
directed edges and undirected ones correspond to matrix P
and matrix A, respectively.

2.2. Computing the Likelihood Using the HGM

Given the relationship among the entities, it is possible
to infer the likelihood of each entity belonging to the ob-
ject. Suppose each vertex 7 is associated with a likelihood
m;. From the directed component of the hybrid graph, if v;
depends on v;, we may expect that v; is more important than
v; and v; is more likely to belong to the object. Hence, the
interdependence among the entities forms a Markov Chain
with the transition matrix P. Ideally, like PageRank [6], this

results in a stationary distribution @ = (71, ...,7,)" of P
that assigns each entity a likelihood:
7TTp=77T. (D

On the other hand, from the undirected component of the
hybrid graph, if two entities v; and v; are strongly associ-
ated, they are more likely to belong to the object or back-
ground simultaneously. So the segmentation should mini-
mize the cut cost

Zaij(m—ﬂj)Z. (2)
4,J

Putting the above two criteria together, we have an opti-
mization problem to calculate the likelihood vector 7 :

min||PT?—?HQ—FaZaij(m—ﬂj)Q, 3)
i,
subject tom I 7@ = 1,

where « is a positive parameter used to balance the effects
of the two criteria. In our experiments, we fix « = 1. The
solution to problem (3) is the eigenvector associated to the
minimum eigenvalue of the following matrix:

(I — P)(I —PT) 4+ Ly, 4)

where L4 is the Laplacian matrix of the undi-
rected component: Ly = Dy — A with Dy =
diag{>>"_, a1j,---, >}  an;}, and I is the identity
matrix.

3. HGM Based Object Segmentation

Our HGM based object segmentation algorithm is out-
lined in Figure 3. In the following, we describe details of
each step.

3.1. Acquiring Prior Information

We first resize all images to about the same size, with
the longer side being 320 pixels. Then the remaining pre-
processing procedure mainly aims at acquiring the prior in-
formation of the object class.
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(2.4) Oversegmentation

(2.3) Visual words
(2) Acquiring prior information

. Object part . Superpixel

(3) Defining a hybrid graph model

(4) Mask map

Figure 3. Illustration of HGM based segmentation. Given an im-
age (1), a mask map (4) has to be learnt. To this end, we ob-
tain object parts (2.1) using the Harris interest point detector and
group the pixels into superpixels (2.2). Then we further cluster
object parts and superpixels into visual words (2.3) and mid-level
oversegmentation (2.4), respectively. Next, we incorporate the ac-
quired priors into an HGM by defining the conditional dependence
matrix P according to shape priors and the homogenous associa-
tion matrix A according to the color/texture priors. With the mask
map (4) computed from the HGM, the image can be easily seg-
mented (5).

(5) Segmentation

3.1.1 Acquiring Local Shape Priors

Our local shape priors consist of visual words [17] and the
spatial distances between them. A visual word is the center
of a cluster of local windows that have similar appearance.
It represents the whole cluster and is a feature of local ap-
pearance of an object class (e.g., the tyres of cars). The
aforementioned “object part” is an instance of the cluster
that a visual word represents.

1. Building the Codebook

We follow the methods in [2, 10]. Firstly, a number of
images are randomly chosen from all provided images and



are converted to grayscale. These images are considered as
“special” self-training images for extracting the shape pri-
ors of the class. Secondly, object parts with rich textures
are detected by extracting windows of size 25 x 25 around
the points detected with the Harris interest point detector
[9] (Figure 3(2.1)). Thirdly, all detected parts are clustered
into several clusters by agglomerative clustering [10] (Fig-
ure 3(2.3)). All the cluster centers form the visual words
that describe the local appearances of the class. The code-
book consists of all the visual words. It can be refined by
HGM for higher accuracy. We defer the details until Sec-
tion 4.

2. Building the Spatial Relation Table

As we are to address larger shape variation, unlike de-
formable templates [7, 14, 18, 23, 24] and implicit shape
model [10], we can only assume very weak shape config-
urations. We hence only consider the spatial distance be-
tween visual words. By iterating over all selected images
and matching visual words to every detected object parts
using NGC (Normalized Grayscale Correlation) measure
[10], we have a table of the spatial relation between pairs
of visual words:

[vw;, vwj, di; ~ N(ij, 0i5)), ©)

where vw; and vw; are two visual words and N(;Lij, O’ij)
is a Gaussian that fits the distribution of the spatial distance
d;; between object parts matched to vw; and vw;. Unlike
[2], which also considered direction between object parts,
we ignore the direction because we allow arbitrary object
orientation.

3.1.2 Acquiring Color/Texture Priors

Color and texture are also features of objects. As object re-
gions should consist of subregions that are homogeneous in
color or texture, for computational efficiency, we shall not
consider pixel level segmentation. So we first oversegment
the images into superpixels [13] (Figure 3(2.2)) then use
the mid-level clustering algorithm proposed in [20] to group
the superpixels into much larger subregions (Figure 3(2.4)).
Then the similarity between superpixels can be measured
by whether they belong to the same subregions. Using mid-
level clustering results as the similarity measure is superior
to directly using pairwise similarities as in [15], because the
clustering algorithm in [20] incorporates more information
to judge the homogeneity of a subregion.

3.2. Learning Mask Maps via HGM

Given an image, we aim at learning a mask map that
gives each superpixel a probability of lying inside object(s).
Our basic notion is to integrate all the priors into a unified
framework. However, there is difficulty in directly applying
shape priors to superpixels and color/texture priors to object

parts, because object parts are square while superpixels are
irregular. With HGM, we can overcome this difficulty.

3.2.1 The Hybrid Graph for Object Segmentation

Our hybrid graph G = {V, E'} for object segmentation (Fig-
ure 3(3)) has two types of vertices: V = V,, UV, where V,,
is the set of vertices representing object parts and V; denotes
superpixels. The vertices in V), are mainly connected by di-
rected edges and those in V; are connected by undirected
ones. Initially, the shape priors are applied to object parts,
and color/texture priors are applied to superpixels. In order
to make these two different priors interact with each other,
vertices in V}, can not only connect to each other but also
connect to those in V; by undirected edges. In such a man-
ner, via the extra undirected edges, shape priors can also
act on superpixels and color/texture priors can also act on
object parts as well. Then the learning process is achieved
by coupling two different subsystems: a recognition sys-
tem represented by the directed subgraph playing the role
of finding the object parts belonging to the object(s) and
a segmentation system represented by the undirected sub-
graph that is responsible of grouping superpixels. The two
subsystems are coupled by the extra undirected edges. Next,
we have to define the conditional dependence matrix P and
the homogeneous association matrix A.

3.2.2 Defining Conditional Dependence Matrix P

In the following, we cast the recognition procedure into the
HGM via defining the conditional dependence matrix P ac-
cording to the spatial configuration among the object parts
detected in an image. In the HGM, a vertex v; € V), denotes
an object part O;, observed at location /;. Let e; be the event
of [0;, ¢;] being observed. For an object class C, we intend
to estimate the likelihood of each object part lying inside
the object(s) of C. The likelihood can be measured by the
following conditional probability:

T, = P(el\C)

As no annotated images are available, it is not easy to de-
fine the object class C explicitly. So directly calculating the
likelihood is difficult. We therefore regard 7;’s as latent
variables and try indirectly calculating it as follows:

Z P(e,;|C)P(ej|e,-, C)

i#]

ZmP(eﬂei,C).

i

T = P(ej|C) =

Comparing the above equation with equation (1) reveals
that p;; should be defined as the conditional dependence of
ejone;, ie., p;; = P(ejle;,C). With the event e; fixed, e,



is equivalent to a new event &;; = [0;,0;,d;;| that O; is
observed at the location with distance d;; from O;. Hence

pi; = P(ej|ei7C) O(P(é”‘C)

To compute p;;, we have to estimate P(€;;|C). By matching
O; and O; to the codebook of the object class C, we obtain
a set of interpretations Z;; = {I;/j/|I;/; is the event that
O; and O; are matched to the visual words vw; and vw;/,
respectively} (i.e., O; and O; are interpreted as the visual
words vw;: and vw;/, respectively). Then

P@ylc) = Y P(Iiy|C)P &Ly, C)
I,i/jzeL'j

Z P(Ii/j/ |C)P([vwi/, ij/,dq;j]‘li/j/7C),
I,L/jIEIi]'

where P(l;;/|C) can be computed as ﬁ assuming
ij
the independence on C and the equal probability of each
event, and P([vw;, vw;s, d;;]|1i7;:,C) can be computed as
i — s r)? .
Qﬂlg exp W) due to equation (5).
il o I
As mentioned, the shape priors cannot be directly ap-
plied to superpixels. So the matrix P is only defined on
the vertices of object parts. To be precise, the matrix P is
defined as the following:

o %7 lf’UiEVp,UjEVp,Z#j,
Dij = k o .
0, otherwise.

3.2.3 Defining Homogeneous Association Matrix A

Homogeneous association is defined on both object parts
and superpixels. We expect that spatially close entities have
similar likelihood, and object parts should act on nearby su-
perpixels and vice versa. Therefore, the weights are defined
differently according to the types of the vertices:

exp(—r1d;;) + sij,

exp(—radij),
exp(—md?j),

ifv; € VS,Uj e Vs,
ifv; € Vv, €V, (6)
ifv; € va,vj S Vp,

a,;j =

1, ifv; and v; are in
the same subregion,

0, otherwise,

where s;; =

where d;; is the spatial distance between the entities (object
parts or superpixels), and in our experiments 1 and ko are
chosen as 0.04 and 0.2, respectively. The extra s;; here
further encourages the superpixels belonging to the same
subregion (Figure 3(2.4)) to have similar probability.

3.2.4 Obtaining Mask Maps and Segmentation Results

By solving the minimum eigenvalue problem described in
Section 2.2, we obtain a likelihood vector giving every ob-
ject part and superpixel the probability of lying inside de-
sired object. In this work, the segmentation task only needs

the probability of superpixels. However, as mentioned, the
calculation for that of object parts cannot be waived, be-
cause object parts carry shape priors that cannot be mod-
elled by superpixels.

Given a mask map (Figure 3(4)), where the intensities
have been normalized to between 0 and 1, the mask map is
firstly segmented into a few regions by agglomerative clus-
tering: the two nearby regions having the closest intensi-
ties are merged, as long as the difference between their in-
tensities stays below a certain threshold 0.03. To arrive at
the final segmentation result (Figure 3(5)), we next select a
threshold ¢ using Otsu’s discriminant analysis [8]. At last,
we adopt a greedy region growing based method: beginning
with the regions with the intensities greater than (1 + ¢)/2,
merge the next adjacent region with the highest intensity
until all the intensities of adjacent regions fall below ¢.

4. Improving Performance by Refining the
Codebook

The goal of constructing a codebook is to select impor-
tant features that well describe the local appearance of an
object class. However, interest point detectors alone are not
enough to select good features because they just consider
the local information in a single image. The accuracy of
codebook can be improved by our HGM. Given n object
parts {O1, -+, O, } extracted from images and their clus-
tering result {C1, - - -, C,, }, instead of using all the clusters
as visual words to construct the codebook, we aim at se-
lecting k (k < m) clusters that are “important” to an object
class.

The importance of a cluster can be computed from the
importance of the object parts that belong to it. To this end,
we design a hybrid graph G to calculate a likelihood (or
score) vector 7, with each 7; giving an object part O; the
“probability” of being important. Its vertices are the object
parts. In the following, we define the matrices P and A.

Let O; be the event that the object part O; is important.
Following the similar argument in Section 3.2.2, we have
that the entry p;; of the conditional dependence matrix P
should be in the form:

pij = P(0,]0;),

which is the probability of an object part O; being impor-
tant, given that another object part O; is important. To ap-
propriately define P(0,|0;), we propose the following two
principles:

1. If an object part is important, then the object parts similar
to it should also be important, i.e.,

P(0,]0;) o Sim(0;, 0;).
2. If an object part is distinctive, it should be important, i.e.,



In this work, we use the Euclidean distance dy(O;, O;) be-
tween their grayscale vectors to measure the similarity be-
tween O; and O;. The distinctiveness of an object part is
defined according to a heuristic notion: an object part is
distinctive if there is another object part which is close to
it in space, but far away from it in texture. Therefore, the
distinctiveness of the part O; can be computed as:

dSt(Oj) = moax dg(O, O])/dS(O, Oj)7

where O is another object part that is detected in the same
image with O; and d,(O, Oy) is the spatial distance be-
tween O and O;. Summing up, we may make P(0O,|0;)
proportional to p;;, where

Pij = exp(—Ady(0;, 0;)/dst(0;)),

in which A = 0.2 is a parameter. Consequently, p;; is de-
fined as

pij = Dij/ 2y Pijr

by normalizing the probability to 1. With this definition,
an object part will have a high importance score if there
are many other object parts similar to it and it is distinctive
itself.

On the other hand, the homogeneous association matrix
A is defined to encourage that the object parts belonging to
the same cluster to have a close score:

L
aij = 0’

By solving the minimum eigenvalue problem in Section
2.2, we have the importance of each part. Then for a cluster
C;, its importance is computed according to the scores of
its member object parts:

if O; and O; belong to the same cluster,
otherwise.

Imp(C) = |c 3w,
Oj eC;

where |C;| is the number of parts belonging to C; and 7;
is the importance of part O;. Note that we favor clusters
with wide coverage (more member parts) by multiplying
the sum of scores with |C;|. Then the clusters are sorted
in descending order of their importance, and we select the
top k (k = 30) clusters with positive importance scores to
construct the codebook. In the experiments, we find that
this approach can make the segmentation more accurate.

5. Experimental Results

We apply HGM to 12 public image sets with 3200 im-
ages in total: ten image sets with 1300 images are from
Corel photo CDs [1], and the other two sets (Airplane and

object # of images performance
class total | special | recall | precision
Airplane 1074 200 0.8060 | 0.7638
Antique 100 60 0.7661 | 0.8073
Bus 100 60 0.8597 | 0.8056
Cat 100 60 0.7168 | 0.8019
Dinosaur 100 60 0.9785 | 0.9074
Dog 200 60 0.7291 | 0.6819
Eagle 100 60 0.8760 | 0.8059
Leopard 100 60 0.7587 | 0.7045
Motorbike | 826 100 0.8526 | 0.8289
Old Car 200 60 0.8096 | 0.7432
Owl 100 60 0.9068 | 0.8184
Plane 200 60 0.8516 | 0.7947
Average - - 0.8240 | 0.7866

Table 1. Evaluation results on 12 object classes. “# special im-
ages” refers to the number of “special” self-training images for
extracting the shape prior (Section 3.1.1).

Motorbike) with 1900 images are from Caltech [12] (Ta-
ble 1). Each set consists of a number of images each con-
taining objects of the same class in a variety of positions,
sizes, poses, and profiles. After tweeking on the Bird im-
age set of Corel !, we fix the parameters and apply them to
all experiments which are of totally different object classes.
Our system automatically outputs the foreground of the im-
ages. The numbers of “special” self-training images (Sec-
tion 3.1.1) for each object class are also listed in Table 1.

Figure 4 shows some examples of segmentation results.
We only present five examples for each class due to the page
limit. To give a quantitative evaluation of our approach, we
acquire ground truth masks manually. Let A be the ground
truth mask, and B be the mask output by our system. We
define recall and precision as follows:

recall = |AN B|/|A|, precision =|ANB|/|B|, (7)
where |.| denotes the area of a region. Recall and precision
are two competitive measurements. It is very easy to make
only one of them high, but the segmentation is good only
when both of them are high. Table 1 shows the evaluation
results on all the 12 image sets, where for each object class
all the images are used to compute those values because the
whole segmentation process is fully automatic. One can see
that the performance of HGM is quite satisfactory.

That the performance varies on different data sets is due
to our assumption: similar non-class clutters should not ap-
pear frequently in the images. Otherwise, our system will
judge them to be part of the object (e.g., the shadow of cars
will be judged as part of the cars. And please also refer
to the second row of Figure 4, where the labels are always

IParameter selection is unavoidable, as in those unsupervised algo-
rithms [5, 16, 17, 19].



Figure 4. Some examples of segmentation results of the 12 object classes. Each row is of the same class.

beside the antiques.). Without additional class specific in-
formation, such errors are hard to be corrected.

Comparison Results

We also apply HGM to two object classes (side view of Cars
and Horses) that have been used by LOCUS [19]°. The
shape variation within class and/or color/texture variation
within object in these two image sets are smaller than those
in the sets we have just presented above. We use the same
evaluation metric “accuracy” defined in [19] to measure the
performance of HGM:

“accuracy” = (|CLp|+ |CLg|)/[Image|,  (8)

2As listed in the introduction, we are only aware of four papers on
unsupervised object segmentation [5, 16, 17, 19]. However, [16] and [17]
actually address slightly different problems from ours. So we mainly focus
on comparing with LOCUS [19], which was claimed to be more accurate
than [5].

where C'Ly and C'Lp are the correctly labelled foreground
and background pixels, respectively, and Image is the
whole image. Note that their “accuracy” is a different
measure from our recall and precision defined in equation
(7). For comparison, we quote results from Borenstein et
al. [3] which requires 54 hand segmented training data
for the Horse image set, and LOCUS [19] which is also
an unsupervised object segmentation algorithm. As shown
in Table 2, HGM achieves higher segmentation accuracies
than those two previous approaches. This is mainly due
to the mid-level clustering algorithm [20] (Figure 3(2.4))
that HGM adopts, which preserves boundaries of homo-
geneous color/texture during its grouping process. On the
other hand, the extra s;; defined in equation (6) encourages
HGM to segment images along these boundaries. Notice
that HGM segments images fully automatically. In con-
trast, as mentioned in [19], LOCUS requires some effort



object # of “accuracy” (defined in equation (8))
class | images | Borensteinetal. | LOCUS | HGM

Car 50 - 0.914 0.955
Horse 200 0.936 0.931 0.959

Some segmentation results of the two object classes.
Left: One of input images. Middle: Result of LOCUS,
adapted from [19]. Right: Result of HGM.

i

Table 2. Comparison with Borenstein et al. [3] (supervised) and
LOCUS [19] (unsupervised) on the two image sets they used.

in choosing some images (without segmentation) to learn
a class model. And LOCUS also needs some easy manual
work like flipping asymmetric objects to face a consistent
direction (please notice the different directions that objects
face in Figure 4).

6. Conclusion

In this work we propose HGM for performing class spe-
cific object segmentation without annotated training im-
ages. The core is a general learning algorithm based on
hybrid graph topology. Object segmentation is achieved
by coupling recognition and segmentation: We firstly ob-
tain local shape priors of an object class (for recognition)
and color/texture priors of an image (for segmentation),
and then use a hybrid graph model to integrate shape and
color/texture priors into a unified framework. A mask map
is computed for each image by solving an eigenvalue prob-
lem. The experiments on 14 object classes with 3450 im-
ages in total show satisfactory results.

It is worth noting that HGM is a general framework. It
can be applied to various problems as long as the meanings
of the graph vertices, the relationship represented by the di-
rected/undirected edges, and the two matrices P and A can
be interpreted appropriately. We have demonstrated its gen-
erality by using it to refine our codebook (Section 4). We
are seeking wider applications of HGM in parallel to further
improve current system.
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