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Abstract

Dimensionality reduction plays a fundamental role in
data processing, for which principal component analysis
(PCA) is widely used. In this paper, we develop the Lapla-
cian PCA (LPCA) algorithm which is the extension of PCA
to a more general form by locally optimizing the weighted
scatter. In addition to the simplicity of PCA, the benefits
brought by LPCA are twofold: the strong robustness against
noise and the weak metric-dependence on sample spaces.
The LPCA algorithm is based on the global alignment of
locally Gaussian or linear subspaces via an alignment tech-
nique borrowed from manifold learning. Based on the cod-
ing length of local samples, the weights can be determined
to capture the local principal structure of data. We also
give the exemplary application of LPCA to manifold learn-
ing. Manifold unfolding (non-linear dimensionality reduc-
tion) can be performed by the alignment of tangential maps
which are linear transformations of tangent coordinates ap-
proximated by LPCA. The superiority of LPCA to PCA and
kernel PCA is verified by the experiments on face recogni-
tion (FRGC version 2 face database) and manifold (Scherk
surface) unfolding.

1. Introduction

Principal component analysis (PCA) [13] is widely used
in computer vision, pattern recognition, and signal process-
ing. In face recognition, for example, PCA is performed
to map samples into a low-dimensional feature space where
the new representations are viewed as expressive features
[21, 26, 22]. Discriminators like LDA [2, 29], LPP [12], and
MFA [31] are performed in the PCA-transformed spaces.
In active appearance models (AAM) [8] and 3D morphable
models [5], textures and shapes of faces are compressed in
the PCA-learnt texture and shape subspaces, respectively.
Deformation and matching between faces are performed
using these texture and shape features. In manifold learn-
ing, tangent spaces of a manifold [14] are presented by the
PCA subspaces and tangent coordinates are the PCA fea-
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Figure 1. Principal subspaces by PCA (a) and LPCA (b) (K = 5).
Dotted lines denote the principal directions of unperturbed data
(first row). Solid lines denote the principal directions of perturbed
data (second and third rows).

tures. The representative algorithms in manifold learning
like Hessian Eigenmaps [9], local tangent space alignment
(LTSA) [33], S-Logmaps [7], and Riemannian normal co-
ordinates (RNC) [15] are all based on tangent coordinates.
In addition, K-Means, the classical algorithm for cluster-
ing, was proven equivalent to PCA in a relaxed condition
[32]. Thus, PCA features can be naturally adopted for clus-
tering. The performance of the algorithms mentioned above
is determined by the subspaces and the features yielded by
PCA. There are also variants of PCA, such as the probabilis-
tic PCA [24], the kernel PCA (KPCA) [20], the robust PCA
[25], the weighted PCA [17], the generalized PCA [27].

However, PCA has some limitations as well. First, PCA
is sensitive to noise, meaning that noise samples may incur
significant change of principal subspaces. Figure 1 (a) il-
lustrates an example. We can clearly observe the instability
of PCA with perturbed sample points. To address this is-
sue, the robust PCA algorithm [25] was proposed but with
the sacrifice of the simplicity of PCA. The weighted PCA
[17] was developed to perform smoothing on local patches
of data in manifold learning. The authors used an itera-
tive approach to compute weights, whose convergence can-
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not be guaranteed. Besides, the weighted PCA in [17] is
performed on local patches of data. The authors did not
discuss how to derive the global projection matrix from
the locally weighted scatters. Second, in principle, PCA
is only reasonable for samples in Euclidean spaces where
distances between samples are measured by l2 norms. For
non-Euclidean sample spaces, the scatter of samples cannot
be represented by the summation of Euclidean distances.
For instance, histogram features are non-Euclidean. Their
distances are better measured by the Chi square. There-
fore, the principal subspaces of such samples cannot be op-
timally obtained by the traditional PCA. The KPCA algo-
rithm was designed for extracting principal components of
samples whose underlying spaces are non-Euclidean. How-
ever, KPCA cannot explicitly produce principal subspaces
of samples, which are required in many applications. Be-
sides, KPCA is also sensitive to noise data because its cri-
terion for optimization is intrinsically equivalent to PCA.

In this paper, we aim at enhancing the robustness of PCA
and freeing it from the limitation of metrics at the same time
with a Laplacian PCA (LPCA) algorithm. Different from
the conventional PCA, we first formulate the scatter of sam-
ples on local patches of the data by the weighted summation
of distances. The local scatter can be expressed in a com-
pact form like the global scatter of the traditional PCA. Fur-
thermore, we formulate a general framework for aligning
local scatters to a global one. The framework of alignment
is also applicable for methods based on spectral analysis in
manifold learning. The optimal principal subspace can be
obtained by solving a simple eigen-decomposition problem.
Moreover, an efficient approach is provided for comput-
ing local LPCA features that are frequently utilized as tan-
gent coordinates in manifold learning. As an application of
LPCA, we develop tangential maps of manifolds based on
tangential coordinates approximated by local LPCA. Partic-
ularly, we locally determine the weights by investigating the
reductive coding length [16] of a local data patch, which is
the variation of the coding length of a data set by leaving
one point out. Hence, the principal structures of the data
can be locally captured in this way.

Experiments are performed on face recognition and man-
ifold unfolding to test LPCA. Face recognition is conducted
on a subset of FRGC version 2 [18]. Three representa-
tive discriminators, LDA, LPP, and MFA, are performed
on LPCA and PCA expressive features. The results indi-
cate that the recognition performance of three discimina-
tors based on LPCA is consistently better than that based
on PCA. Besides, we perform dimensionality reduction on
LBP non-Euclidean features using LPCA, PCA, and KPCA.
LPCA shows significant superiority to PCA and KPCA. For
manifold learning, we introduce Scherk surface [4] as a new
example for manifold unfolding. LPCA-based tangential
maps yields the faithful embeddings with or without noise.

I The identity matrix.
e The all-one column vector.
H H = I− 1

neeT is a centering matrix.
RD The D-dimensional Euclidean space.
xi The i-th sample inRD , i = 1, . . . , n.
Sx Sx = {x1, . . . ,xn}.
X X = [x1, . . . ,xn].
x̄ x̄ = 1

nXe is the center of sample points.
xik

The k-th nearest neighbor of xi, k = 1, . . . , K .
Sx

i Sx
i = {xi0 ,xi1 , . . . ,xiK}, i0 = i.

Xi Xi = [xi0 ,xi1 , . . . ,xiK ].
yi The representation of xi inRd, d < D.
tr The trace of a matrix.
det The determinant of a matrix.
XT The transpose of X.
Wi Wi = diag(wi0 , . . . , wiK ) is a diagonal matrix.

Hw Hw = I− Wiee
T

eT Wie
, a weighted centering matrix.

Table 1. Notations

However, PCA-based tangential maps fails for noisy mani-
folds.

2. Laplacian PCA

The criterion of LPCA is to maximize the local scatter of
data instead of the global one pursued by PCA. The scatter
is the summation of weighted distances between low dimen-
sional representations of original samples and their means.
Like PCA, we aim at finding a global projection matrix U
such that y = UT (x− x̄), (1)

where U is of size D by d. In the matrix form, we can write
Y = UT (XH)1. In the following sub-sections, we present
the formulations of performing local LPCA, the alignment
of local LPCA, the global LPCA, and the efficient compu-
tation of local LPCA features. The notations used in this
paper are listed in Table 1.

2.1. Local LPCA

For non-Gaussian or manifold-valued data, we usually
deal with it from local patches because non-Gaussian data
can be viewed locally Gaussian and a curved manifold can
be locally viewed Euclidean [14]. Particularly, Gaussian
distribution is the theoretical base of many statistical oper-
ations [11], and tangent spaces and tangent coordinates are
the fundamental descriptors of a manifold. So, we begin
with local LPCA.

Specifically, let αi denote the local scatter on the i-th
neighborhood Sy

i . It is defined as

αi =
K∑

k=0

wik
‖yik

− ȳi‖2Rd , (2)

1The size of I and the length of e are easily known from the contexts.



where wik
is the related weight and ȳi is the geometric cen-

troid of Sy
i , i.e., ȳi = YiWie

eT Wie
. We will present the definition

of wik
in Section 4. The distance between yik

and ȳi are
measured by the l2 norm ‖ • ‖Rd . Rewriting (2) yields

αi =
K∑

k=0

wik
tr

(
(yik
− ȳi)(yik

− ȳi)T
)

(3)

= tr(YiWiYT
i )− tr(YiWieeT WiYT

i )
eT Wie

. (4)

Thus we obtain

αi = tr(YiLiYT
i ), (5)

where
Li = Wi −WieeT Wi

eT Wie
(6)

is called the local Laplacian scatter matrix. For Yi, we have

Yi = UT
i (Xi − x̄ieT ) = UT

i (XiHw), (7)

where x̄i is the geometric centroid of Sx
i . Plugging (7) into

(5) gives

αi = tr(UT
i XiHwLiHT

wXT
i Ui). (8)

It is not hard for one to check that HwLiHT
w = Li. So, we

get the final expression of the local scatter

αi = tr(UT
i Si

lUi), (9)

where Si
l = XiLiXT

i is the local scatter matrix of Sx
i . Im-

posing the orthogonality constraint on Ui, we arrive at the
following maximization problem{

argmax
Ui

αi = argmax
Ui

tr(UT
i XiLiXT

i Ui),

s.t. UT
i Ui = I.

(10)

Ui is essentially the principal column space of Si
l , i.e.,

the space spanned by the eigenvectors associated with the
d largest eigenvalues of Si

l. We will present the efficient
method for the computation in Section 2.4.

2.2. Alignment of Local Geometry

If we aim at deriving the global Y or the global pro-
jection U, then global analysis can be performed on the
alignment of localities. For the traditional approach, the
Gaussian mixing model (GMM) [11], along with the EM
scheme, is usually applied to fulfill this task (probabilistic
PCA for instance). For spectral methods however, there has
a simple approach. Here, we present a unified framework of
alignment for spectral methods, by which the optimal solu-
tion in closed form can be obtained by eigen-analysis.

In general, the following form of optimization like (5) is
involved on local patches

argmax
Yi

tr(YiLiYT
i ), (11)

where Li is the local Laplacian scatter matrix2. For each
Sy

i , we have Sy
i ⊂ Sy , meaning that {yi0 ,yi1 , . . . ,yiK}

are always selected from {y1, . . . ,yn}. What is more,
the selection labels are known from the process of nearest
neighbors searching. Thus, we can write Yi = YSi, where
Si is the n by (K + 1) binary selection matrix associated
with Sy

i . Let Ii = {i0, i1, . . . , iK} denote the label set. It is
not hard to know that the structure of Si can be expressed
by

(Si)pq =

{
1 if p = iq−1

0 otherwise
, iq−1 ∈ Ii, q = 1, . . . , K + 1,

(12)
meaning that (Si)pq = 1 if the q-th vector in Yi is the p-th
vector in Y. Then rewriting (11) gives

arg max
Y

tr(YSiLiST
i YT ). (13)

For each Sy
i , such maximization must be performed. So, we

have the following problem

argmax
Y

n∑
i=1

tr(YSiLiST
i YT ) = argmax

Y
tr(YLYT ),

(14)
where L =

∑n
i=1 SiLiST

i is called the global Laplacian
scatter matrix. The expression of L implies that, initialized
by a zero matrix of the same size, L can be obtained by the
update L(Ii, Ii)← L(Ii, Ii) + Li, i = 1, . . . , n.

The alignment technique presented here is hiddenly con-
tained in [9], formulated (a little different from ours) in [6]
and [33], and applied in [34, 37, 36]. Therefore, it is capa-
ble of aligning general local geometry matrices in manifold
learning as well [35].

2.3. LPCA

For LPCA, our goal is to derive a global projection ma-
trix. To this end, we need to plug Y = UT (XH) in (14) to
derive the expression of the global scatter when the global
Laplacian scatter matrix is ready. Thus we obtain the fol-
lowing maximization problem{

argmax
U

tr(UT XHLHXT U),

s.t. UT U = I.
(15)

Similar to the optimization in (10), U can be achieved by
the eigen-decomposition of XHLHXT .

2.4. Efficient Computation

For real data however, the dimension of xi is large. So
it is computationally expensive to compute Ui in (10) by
the eigen-decomposition of Si

l . However, the computation
of local Yi in (10) can be significantly simplified via SVD
[10] in the case of K � D.

2In fact, Li can be an arbitrary matrix that embodies the geometry of
data on the local patch.



For the local Laplacian scatter matrix Li and the global
Laplacian scatter matrix L, it is easy for one to verify that
Lie = 0 and Le = 0, implying that they have zero eigen-
values and the corresponding eigenvectors are the all-one
vectors. Thus, we can say that Yi in (10) and Y in (15) are
all centered at the origin. For Li, it is not hard for one to
check that Li = L̃iL̃T

i , where

L̃i = HwW
1
2
i . (16)

Then the local scatter matrix Si
l can be rewritten as Si

l =
XiL̃i(XiL̃i)T , and we have the following theorem:

Theorem 1. Let the d-truncated SVD of the tall-skinny ma-
trix XiL̃i be XiL̃i = PiDiQT

i . Then the left singular
matrix Pi is the local projection matrix Ui, and the local

coordinates Yi is Yi = (QiDi)T W− 1
2

i .

By Theorem 1, the computational complexity of Ui and
Yi is reduced from O(D3) to O(DK2). Such speedup
is critical for computing tangent coordinates in manifold
learning.

3. Applications to Manifold Learning

In many cases, the data set Sx is manifold-valued. The
low-dimensional representations can be obtained by non-
linear embeddings of original points. Here, we formulate
tangential maps between manifolds to fulfill such tasks. The
tangent spaces and the tangent coordinates of a manifold are
approximated by local LPCA.

3.1. Tangential Maps

For a d-dimensional Riemannian manifoldMd, its tan-
gent space at each point is isomorphic to the Euclidean
space Rd [14]. Thus linear transformations are allowable
between tangent spaces of Md and Rd. Given a set of
points Sx sampled fromMd, the parameterization ofMd

can be performed by tangential maps, where xi is viewed as
the natural coordinate representation in the ambient space
RD in whichMd is embedded.

With little abuse of notations, we let S̃y
i =

{ỹi0 , ỹi1 , . . . , ỹiK } denote the low-dimensional represen-
tation yielded by the local LPCA of Sx

i , where an extra
constraint d < K should be imposed. The global represen-
tation Sy

i is obtained via the following linear transformation
of S̃y

i : YiHw = AiỸi + Ei, (17)

where Ei is the error matrix and Ai is the Jacobian matrix
of size (K + 1) by (K + 1) to be determined. Here, Yi

is centerized by Hw because the center of S̃y
i lies at the

origin. To derive the optimal Yi, we need to minimize Ei,
thus giving

arg min
Yi

‖Ei‖2 = arg min
Yi

‖YiHw −AiỸi‖2. (18)

For the Jacobian matrix, we have Ai = YiHwỸ†
i , where †

denotes the Moore-Penrose inverse [10] of a matrix. Plug-
ging it in (18) and expanding the norm yields

arg min
Yi

tr(YiZiYT
i ), (19)

where
Zi = Hw(I− Ỹ†

i Ỹi)(I− Ỹ†
i Ỹi)T HT

w. (20)

What we really need is the global representation Y instead
of local Yi. So, the alignment technique is needed to align
local representations to be a global one, which has been pre-
sented in Section 2.2.

To make the optimization presented here well-posed, we
need a constraint on Y. Let it be YYT = I. Putting every-
thing together, we get a well-posed and easily solvable min-
imization problem{

argmin
Y

tr(YLYT ),

s.t. YYT = I,
(21)

where L =
∑n

i=1 SiZiST
i . Again, the optimization can be

solved by the spectral decomposition of L: the d-column
matrix YT corresponds to the d eigenvectors associated
with the d smallest nonzeros eigenvalues of L. Thus, we
complete a general framework of tangential maps.

3.2. LPCA Based on Tangential Maps

In general, the principal subspace of data set Sx
i are em-

ployed as the approximation of the tangent space tangent to
the point xi. Thus, more robust approximation of the tan-
gent space can provide better results of manifold unfolding.
For LPCA however, we can obtain Zi without the explicit
computation of Ỹ†

i by the following theorem:

Theorem 2. Zi = Hw(I − Q̃i(Q̃T
i Q̃i)−1Q̃T

i )HT
w, where

Q̃i = W− 1
2

i Qi.

The inverse of Q̃T
i Q̃i can be efficiently handled because

Q̃T
i Q̃i is of size d by d. The computation of Zi is efficient

by noting that Hw is a rank-one modification of I and Wi

is diagonal. Zhang and Zha [33] first developed the LTSA
algorithm based on tangential maps to unfold manifolds,
where tangent spaces and tangent coordinates are derived
by PCA. For LTSA, we have the following observation:

Proposition 1. LPCA-based tangential maps coincide with
the LTSA algorithm if Wi = I.

Therefore, the framework formulated here is the generaliza-
tion of Zhang and Zha’s LTSA [33].

4. Definition of Weights

For traditional methods [17, 12], weights are determined
by exponentials of Euclidean distances or its analogues. We



will show that such pairwise distance based dissimilarities
cannot capture the principal structure of data robustly. So,
we introduce the reductive coding length as a new dissimi-
larity that is compatible with the intrinsic structure of data.

4.1. Reductive Coding Length

The coding length [16] L(Sx
i )3 of a vector-valued set Sx

i

is the intrinsic structural characterization of the set. We no-
tice that if a point xik

complies with the structure of Sx
i ,

then removing xik
from Sx

i will not affect the structure
much. In contrast, if the point xik

is an outlier or a noise
point, then removing xik

from Sx
i will change the structure

significantly. This motivates us to define the variation of
coding length as the structural descriptor between xik

and
Sx

i . The reductive variation of L(Sx
i ) with and without xik

is defined as

δLik
= |L(Sx

i )− L (Sx
i \ {xik

}) |, k = 0, 1, . . . , K,
(22)

where | • | denotes the absolute value of a scalar. Thus, the
weight wik

in (2) can be defined as

wik
= exp

(
− (δLik

− δL̄i)2

2σ2
i

)
, (23)

where δL̄i and σi are the mean and the standard deviation
of {δLi0 , . . . , δLiK}, respectively.

In fact, the reductive coding length is a kind of contextual
distances. One can refer to [36] for more details.

4.2. Coding Length vs. Traditional Distance

We compare the difference between reductive coding
length and the traditional pairwise distance by a toy exam-
ple.

From Figure 2 (a), we observe that, using reductive cod-
ing length, the perturbed point (bottom) is slightly weighted
whereas the five points that are consistent to the princi-
pal structure are heavily weighted. As shown in Figure 2
(c), the local principal direction (solid line) learnt by LPCA
based on reductive coding length is highly consistent with
the global principal structure (dotted line).

In contrast, as shown in Figure 2 (b), it seems promis-
ing that the perturbed point is very lightly weighted. How-
ever, the two significant points (pointed by two arrows)
that are important to the principal structure are also lightly
weighted. Thus, the local principal direction is mainly gov-
erned by the three central points. As a result, the principal
direction (dotted line in Figure 2 (d)) learnt by LPCA based
on pairwise Euclidean distance cannot capture the principal
structure of the data. Note that, based on reductive coding
length, the two significant points are most heavily weighted
(Figure 2 (a)).

3The definition of it is presented in Appendix.
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Figure 2. Illustrations of reductive coding length vs. pairwise
Euclidean distance on one of the local patches (red circle mark-
ers) of the toy data. (a) and (b) illustrate the weights computed
by reductive coding length and pairwise Euclidean distance, re-
spectively. In (b), the green square marker denotes the geometric
center instead of physical centroid. (c) and (d) illustrate the local
principal directions (solid lines) learnt by LPCA based on reduc-
tive coding length and pairwise Euclidean distance, respectively.

Figure 3. Facial images of one subject for our experiment in FRGC
version 2. The first five facial images are in the gallery set and
others in the probe set.

5. Experiment

We perform experiments on face recognition and man-
ifold unfolding to compare the performance of our LPCA
algorithm to that of existing related methods.

5.1. Face Recognition

Face database.We perform face recognition on a sub-
set of facial data in FRGC version 2 [18]. The query set
for the experiment 4 in this database consists of single un-
controlled still images which contain the variations of illu-
mination, expression, time, and blurring. There are 8014
images of 466 subjects in the set. However, there are only
two facial images available for some persons. So, we select
a subset for our experiments. First, we search all images of
each person in the set and take the first 10 facial images if
the number of facial images is not less than 10. Thus we
get 3160 facial images of 316 subjects. Then we divide the
316 subjects into three subsets. First, the first 200 subjects
are used as the gallery set and the probe set, and the remain-
ing 116 subjects are exploited as the training set. Second,
we take the first five facial images of each person in the first
200 subjects as the gallery set and the remaining five images
as the probe set. Therefore, the set of persons for training is
disjoint with that of persons in the gallery and for the probe.
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Figure 4. The performance of LPCA and PCA as expressive feature extractors for face recognition. We reduce the dimensions of original
facial images to be 290. Thus LPCA and PCA preserve 95% power and 98.8% power, respectively. Here, the power is defined as the ratio
of the summation of eigenvalues corresponding to applied eigen-vectors to the trace of the scatter matrix. (a) LDA. (b) LPP (K = 2). (c)
MFA (k1 = 2, k2 = 20). (d) Random sampling subspace LDA, with four hundred eigen-vectors computed. As in [30], we take the first 50
eigen-vectors as the base, and randomly sample another 100 eigen-vectors. Twenty LDA classifiers are designed.

We align the facial images according to the positions of eyes
and mouths. Then each facial image is cropped to a size of
64 × 72. Figure 3 shows ten images of one subject. The
nearest neighbor classifier is adopted. For the experiments
in this subsection, K = 2 for the LPCA method.

Note that the experiments in this section are not to
achieve the high performance of recognition. Rather, the
goal is to compare the performance of LPCA as the same
role where PCA or KPCA may be applied.

Dimensionality reduction as expressive features. For
the development of discriminators in face recognition, PCA
plays an important role. These discriminators solve general-
ized eigen-decomposition problems like Au = λBu. Due
to the small sample size problem, the matrix B is usually
singular, which leads to the difficulty of computation. So,
dimensionality reduction is first performed by PCA to ex-
tract expressive features [21]. Then these discriminators are
performed in the PCA-transformed space. Here we perform
both PCA and LPCA to extract expressive features. And
three representive discriminators LDA [2], LPP [12], and
MFA [31] are applied for extracting discriminative features
on these two kinds of expressive features, respectively. As
shown in Figure 4 (a), (b), and (c), the recognition rates
of these three discriminators based on LPCA are consis-
tently higher than those based on PCA. Another applica-
tion of PCA subspaces in face recognition is to the ran-
dom sampling strategy [28, 30]. Figure 4 (d) shows that
the discriminative power of LDA based on the random sam-
pling of LPCA subspaces is superior to that based on PCA
subspaces. These results verify that robust expressive sub-
spaces can significantly improve the recognition rates of
discriminators.

Dimensionality reduction on non-Euclidean features.
In image-based recognition, visual features are sometimes
extracted as expressive ones. However, the dimension of
a visual feature vector is usually high, which leads to the
load of storage of features and the consumption of time in
computation. To reduce these loads, dimensionality reduc-
tion is necessary. The LBP algorithm is a newly emerging
approach which is proven superior in un-supervised visual
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Figure 5. The performance of dimensionality reduction on LBP
features. The recognition rate of LBP is the baseline.

feature extraction [1]. The LBP features are based on his-
tograms. Thus the LBP feature space is non-Euclidean. A
distance measure in such a space is often chosen as the Chi

square, defined as χ2(xi,xj) =
∑D

s=1

(xs
i−xs

j)2

xs
i +xs

j
, where xs

i

is the s-th component of xi. In this experiment, we compare
the results of dimensionality reduction on LBP features by
PCA, KPCA, and LPCA.

We perform LBP on each facial image and then sub-
divide each facial image by 7 × 7 grids. Histograms with
59 bins are performed on each sub-block. An LBP feature
vector is obtained by concatenating the feature vectors on
sub-blocks. Here we use 58 uniform patterns for LBP and
each uniform pattern accounts for one bin. The remaining
198 binary patterns are all put in another bin, resulting in a
59-bin histogram. So, the number of tuples in a LBP fea-
ture vector is 59 × (7 × 7) = 2891. The (8, 2) LBP is
adopted. Namely, the number of circular neighbors for each
pixel is 8 and the radius of the circle is 2. The above set-
tings are consistent with that in [1]. As shown in Figure 5,
with 250-dimensional features, the recognition rate of LBP
plus LPCA is higher than that of LBP, which means that the
dimensionality reduction is effective. In comparison, PCA
and KPCA needs higher dimensional features. Overall, the
performance of dimensionality reduction of LPCA is signif-
icantly better than that of PCA and KPCA.
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Figure 6. Scherk surface and its faithful Embeddings in the least
squares sense. (a) Scherk surface (b = 1). (b) Randomly sampled
points (without noise points). (c) and (d) are embeddings yielded
by PCA-based tangential maps (LTSA) and LPCA-based tangen-
tial maps, respectively.
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Figure 7. Noisy Scherk surface unfolding by tangential maps. (a)
Randomly sampled points with noise points shown as crosses. (b)
PCA-based tangential maps (LTSA). (c) LPCA-based tangential
maps.

5.2. Manifold learning

The following experiments mainly examine the capabil-
ity of LPCA and PCA on approximating tangent spaces and
tangent coordinates of a manifold via tangential maps.

The manifold we use here is Scherk surface (Figure 6
(a)) which is a classical minimal surface, formulated as [4]
f(x, y) = 1

b ln cos(bx)
sin(by) , where −π

2 < bx < π
2 , −π

2 <

by < π
2 , and b is a positive constant. The minimal sur-

face is a kind of zero mean curvature surface. Therefore,
Scherk surface cannot be isometrically parameterized by an
open subset in the two-dimensional Euclidean space. The
faithful embeddings are only obtainable in the least squares
sense. So, it is more challenging to unfold Scherk surface
than Swiss roll [23] (zero Gaussian curvature surface) that
is widely used for experiments in manifold learning. In ad-
dition, the randomly sampled points on Scherk’s surface,
we think, well simulate the real-world distribution of ran-
dom samples: dense close to the center and sparse close to
the boundary like noncurved Gaussian normal distribution
[11]. These are the motivations that we use this surface for
testing.

For each trial, 1200 points (including noise points) are
randomly sampled from the surface, shown in Figure 6
(b). For all trials in this subsection, K = 15 for all in-
volved methods. As shown in Figure 6 (c) and (d), both
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Figure 8. Noisy Scherk surface unfolding by existing represen-
tative methods. (a) Randomly sampled points with noise points
shown as crosses. (b) Isomap. (c) LLE. (d) Laplacian Eigenmaps.

PCA-based tangential maps (LTSA) and LPCA-based tan-
gential maps result in the faithful embeddings. However,
PCA-based tangential maps distort the embeddings (Figure
7 (b)) when noise points appear. We can clearly see that
PCA-based tangential maps is very sensitive to noise be-
cause very few noise point can change the result of the al-
gorithm. In constrast, LPCA-based tangential maps show
its robustness against noise (Figure 7 (c)). These results
imply that LPCA can yield faithful tangent spaces that are
less affected by noise to the manifold. From Figure 8, we
can see that LLE [19] and Laplacian Eigenmaps [3] pro-
duce unsatisfactory embeddings. Among the three existing
representative algorithms in Figure 8, only the Isomap [23]
algorithm works for the surface4.

6. Conclusion

The sensitivity to noise and the incompletence to non-
Euclidean samples are two major problems of the traditional
PCA. To address these two issues, we propose a novel algo-
rithm, named Laplacian PCA. LPCA is an extension of PCA
by optimizing the locally weighted scatters instead of the
single global non-weighted scatter in PCA. The principal
subspace is learnt by the alignment of local optimizations.
A general alignment technique is formulated. Based on the
coding length in information theory, we present a new ap-
proach to determining weights. As an application, we for-
mulate the tangential maps in manifold learning via LPCA,
which can be exploited for non-linear dimensionality reduc-
tion. The experiments are performed on face recognition
and manifold unfolding, which testify to the superiority of
LPCA to PCA and other variants of PCA, like KPCA.
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Appendix
Coding Length. For the set of vectors Sx

i , the total num-
ber of bits needed to code Sx

i is [16]

4Actually, there is an outlier-detection procedure in the published Mat-
lab codes of Isomap, which is one of reasons why Isomap is robust.



L(Sx
i ) =

K + 1 + n

2
log det

(
I +

n

ε2(K + 1)
XiHXT

i

)

+
n

2
log

(
1 +

x̄T
i x̄i

ε2

)
, (24)

where ε is the allowable distortion. In fact, the computa-
tion can be considerably reduced by the commutativity of
determinant

det(I + XiHXT
i ) = det(I + HXT

i XiH) (25)

in the case of K + 1� n. It is worth noting that XT
i Xi in

(25) will be a kernel matrix if the kernel trick is exploited.
The allowable distortion ε in L(Sx

i ) is a free parameter. In
all our experiments, we empirically choose ε = (10n

K )
1
2 .

References

[1] T. Ahonen, A. Hadid, and M. Pietikäinen. Face decription
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