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Abstract
Learning-based superresolution (SR) are popular SR

techniques that use application dependent priors to infer the
missing details in low resolution images (LRIs). However,
their performance still deteriorates quickly when the mag-
nification factor is moderately large. This leads us to an
important problem: “Do limits of learning-based SR algo-
rithms exist?” In this paper, we attempt to shed some light
on this problem when the SR algorithms are designed for
general natural images (GNIs). We first define an expected
risk for the SR algorithms that is based on the root mean
squared error between the superresolved images and the
ground truth images. Then utilizing the statistics of GNIs,
we derive a closed form estimate of the lower bound of the
expected risk. The lower bound can be computed by sam-
pling real images. By computing the curve of the lower
bound w.r.t. the magnification factor, we can estimate the
limits of learning-based SR algorithms, at which the lower
bound of expected risk exceeds a relatively large threshold.
We also investigate the sufficient number of samples to guar-
antee an accurate estimation of the lower bound.

1. Introduction
Superresolution (SR) is a technique that produces an im-

age or video with a resolution higher than those of any of the
input images or frames. Roughly speaking, SR algorithms
can be categorized into four classes [3, 12, 5]. Interpolation-
based algorithms register low resolution images (LRIs) with
the high resolution image (HRI), then apply nonuniform in-
terpolation to produce an improved resolution image which
is further deblurred. Frequency-based algorithms try to
dealias the LRIs by utilizing the phase difference among
the LRIs. Reconstruction-based algorithms rely on the rela-
tionship between the LRIs and the HRI and assume various
kinds of priors on the HRI in order to regularize this ill-
posed inverse problem. Recently, many learning-based SR
algorithms have attracted much attention.

1.1. Learning-Based SR Algorithms

Learning-based SR algorithms are new SR techniques
that may have started from the seminal papers by Freeman
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Figure 1. The Markov network adopted by Freeman and Pasz-
tor [6] (adapted from [6]).

and Pasztor [6] and Baker and Kanade [1]. Compared to
traditional methods, which basically process images at the
signal level, learning-based SR algorithms incorporate ap-
plication dependent priors to infer the unknown HRI. For
example, as a widely adopted framework, Freeman and
Pasztor’s Markov network [6] models the SR problem as
an inference problem of the high frequency:

h′ = arg max
h′

P (h′ |̃l) = arg max
h′

P (̃l|h′)P (h′),

where h′ is the missing high frequency of the HRI h, l̃ is the
mid-frequency of the input image l interpolated to the size
of h. Adding the inferred high frequency to the interpolated
LRI gives the output HRI. Freeman and Pasztor defined the
likelihood and the prior via image patches:

P (̃l|h′) =
∏
k

P (̃lk|h′
k), and P (h′) =

∏
h′

j∈N (h′
i)

P (h′
i|h′

j),

where h′
i and l̃k are the patches in h′ and l̃, respectively, and

N (h′
i) is the set of neighboring high resolution patches of

h′
i. Figure 1 shows the Markov network that links the local

patches. P (̃lk|h′
k) and P (h′

i|h′
j) are learnt from training

images and are approximated by a mixture of Gaussians.
The solution h′ is found by belief propagation.

From the above example, one can see that the methodol-
ogy of learning-based SR algorithms is quite different from
traditional ones. Despite some drawbacks, such as the mag-
nification factor is usually fixed and the performance often
depends on how well the input LRI matches the training
low resolution samples, learning-based SR algorithms have
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several advantages. For example, they work on fewer LRIs
but can still achieve a higher magnification factor than tradi-
tional algorithms can. Most of them can even work on a sin-
gle image. Moreover, it is possible to design fast learning-
based SR algorithms, e.g., eigenface based face hallucina-
tion [4, 7], to achieve real-time SR. Finally, if we change
the prior for learning-based SR algorithms, the HRIs may
exhibit an artistic style [6, 13]. This may enable learning-
based SR algorithms to perform style transfer. In contrast,
traditional SR algorithms do not have such capability.

Because of their advantages, learning-based SR algo-
rithms have become popular. Due to space limitations,
we only list here closely related papers. Bishop et al. [2],
Pickup et al. [13], and Sun et al. [15] also adopted the
Markov network as Freeman and Pasztor [6] did but they
differed in the definition of priors and likelihoods. Baker
and Kanade’s hallucination algorithm [1] further inspired
the work in this field. Gunturk et al. [7], Capel and Zisser-
man [4], Liu et al. [10], and Wang and Tang [18] all used
face bases and inferred the combination coefficients of the
bases, where the face bases are different. Liu et al.’s face
hallucination algorithm [11] was a combination of [7] and
[6] to infer the global face structure and the local details,
respectively.

Despite different implementation details, in an abstract
sense, a learning process picks a function f(z, α) from an
admissible function set (by specifying the index parameter
α) [17]. Then, a learning-based SR algorithm can be viewed
as a function s that maps an LRI to an HRI,1 where all prior
knowledge has been used to specify s, and s is a function of
the input LRI only (i.e., we only consider single-image SR
in this paper, and after training, no additional information
can be applied for SR).

1.2. What are the Limits of Learning-Based SR Al-
gorithms?

Among the existing algorithms, those in [6, 15, 13, 2]
can be applied to general images or videos [2]. In contrast,
the algorithms in [1, 11, 4, 7, 10] are devoted only to face
hallucination. The underlying reason that the second cate-
gory of algorithms were proposed mainly because the first
category of algorithms cannot produce good results when
the magnification factors are only moderately large. There-
fore, the application scenario needs to be narrowed down so
that more specific prior knowledge, e.g., the strong struc-
ture of faces, can be used. However, even for the second
category of algorithms, accurate alignment of faces has to
be done. Otherwise, the hallucinated faces are still unsatis-
factory even for magnification factors that are still not very
large. This poses an important question: “Do limits exist for
learning-based superresolution?”, i.e., “Does there exist an

1By compositing with the downsampling matrix we have a function
that maps an HRI to another HRI. See Eqn. (2).

upper bound for magnification factors such that no SR al-
gorithm can produce satisfactory results?” This paper aims
at presenting our preliminary work on this problem.

To investigate the problem quantitatively, we have to de-
fine the meaning of the “limit”. In statistical learning theory,
the performance of a learning function f(z, α) is usually
evaluated by its expected risk [17]:

R(α) =
∫

r(z, f(z, α))dF (z), (1)

where r(z, f(z, α)) is the risk function and F (z) is the
probability function of z. In our problem, z represents the
HRI. If we can define what the risk function is, we can use
the expected risk to evaluate the performance of learning-
based SR algorithms, i.e., we have to look at the average
performance of SR algorithms. It is possible that an SR al-
gorithm performs well on a particular LRI. However, if the
SR results on many other LRIs are poor, we still do not con-
sider it a good SR algorithm.

As suggested in [8], a good SR algorithm should pro-
duce HRIs that are close to the ground truth. Otherwise, the
produced HRI will not be what we desire, no matter how
high its resolution is (e.g., a high resolution car image will
not be considered as the HRI of a low resolution face image
no matter how many details it presents). Therefore, we may
define the risk function as the closeness between an HRI
and its superresolved version. As the root mean squared er-
ror (RMSE) is a widely used measure of image similarity
in the image processing community (e.g., the peak signal to
noise ratio in image compression) and also in various kinds
of error analysis, we may define the risk function using the
RMSE between an HRI and its superresolved version.

Although small RMSEs do not necessarily guarantee
good recovery of the HRIs, large RMSEs should nonethe-
less imply that the recovery is poor. Therefore, we may con-
vert the problem to a tractable one: find the upper bound of
the magnification factors such that the expected risk is be-
low a relatively large threshold. Such an upper bound can
be considered the limits of learning-based SR algorithms.

1.3. Previous Work and Our Contributions

Although many SR approaches have been proposed
[1, 2, 6, 11, 15, 4, 13, 12, 5, 7, 10], theoretical analysis
of SR algorithms has rarely been addressed. Only in [8]
and [1], limits of reconstruction-based SR algorithms are
discussed. For learning-based algorithms, no similar work
has been done. In this paper, we provide some theoretical
analysis on the limits of learning-based SR algorithms for
general natural images, which is the first work on this prob-
lem according to the best of our knowledge. Our paper has
two major contributions:

1. A closed form lower bound of the expected error be-
tween the superresolved and the ground truth images
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Figure 2. Our methodology of finding the limits of learning-based SR algorithms. Please refer to Section 2 for the details.

is proved. This formula only involves the covariance
matrix and the mean of the prior distribution of HRIs.
This lower bound is used to estimate the limits of
learning-based SR algorithms.

2. A formula on the sufficient number of HRIs is pro-
vided to ensure the accuracy of the sample-based com-
putation of the lower bound.

Moreover, from our experiments, we have observed that the
limits may be independent of the sizes of both LRIs and
HRIs.

Currently, we limit our analysis to general natural im-
ages, i.e., the set of all natural images of given size, because
the statistics of general natural images have been studied for
a long time [14] and there have been some pertinent obser-
vations on their characteristics that are useful for our analy-
sis. In particular, we will use the following two properties:

1. The distribution of HRIs is not concentrated around
several HRIs and the distribution of LRIs is not con-
centrated around several LRIs either. Noticing that
general natural images cannot be classified into a small
number of categories will justify this property.

2. Smoother LRIs have a higher probability than non-
smooth ones. This property is actually called the
“smoothness prior” that is widely used for regular-
ization, for instance, when performing reconstruction-
based SR.

In contrast, for specific class of images, e.g., face or text
images, there is no similar work on their statistics to the
best of our knowledge.

2. Analysis of Learning-Based SR Algorithms

Figure 2 outlines our analysis on the limits of learning-
based SR algorithms. We first define the expected risk of a
learning-based SR algorithm. The risk is minimized by an
optimal SR function. Using the statistics of general natu-
ral images, we derive a closed form formula for the lower
bound of the risk, which only involves the covariance matrix
and the mean of the distribution of the HRIs. By sampling
the real-world HRIs, we can obtain a curve of the lower
bound of the risk w.r.t. the magnification factor. Finally, by

choosing a relatively large threshold, we can roughly esti-
mate the limit of the learning-based SR algorithms. We also
estimate the sufficient number of image samples that indi-
cates when to stop sampling. In the following subsections,
we give the details of our analysis.

2.1. Problem Formulation

For simplicity, we present the arguments for the 1D case
only. Those for the 2D case are similar but the derivation is
much more complex.

As argued in Section 1.2, we use the RMSE between an
HRI and the recovered HRI to evaluate the performance of
a learning-based SR algorithm. This motivates us to define
the following expected risk of the SR algorithm:2

g(N, m) =
(

1
mN

g̃(N, m)
) 1

2

, where

g̃(N, m) =
∫
h

||h− s (Dh)||2 ph(h)dh,

(2)

in which s is the learnt SR function that maps N -
dimensional images to mN -dimensional ones, m > 1 is the
magnification factor and always makes mN an integer, ph is
the probability density functions of the HRIs, and D is the
downsampling matrix that downsamples mN -dimensional
signals to N -dimensional ones. The downsampling matrix
is introduced here to simulate the image formation process.
Although there might not be a uniform downsampling ma-
trix for all the HRIs and some image formation process may
even involve a nonlinear transform on the HRI, we may
nevertheless throw all the discrepancy from our model into
noise n by replacing s (Dh) with s (Dh + n). However, to
improve the readability of this paper and due to the space
limit, the discussion on the effect of noise is deferred to our
future work.

Eqn. (2) defines the expected risk of a particular SR algo-
rithm s, which should be evaluated by running the algorithm
on a large number of HRIs. This is very time consuming.
Moreover, for a particular SR algorithm, its magnification
factor is often fixed. Therefore, estimating the expected risk
of a particular SR function does not help to find the limits

2Throughout our paper, vectors or matrices are written in boldface,
while scalars are in normal fonts. Moreover, all the vectors without the
transpose are column vectors.



of all learning-based SR algorithms. Consequently, we have
to study the lower bound of (2).

Before going on, we first introduce the corresponding
upsampling matrix U which upsamples N -dimensional sig-
nals to mN -dimensional ones. We expect that images are
unchanged if they are upsampled and then downsampled.
This implies that DU = I, where I is the identity matrix.
This upsampling matrix is purely a mathematical tool to fa-
cilitate the derivation and the representation of our results.
We also use Σ and h̄ to denote the covariance matrix and
the mean of the HRIs h, respectively.

2.2. Main Results

The central theorem of our paper is the following:

Theorem 2.1 (Lower Bound of the Expected Risk) When
ph(h) is the distribution of general natural images, namely
the set of all natural images, g̃(N, m) is effectively lower
bounded by b̃(N, m), where

b̃(N, m) =
1
4
tr(HΣHt) +

1
4

∣∣∣∣Hh̄
∣∣∣∣2 , (3)

in which tr(·) is the trace operator, H = I − UD, and
the superscript t represents the matrix or vector transpose.
Hence g(N, m) is lower bounded by

b(N, m) =
(

1
mN

b̃(N, m)
) 1

2

. (4)

As for an HRI h, Hh = h − U(Dh) is its high frequency.
So Eqn. (3) is essentially related to the richness of the high
frequency component in the HRIs. Hence Theorem 2.1 im-
plies that the richer the high frequency component in the
HRIs is, the more difficult the SR is.

Note that Theorem 2.1 holds for all possible SR func-
tions s as it gives the lower bound of the risk, which we
have derived conservatively. Consequently, the estimate on
the limits of learning-based SR algorithms using (4) is also
conservative. And also note that ph(h) being the distribu-
tion of the set of all natural images is important for us to
arrive at (3). Otherwise, we will not come up with the co-
efficient 1/4 therein and g̃(N, m) may be arbitrarily close
to 0. For example, if there is only one HRI, we can always
recover the HRI no matter how low resolution the LRI is.

As a simple yet effective analytical model for ph(h)
of general natural images is unavailable, we sample real
HRIs to estimate b̃(N, m). To make sure that sufficient im-
ages have been sampled to achieve an accurate estimate of
b̃(N, m), we further prove the following theorem:

Theorem 2.2 (Sufficient Number of Samples) If we sam-
ple M(p, ε) HRIs independently, then with probability of

at least 1 − p, |ˆ̃b(N, m) − b̃(N, m)| < ε, where ˆ̃b(N, m) is
the value of b̃(N, m) estimated from real samples,3

M(p, ε) =
(C1 + 2C2)2

16pε2
, (5)

C1 =
√

E
(∣∣∣∣H(h− h̄)

∣∣∣∣4) − tr2(HΣHt), and C2 =
√

b̄tΣb̄, in which E(·) is the expectation operator and
b̄ = HtHh̄.

Note that both C1 and C2 are related to the variance of the
high frequency component of the HRIs. So Theorem 2.2
implies that the larger the variance is, the more samples are
required.

In subsections 2.3 and 2.6, we will provide the ideas of
proving the above two theorems. The full details of proof
can be found in [9].

2.3. Lower Bound of the Expected Risk

In this subsection, we present the idea of proving The-
orem 2.1. Now that different HRIs can result in the same
LRI (Dh can be identical for different h), it may be eas-
ier to analyze (2) by fixing Dh. This can be achieved by
performing a variable transform in (2). To do so, we find

a complementary matrix (not unique) Q such that

(
D
Q

)

is a non-singular square matrix and QU = 0. Such a Q

exists. Denote M = (R V) =
(

D
Q

)−1

. From(
D
Q

)
(R V) = I, we know that R = U.

Now let h = M
(

x
y

)
, then (2) becomes

g̃(N, m) =
∫
x,y

∣∣∣∣
∣∣∣∣(U V)

(
x
y

)
− s (x)

∣∣∣∣
∣∣∣∣
2

×px,y

((
x
y

))
dxdy

=
∫
x

px(x)V (x)dx,

(6)

where

px,y

((
x
y

))
= |M|ph

(
M

(
x
y

))
,

V (x) =
∫
y

||Vy − φ (x)||2 p̃y (y|x) dy. (7)

px(x) is the marginal distribution of x, p̃y (y|x) is the con-
ditional distribution of y, and φ(x) = s(x) − Ux is the

3Throughout our paper, we use the embellishment ∧ above a value to
represent the sampled or estimated quantities.



recovered high frequency component of the HRI given the
LRI x. For this reason, we call φ(x) the high frequency
(HF) function. Note that x = Dh, and Vy = h − Ux.
So x is the LRI downsampled from h, and Vy is the high
frequency of h.

One can see that there is an optimal HF function such
that V (x) (hence g(N, m)) is minimized:

φopt(x; p̃y) = V
∫
y

yp̃y (y|x) dy. (8)

This means that the optimal high frequency component
should be the expectation of all possible high frequencies
associated to the LRI x.

Then one can easily verify that

V (x) =
∫
y

||Vy||2 p̃y (y|x) dy − ||φopt(x; p̃y)||2 . (9)

We show that for general natural images [9],
∫
x

px(x) ||φopt(x; p̃y)||2 dx

≤ 3
4

∫
x

∫
y

||Vy||2 px,y

((
x
y

))
dydx.

(10)

Therefore, from (6) and (9) we have that

g̃(N, m) ≥ 1
4

∫
x,y

||Vy||2 px,y

((
x
y

))
dxdy

=
1
4

∫
h

||VQh||2 ph(h)dh

=
1
4
tr

(
HΣHt

)
+

1
4

∣∣∣∣Hh̄
∣∣∣∣2 ,

(11)

where we have used VQ = H, which comes from

(U V)
(

D
Q

)
= I. This proves Theorem 2.1.

We see that the variance and the mean of the HRIs plays
a key role in lower bounding g(N, m). Although it is in-
tuitive that ph(h) is critical for the limits of learning-based
SR algorithms, Theorem 2.1 exactly depicts how ph(h) in-
fluences the SR performance.

2.4. Limits of Learning-Based SR Algorithms

The introduction of the optimal HF function (or equiva-
lently, the optimal SR function, as sopt(x) = φopt(x)+Ux)
frees us from dealing with the details of different learning-
based SR algorithms, as sopt attains the minimum of the ex-
pected risk. In other words, if at a particular magnification
factor, b(N, m) (see Eqn. (4)) is larger than a threshold T ,
i.e., the expected RMSE between h and sopt(Dh) is larger
than T , then for any SR function s, the RMSE between h
and s(Dh) is also expected to be larger than T . This will
imply that at this magnification factor no SR function can
effectively recover the original HRI.

Therefore, if we have full knowledge of the variance and
the mean of the prior distributions ph(h) at different magni-
fication factors, we can define a curve of b(N, m) as a func-
tion of m. Then the limit of learning-based SR algorithms
is upper bounded by b−1(T ).

2.5. Estimating the Lower Bound from Real Sam-
ples

To compute b(N, m), we have to know the covariance
matrix and the mean of HRIs h for a wide range of mN .
There has been a long history of natural image statistics
[14]. Unfortunately, all the existing models only solve the
problem partially: the natural images fit some models, but
not all images that are sampled from these models are nat-
ural images. On the other hand, we do not need full knowl-
edge of ph(h): its covariance matrix and mean already suf-
fice. This motivates us to sample HRIs from real data.

Thanks to the fine property of covariance matrices and
means that they can be computed incrementally and in par-
allel, we can easily sample a huge number of HRIs at a low
memory cost.

2.6. The Sufficient Number of HRI Samples

Now that we have estimated the lower bound from HRI
samples, we have to know how many samples are sufficient
to achieve the required accuracy. Theorem 2.2 gives the
answer. The proof is sketched below. The complete details
of the proof can be found in [9].

We first denote ˆ̄ΣM =
1
M

M∑
k=1

(ĥk−h̄)(ĥk−h̄)t and the

estimated covariance matrix Σ̂M =
1
M

M∑
k=1

(ĥk − ˆ̄h)(ĥk −

ˆ̄h)t, where ĥk’s are i.i.d. samples and ˆ̄h =
1
M

M∑
k=1

ĥk is the

estimated mean.
In the following, we also denote B = HtH and b̄ = Bh̄

for brevity, and denote the i-th entry of a vector a as ai and
the (i, j)-th entry of a matrix A as Ai,j .

The variances of
mN∑

i,j=1

Bi,j
ˆ̄ΣM ;i,j and

mN∑
i=1

b̄i
ˆ̄hM ;i can be

found to be
1
M

C2
1 and

1
M

C2
2 , respectively. Then by Cheby-

shev’s inequality [16], with probability of at least 1− p, we
have

∣∣∣∣∣
mN∑

i,j=1

Bi,j

(
ˆ̄ΣM ;i,j − Σi,j

)∣∣∣∣∣ ≤ C1√
Mp

,

∣∣∣∣
mN∑
i=1

b̄i

(
ˆ̄hM ;i − h̄i

)∣∣∣∣ ≤ C2√
Mp

.

(12)



Next, with some calculation we have

|ˆ̃b(N, m) − b̃(N, m)|

=
1
4

∣∣∣∣∣∣
mN∑

i,j=1

Bi,j

(
ˆ̄ΣM ;i,j − Σi,j

)
+ 2

mN∑
i=1

b̄i(ˆ̄hM ;i − h̄i)

∣∣∣∣∣∣
≤ 1

4

∣∣∣∣∣∣
mN∑

i,j=1

Bi,j

(
ˆ̄ΣM ;i,j − Σi,j

)∣∣∣∣∣∣ +
1
2

∣∣∣∣∣
mN∑
i=1

b̄i(ˆ̄hM ;i − h̄i)

∣∣∣∣∣
Then by (12), with probability at least 1 − p, we have

∣∣∣ˆ̃b(N, m) − b̃(N, m)
∣∣∣ ≤ C1

4
√

Mp
+

C2

2
√

Mp
. (13)

Now one can check that Theorem 2.2 is true.
Note that

∣∣∣b̂(N, m) − b(N, m)
∣∣∣ ≈

∣∣∣ˆ̃b(N, m) − b̃(N, m)
∣∣∣

2mNb(N, m)
. (14)

So in practice, we may choose p = 0.01 and

ε =
1
2
mNb(N, m) in (5) in order to make∣∣∣b̂(N, m) − b(N, m)

∣∣∣ ≤ 0.25 at above 99% certainty.

Here we choose 0.25 as the threshold because it is roughly
the mean of the graylevel quantization error.

3. Experiments

Collecting Samples. We crawled images from the web and
collected 100,000+ images. They are of various kinds of
scenes: cityscape, landscape, sports, portraits, etc. There-
fore, our image library could be viewed as an i.i.d. sampling
of general natural images. To sample mN × mN sized
HRIs, we convert each image into graylevel, break it into
non-overlapping patches of size mN × mN (with at least
one pixel gap among them in order to ensure independence
among them), and view each patch as a sample of HRIs of
size mN × mN . Then we blindly run our program to es-
timate the covariance and mean of the HRIs, where mN
varies from 8 to 48 at a step size of 4. The number of sam-
ples is at the scale of 106 to 108. Note that such a scale may
not be enough in estimating ph(h). But estimating ph(h)
is not our goal at all. We are interested in the values of
b(N, m) only.
Characteristics of b(N,m). Next, we have to specify a
downsampling matrix in order to compute the lower bound
b(N, m) by (4) (The upsampling matrix U is determined by
D. See Section 2.1.). We simply choose a downsampling
matrix that corresponds to the bicubic B-spline filter.4 Then

4In the 1D case, a cubic filter can be written as:

k(x) =




(a + 2)|x|3 − (a + 3)|x|2 + 1, if 0 ≤ |x| ≤ 1,
a|x|3 − 5a|x|2 + 8a|x| − 4a, if 1 ≤ |x| ≤ 2,
0, if |x| > 2.

(15)

Figure 4. Part of the SR results using Sun et al.’s algorithm [15].
The magnification factor is 3.0. On the top are the LRIs of 16×16,
interpolated to 48 × 48 using bicubic interpolation. In the middle
are the SR results. At the bottom are the ground truth HRIs.

the curves of b(N, m) w.r.t. m are shown in Figure 3(a),
where for each individual curve N is fixed.

We can see that for fixed N , b
(1)
N (m) = b(N, m) in-

creases with m. A remarkable observation is that for differ-
ent N ’s, the curves in Figure 3(a) coincide well with each
other. This suggests that for general natural images b(N, m)
may be independent of N . Another interesting observation
on Figures 3(a) is that b

(1)
N (m) seems to grow at the rate

of (m − 1)1/2. The important implication from these ob-
servations is: we may estimate the limits of learning-based
SR by trying relatively small sized images and small mag-
nification factors, rather than trying large sized images and
large magnification factors, which saves computation and
memory without compromising the estimation accuracy.

However, one should be cautious that strictly speaking
the D in (2) should be estimated from real cameras. Fortu-
nately, we have found that our lower bound does not seem
to be very sensitive to the choice of D. We have tried the bi-
linear filter, Gaussian filters (with the variance varying from
0.52 to 1.52), and bicubic filters (with the parameter a vary-
ing from −1 to 0.5, see (15)), and have found that the lower
bounds are fairly close to each other. The curves in Fig-
ures 3(a)∼(e) testify to this observation. Moreover, what
we have observed in the last paragraph is still true.

When training learning based SR algorithms, one usu-
ally collects HRIs and downsamples them to LRIs. So it is
also helpful to draw the curves by fixing mN instead. The
same phenomenon mentioned above can also be observed
(Figure 3(f)). And the curves of b

(2)
mN (m) = b(N, m) by

fixing mN also coincide well with those of b
(1)
N (m) (Please

compare Figures 3(a) and (f)), implying that b(N, m) is
also independent of the size of HRIs. This can be eas-
ily proved: if b(N, m) = c(m) for some function c, then

b
(2)
mN(m) = b(N, m) = b

(1)
N (m) = c(m).

Testing Theorem 2.1. We run the SR algorithm by Sun et

When a = −1, it is the cubic B-spline filter. The downsampling matrix
for 2D images is the Kronecker product of the 1D downsampling matrices.



2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

3

4

5

6

7

m

b

*

*

2 4 6 8 10 12 14 16
0

5

10

15 3

4

5

6

7
8

9

m

b

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

3

4

5

6

7

m

b

(a) (b) (c)

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

3

4

5
6

7

m

b

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14 3

4

5

6

7
8

m

b

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

8

12

16

20

24
28 32

36
40

44

48

m

b

(d) (e) (f)
Figure 3. (a)∼(e) are curves of b(N, m) using different D’s, drawn with N fixed for each individual curve. The corresponding N ’s are
labelled at the tails of the curves (in order not to make the graph crowded, large N ’s for short curves are not shown). (a) uses a bicubic filter
with a = −1. The asterisks at (3, 11.1) and (4,12.6) represent the expected risks of Sun et al.’s [15] and Freeman et al.’s [6] SR algorithms,
respectively. (b) uses a bicubic filter with a = 0.5. (c) uses a Gaussian filter with σ = 0.5. (d) uses a Gaussian filter with σ = 1.5. (e)
uses the bilinear filter. (f) are the curves of b(N, m) with mN fixed. The corresponding mN ’s are labelled at the tails of the curves. The
filter used is the same as that in (a).

al. [15] on over 50,000 16× 16 LRIs that are downsampled
from 48 × 48 HRIs and that by Freeman et al. [6] on over
40,000 12 × 12 LRIs that are downsampled from 48 × 48
HRIs. Both algorithms are designed for general images and
they work at magnification factors of 3.0 and 4.0, respec-
tively. A few sample results are shown in Figure 4. The
expected risks of Sun et al.’s algorithm and Freeman et al.’s
are about 11.1 and 12.6, respectively, which are both above
our curves (Figure 3(a)). Therefore, these results are con-
sistent with Theorem 2.1.

Estimating the Limits. With the curves of b(N, m), we
can find the limits of learning based algorithms by choosing
an appropriate threshold T (see Section 2.4). Unfortunately,
there does not seem to exist a benchmark threshold. So ev-
ery practitioner can choose a threshold that he/she deems
appropriate and estimate the limits on his/her own. For ex-
ample, from the SR results of Sun et al.’s algorithm [15]
(Figure 4), we see that the fine details are already missing.
Therefore, we deem that the estimated risk 11.1 of their al-
gorithm is a large enough threshold. Using T = 11.1 we
can expect that the limit of learning-based SR algorithms
for general natural images is roughly 10 (Figure 3(a)). This

limit is a bit loose but it can be enhanced when the noise in
LRIs (see Section 2.1) is considered.
Testing Theorem 2.2. Finally, we present an experiment to
test Theorem 2.2. We sample over 1.5 million 8× 8 images
and set m = 2 (hence N = 4). Figure 5 shows the curve of
predicted sufficient number of samples using the most up-
dated variance and mean of HRIs, where p and ε are chosen
as described at the end of Section 2.6. We see that the es-
timated b(4, 2) already becomes stable even the number of
samples is still smaller than the predicted number. There
is still small fluctuation in b(4, 2) when M > M̂(p, ε)
because we allow the deviation from the true value to be
within 0.25 at above 99% certainty. Therefore, this result is
consistent with Theorem 2.2.

4. Conclusions and Future Work

This paper presents the first attempt to analyze the limits
of learning-based SR algorithms. We have proven a closed
form lower bound of the expected risk of SR algorithms.
We also sample real images to estimate the lower bound.
Finally, we prove the formula that gives the sufficient num-
ber of HRIs to be sampled in order to ensure the accuracy
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Figure 5. The evolution of b̂(4, 2) w.r.t. the number M of HRI
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of the estimate.
We have also observed from experiments that the lower

bound b(N, m) may be dependent on m only and the growth
rate of b(N, m) may be (m−1)1/2. These are important ob-
servations, implying that one may more conveniently com-
pute with small sized images and at small magnification fac-
tors and then predict the limits. This would save much com-
putation and memory. We hope to prove in the future what
we have observed.

As no authoritative threshold T is currently available,
our estimated limit (roughly 10 times) of learning-based
SR algorithms for general natural images is not convincing
enough. We are investigating how to propose an objective
threshold.

Also, we will investigate the limits of learning-based SR
algorithms under more specific scenarios, e.g., for face hal-
lucination and text SR. We expect that more specific prior
knowledge of the HRI distribution will be required.
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