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Abstract

We present a novel approach to reconstruction based super-
resolution that explicitly models the detector’s pixel layout.
Pixels in our model can vary in shape and size, and there may
be gaps between adjacent pixels. Furthermore, their layout
can be periodic as well as aperiodic, such as Penrose tiling
or a biological retina. We also present a new variant of the
well known error back-projection super-resolution algorithm
that makes use of the exact detector model in its back projec-
tion operator for better accuracy. Our method can be applied
equally well to either periodic or aperiodic pixel tiling.

Through analysis and extensive testing using synthetic and
real images, we show that our approach outperforms existing
reconstruction based algorithms for regular pixel arrays. We
obtain significantly better results using aperiodic pixel lay-
outs. As an interesting example, we apply our method to a
retina-like pixel structure modeled by a centroidal Voronoi
tessellation. We demonstrate that, in principle, this structure
is better for super-resolution than the regular pixel array used
in today’s sensors.

1 Introduction

Recent research in super-resolution (SR) have raised signif-
icant doubts regarding the usability of reconstruction base
super-resolution algorithms (RBA [4]) in the real world.
Baker and Kanade [4] showed that the condition number of
the linear system and the volume of solutions grow fast with
the increment of the magnification factor. Lin and Shum [18]
provided a comprehensive analysis of RBA and showed that
the effective magnification factor can be at most 5.7. Zhao
and Sawhney [24] showed that even achieving proper align-
ment of local patches for SR is questionable.

To overcome these limitations a different approach to RBA
must be taken. As noted by Baker and Kanade [4], RBA can
be decoupled into two parts: deblurring of the optical blur and
resolution enhancement. Since multiple images taken at small
camera displacements provide little or no additional informa-
tion with respect to the optical blur, the first part is mostly a
blind image deblurring. Moreover, real optical blur is rarely
or never shift invariant (and therefore cannot be expressed by
a single point spread function) and changes with focus and
aperture. This makes the problem of optical debluring non-
trivial at best.

In this paper we focus on the second aspect of RBA: detec-
tor resolution enhancement using multiple images. Optical
debluring can later be applied to the result provided that the
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Figure 1. Regular pixel layout and Penrose pixel layout on the
detector plane. (a) A microscopic view of a Sony 1/3” sensor
(part). The shape of the pixels as viewed through the microlens
array and color filter array, as well as the gaps between pixels,
are clearly visible. (b) A hypothetical aperiodic Penrose pixel
layout. (c) An illustration of an image at the sensor surface (ir-
radiance). (d) Spatial integration for the conventional layout. (e)
Spatial integration for the Penrose layout.

lens properties are known. There is a significant technological
gap, however, between the theoretical optical resolution lim-
its and current sensor resolutions, particularly for short wave-
lengths (380-400nm). This is true for high-quality sensors
with large pixels (9 to 154) as well as ones with very small
pixels (2u to 41). Moreover, sensor technology advances
slower than may be expected [22], while physics is already
exploring the feasibility of a “perfect lens” using materials
with negative indexes of refraction [21]. Therefore, there is
a significant need for resolution enhancement at the sensor
level.

1.1 Related Work

Roughly speaking, SR algorithms can be categorized into four
classes [7, 19, 11]. Interpolation-based algorithms register
low resolution images (LRIs) with the high resolution image
(HRI), then apply nonuniform interpolation to produce an im-
proved resolution image which is then deblurred. Frequency-
based algorithms try to dealias the LRIs by utilizing the phase
difference among the LRIs. Learning-based algorithms (e.g.
[12, 4]) incorporate application dependent priors to infer the
unknown HRI. Reconstruction-based algorithms rely on the



relationship between the LRIs and the HRI and assume vari-
ous kinds of priors on the HRI in order to regularize this ill-
posed inverse problem. Among these four categories of al-
gorithms, RBAs are the most commonly used SR algorithms.
RBAs usually first form a linear system

L=PH+E, 1)
where L is the column vector of the irradiance of all low-
resolution pixels (LRPs) considered, H is the vector of the
irradiance of the HRI, P gives the weights of the high-
resolution pixels (HRPs) in order to obtain the irradiance of
the corresponding LRPs, and E is the noise. To solve (1), var-
ious methods, such as maximum a posteriori (MAP) [ 15, 10],
regularized maximum likelihood (ML) [10], projection onto
convex sets (POCS) [20], and iterative back-projection [16],
have been proposed to solve for the HRI.

In all previous work, the LRPs appear on the left hand side of
the system (1) and the LRIs are all rectangular regular grids,
with square pixels. Based on such a configuration, both the
practice and theoretical analysis [4, 18] have shown that the
magnification factor is limited to a relatively small number.

1.2 Our Contributions

We find that the magnification factor can be much larger if
the aforementioned two conventions of traditional RBAs are
changed. First, rather than using the LRPs directly for the
left hand side of (1), we instead upsample the LRIs to the
high-resolution grid to match the detector’s layout as shown
in Fig. 1(a),(d). For a perfectly square pixel layout, this is
identical to a nearest neighbor interpolation. In theory, this is
equivalent to multiplying a matrix involving the upsampling
to both sides of (1). Due to the presence of noise, such an un-
derlying treatment results in very different numerical conse-
quence (This is analogous to the preconditioning techniques
[13] for solving linear systems.). Second, rather than using
a regular grid for the LRIs, we instead use irregular pixel
layouts for the detector, resulting in LRIs with irregular pixel
shapes. The irregular layout helps produce a much more inde-
pendent equation set. Most importantly, since our layout has
no translational symmetry we can use larger displacements
(multiples of half a pixel) between LRIs without having the
grid repeat itself. This enables computation of the HRI with
larger magnifications (for regular grids, the effective displace-
ment is modulo pixel size, which limits the number of differ-
ent displacements that are at least € apart).

Moreover, our model’s layout, either regular or irregular, does
not require that the LRPs fill the whole detector’s plane. We
specifically model the gaps between physical pixels as null
values, which better match the information that is really ac-
quired by the sensor. In contrast, a sharp detail at the gap
between pixels will be wrongly assumed to not exist using
the conventional model.

We also propose a novel error back-projection algorithm
that iteratively recovers the super-resolved image for arbi-
trary pixel layouts, either regular or irregular. Our algorithm,
though very simple, provides better results than the conven-
tional back-projection algorithms do.

Figure 2. Upsamping and resampling. Upsampling is done by
placing a regular high resolution pixel (HRP) grid over the ac-
tual shape of the low resolution pixels (LRP) shown as white ar-
eas, then assigning the value of the LRP to each of the HRPs
covering it. HRPs that (mostly) cover black areas (non photo
sensitive areas) are assigned the value null. Downsampling is
an inverse procedure that integrates the non null HRP values to
form the value of its underlying LRP. Resampling is the compo-
sition of downsampling and upsampling.

We also discuss other aspects and potential benefits of Pen-
rose tiling based sensors, which are not directly related to
super-resolution, and the feasibility of manufacturing Penrose
tiling based pixel layouts and matching microlens arrays. We
believe that Penrose tiling sensor is feasible with current tech-
nology.

2 Penrose Tiling

Penrose tiling is an aperiodic tiling of the plane presented by
R. Penrose in 1973 [14]. Fig. 1(b) shows the rhombus Penrose
tiling, which consists of two rhombuses, each placed at five
different orientations by specific rules [14]. The ratio of the

number of thick to thin rhombi is the Golden Number HT\/‘F),
which is also the ratio of their area. Unlike regular tiling,
Penrose tiling has no translational symmetry - it never re-
peats itself exactly'. For the purpose of super-resolution, this
means that it is theoretically possible to integrate and sample
the infinite plane indefinitely without repeating the same pixel
structure. In practice, this allows the capture of a significantly
larger number of different images than is possible with a reg-
ular grid. Moreover, all images can be optimally displaced
approximately half a pixel apart and still be different. In con-
trast, a regular square tiling forces the maximal delta between
different displacements in = and y to be at most ﬁ, where M
is the linear magnification factor. The rhombus Penrose tiling
shown in Fig. 1(b) is a good candidate for hardware color
sensor realization because it is 3-colorable [23] and has sim-
ple tiles. This is the primary reason we selected this particular
aperiodic tiling.

3  Our Model and Algorithm for SR

We aim at obtaining the best possible results for real photo-
graphic systems. Similar to the Jitter-Camera [6], we assume
the motion of the camera to be translational on a plane parallel
to the detector plane. We also assume that the images are cap-
tured (or otherwise selected) in a controlled manner such that
the displacements are equal in both the horizontal and the ver-
tical directions and are exactly ﬁ apart, where M is the linear

10n the infinite plane. But any finite portion of the Penrose tiling can
repeat infinitely many times [14].



magnification factor’. The shape of LRPs can also be differ-
ent from each other and gaps between pixels are allowed. As
in [5, 4, 18], we also assume that the pixels of the sensor have
uniform photosensitivity, which implies that the contribution
of an HRP to an LRP is proportional to its area inside the LRP
and vice versa. These assumptions greatly simplify our model
and implementation, however as later shown in this section,
they can easily be relaxed.

3.1 Upsampling and Resampling

In our approach, the LRPs in each LRI may not be aligned
on a regular grid. Nonetheless, we can still index each LRP
in an LRI as we have full knowledge of the pixel layout. As
soon as an LRI is captured, we immediately upsample it to
the high-resolution grid to have an intermediate HRI. It is this
intermediate HRI, not the original LRI, that is involved in the
computations that follows. As shown in Fig. 2, upsampling is
done by placing a regular high resolution pixel grid over the
actual shape of the low resolution pixels and then associating
HRPs to LRPs. HRPs that are not associated to any LRP are
assigned the value null to differentiate them from the value
zero. The assumption on the uniformity of the pixels can be
relaxed at this stage by multiplying the intermediate HRI with
a weight mask to compensate for any intra-pixel non unifor-
maties. As we assume that the motion is fronto-parallel trans-
lational, and that the displacements between images equal %,
it turns out that the registration of the intermediate HRI is sim-
ply an integer shift of the origin. If the motion assumptions
do not hold, an additional warping step needs to be done af-
ter the upsampling. We denote the upsampling operator by
T1,,c» where T; is the transformation for registration and G is
the sensor layout map.

Our algorithm also includes an error back-projection proce-
dure. It requires a resampling operator (Fig. 2), denoted by
I7,,¢, which simulates the image formation process to pro-
duce new intermediate HRIs given an estimate of the super-
resolved image. The resampling operator can be viewed as a
downsampling operator followed by an upsampling operator.
An alternative way to view the upsampling and resampling
operators is to view the downsampling operator as an integral
over a pixel area, and the upsampling / resampling operator
as a flood-fill of the pixel area with this average value. In
practice, the computation is done “in-place”, and no actual
downsizing takes place. The resulting images are hypotheses
of the intermediate HRIs assuming the super-resolved image
is the correct one.

3.2 Error Back-Projection Algorithm

Our super-resolution algorithm is a variant of the well-known
error back-projection super-resolution algorithm [16]. Unlike
the traditional algorithm that downsamples the images into a
low resolution array, our algorithm is performed entirely on
the high-resolution grid. Using the concepts in the previous

2 The meaning of the magnification factor for irregular pixel layouts is
ambiguous. However, as we focus on quasi-uniform pixel layouts, the mag-
nification factor can still be roughly estimated as the increase in the number
of pixels.

subsection, we summarize our algorithm as follows:
Algorithm 1

Inputs:
e Loy,..., Loy Low resolution images (~ N2 pixles)
o Ti,...,Ty2: Transformations for registering the LRIs.

e M € N : Magnification factor.
e (: Sensor layout map.

Output:

o Su: Super-Resolved image (NM x NM).
Processing:

1. Upsample: I; = Lo; T1,.c, %€ [l,..., M2

M?
2. Initialize: Su® = 1z Y L.
i=1

3. Iterate until convergence:
2

a.  Surtl=Su"+ 21 (I; — Su" |1,,¢)-

i=
b.  Limit: 0 < Su™(z,y) < MaxVal.

Note that null elements are ignored when computing the av-
erage values. Step 3(b) represents the prior knowledge about
a physically plausible image, where MaxVal is determined by
the optical blur and the A/D unit. The difference between
our algorithm and the conventional back projection algorithm
(with a rect kernel) lies in the up-sample stage. Our upsam-
pling operator 7 ¢ preserves sharp edges between pixels at
the high-resolution grid whereas the conventional algorithm
applies the blur kernel globally. Hence our upsampling op-
erator better preserves the high frequencies in the HRI. Also
note that if warping is required, it is performed on the inter-
mediate HRI after the upsampling.

4 Analysis

From the linearity of the upsampling and the resampling op-
erators in Algorithm 1, we see that every intermediate HRI
I; aligned to the high-resolution grid is connected to the
groundtruth image Swu via a matrix A;:

where n; is the noise from Lo;. The matrix A; is exactly the
representation of the operator |7, ¢ in Algorithm 1. There-

fore, the iteration 3(a) in Algorithm 1 can be written as:
M2

1
Sut = Su + 5 > (A Sut i — A Su”), (3)
i=1
which can be rewritten as: -
Su" Tt — Sy = (I — A)(Su™ — Su) + 7, 4)
B M? M?
where A = 74 >~ A;and i = 5 - ni. So
i=1 i=1
Su" = Su = (I—-A)"(Su’ - Su)+ |> (I - A)¥| n, (5)
k=0 _

Assuming that the spectral radius of I — A is less than 1,
then lim (/ — A)" = 0 and A is non-singular with A~! =

> (I — A)*. Then from (5) we have that:
k=0 -
lim Su™ = Su+ A 'q. (6)



4.1 Implications from Error Analysis

From (6), we may expect that the iterations result in a super-
resolved image which deviates from the ground truth by
A~ Note that 7 can be viewed as the empirical estima-
tion of the mean of the noise. Therefore, when the noise in the
LRIs is of zero mean (so is n; as there is a linear transform be-
tween them), we can expect that a high fidelity super-resolved
image is computed. If we can choose an appropriate pixel lay-
out so that the norm of A1 is small, then the deviation can
be effectively controlled regardless of the mean of the noise
(note that || lim Su™ — Sul| = [|[A7a|| < |JA7Y] ||a]]).
n—oo

As ||A7Y|| is large when A is close to be singular, we should
choose an appropriate detector’s pixel layout such that A is
far from singular.

According to the above analysis, we must choose pixel lay-
outs such that there are more linearly independent equations
in the system (2). The traditional regular tiling repeats itself
after a translation of one LRP (two LRPs if we account for
the Bayer pattern in color sensors). Lin and Shum [18] also
showed that if five LRPs cover the same set of HRPs, then
their equation set must be linearly dependent. These indicate
that using regular (and square) tiling usually results in insuf-
ficient number of independent equation set. To overcome this
difficulty, we try to change the regular tiling to other kinds of
tilings. An intuition is to use aperiodic tilings.

5 Testing and Evaluation

We evaluated our approach with simulations and real image
tests. For our first experiment, we simulated the entire super-
resolution process for square and Penrose pixels. As we do
not have an actual Penrose pixel sensor, our second experi-
ment strives to be as close to a real world conditions as pos-
sible. We first captured a sequence of high-resolution real
images (each with its own unique noise characteristics) and
then integrated pixel values to simulate a Penrose image. The
last experiment is a start-to-finish real image super-resolution
test.

5.1 Regular Pixels Quantization and Noise Tests

In our first simulation, we applied our algorithm to LRIs syn-
thesized from ground truth HRIs of a clock and a face. We
used regular grids with linear magnification factors of 1 to
16, and quantization levels of 8 and 5 bits. No additional noise
was added. Fig. 3 shows our super-resolution results and RMS
errors (compared to the original image). Though there is a
gradual degradation with increasing magnification and quan-
tization error, the super-resolution algorithm performs very
well. This matches our analysis for zero mean (quantization)
noise.

We then added Poisson noise (which better models real noise)
to the input images. Fig. 4 shows the super-resolution re-
sult for the “face” image using additive Poisson noise with
mean = 5 and 10 grey levels, followed by 8-bit quantization.
Unlike the zero mean quantization error, the non-zero mean
Poisson noise significantly degrades the quality of the results.
The results can be improved by using many more images than

Figure 4. Noise evaluation test using regular tiling. The top two
rows show the result of super-resolution with different magnifi-
cation factors and Poisson noise of mean 5 (top) and 10 (middle)
grey levels. All computations were run for several thousands
of iterations or until convergence. The amplification of noise
is quite clear and the results are very different from those with
zero-mean quantization error. The bottom row shows the results
of super-resolution with magnification of x8 and noise mean of
10 running for 1000 iterations, with different numbers of input
images (256 to 1600). Results are much better than that obtained
by using the minimum 64 input images (the boxed image).

the theoretical minimum requirement, as shown in the bottom
row of Fig. 4.

5.2 Penrose Pixels Quantization and Noise Tests

We repeated the last two tests for two Penrose tiling pixel
layouts. The magnification factors were roughly equivalent
to 8 and 16, and the quantization level was 8-bit. Unlike for
regular pixels, we used displacements of approximately 0.5
pixels and were able to use more images than was possible
with the regular grid. The results shown in Fig.5 are clearly
better than the results obtained with the regular grid, shown
in Figs.3,4.

To better quantify the results, we used a concentric test tar-
get having variable spatial frequency contrast’. We added
low level noise to each image to create quantization varia-
tions. Then we applied our algorithm and the conventional
back projection algorithm under exactly the same conditions
and using the same number of input images. Fig. 7 shows that
our algorithm improves the linear magnification by roughly a
factor of two (for the same RMS errors) compared to the con-
ventional back projection algorithm with regular pixels, and
by over a factor of four when Penrose pixels are also used.
Figure 8 compares the RMS error as a function of number of
images for regular and Penrose tiling respectively. The mag-
nification factor was 8 and the same algorithm (Algorithm-1)

3Real lens’ contrast declines as the spatial frequency increases.



5-bit Q (12.3) (19.3) (26.1) 5-bits Q (11.3) (15.6) (18.8)
Figure 3. Quantization Error: Super-Resolution results for the ‘“clock” and ‘“face” images using regular tiling. Top left corner:
Original Image. Top row: LRIs with different magnification factors (scaled). Center and bottom rows: Super-resolution results for
quantization levels of 8 and 5 bits, respectively.The results gradually degrade as the quantization error and magnification increase.

The numbers in parentheses are the RMS errors.
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Figure 5. Penrose Pixels super-resolution results. (top) input im-
ages for magnification factor of 8 and 16. (middle) 8-bit quan-
tization result. (bottom) 8-bit quantization, and Poisson noise
results. Noise mean equals 5 (using 625 images), and 10 (using
1600 images), respectively.

was applied to both layouts. One can see that while the regular
layout improved slightly when over-constrained, the Penrose
layout improved by over 4 times. It is interesting to see that
the regular layout was actually better when the system was
severely under-constrained.

For our last simulation example, we compared our algorithm
to an externally obtained result of [ 15, 4] using an image from

x1 (a) x8 (b) x8 (¢) x8 (d)
RMS error:  (unknown) (5.78) (2.88)

Figure 6. (a) Original image. (b) result of super-resolution using
[15] (image taken from [4]). (c) our result using a regular pixel
layout. (d) our result using a Penrose Pixels layout.

Under Constrained __, . Over Constrained _,

50
a5
w0 L\

35 I\

30 \\
2

20 \"\ A
\Il\“
15
10
5 \b\ B
o
4 16 64 256 1024

Figure 8. RMS error vs. number of images. (A): regular lay-
out with square pixels. (B): Penrose layout. The Penrose layout
clearly better utilizes the additional images.

the FERT database [3]. In Fig. 6 the improvement from our
approach is clearly visible.

5.3 Real Images with Simulated Binning Test

In this test we captured 576 real images with a Nikon D70
camera on a tripod. We computed the LRIs by integrating
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Figure 7. Test target comparison. Top: input images for regular and Penrose pixel layouts, with magnification factors of 8 and 16
respectively. Middle: super-resolution results using our back projection algorithm for the regular and Penrose pixel layouts. Bottom:
super-resolution results using the conventional back projection algorithm for the regular layout (with matched Gaussian kernel)
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Figure 9. Our algorithm applied to real images (each with its own
noise) with simulated pixel integration. Top: input images for
the regular and Penrose pixel layout with magnifications of 8 and
16. Bottom: results of our super-resolution algorithm applied to
both regular and Penrose pixel layouts.

each image with the map G, and then quantizing the result.
Thus, the resulting LRIs had unique noise due to sensor noise,
quantization, and JPEG compression. This process is very
similar (though noisier) to pixel binning done at the analog
level. As with real sensors’ binning, large simulated pixels
have lower noise than small integrated pixels do. The LRIs
were also subject to slight misalignment due to shake by the
flipping mirror in the camera. By capturing more images than
the required minimum, we also reduce the effect of slight mis-
alignments. Fig. 9 shows the results of applying our super-
resolution algorithm to the LRIs for regular and Penrose lay-
outs. The advantage of the Penrose layout is clear.

5.4 Real Scenario Test

For our real-world test, we captured a sequence of images us-
ing a B/W version of the Sony 1/3 sensor shown in Fig 1(a).
Using the lens resolution and pixel size and shape, we created
a sensor model for x5 magnification (which is above the nom-
inal lens resolution). We model square pixels with trimmed
(null) corners to match the actual pixel shape (including the
microlens). We then moved a test image, in a controlled man-
ner, in front of the camera and captured 5 x 5 input images at
25 different displacements. To reduce noise, we averaged 20
frames for each input image”. Fig. 10(a) shows one of the in-
put images and a magnified insert. Fig. 10(b) shows an actual
intermediate HRI. The black dots are the null values at the
corners of each pixel. Fig. 10(c) shows the super-resolution
result. Note that even fine details such as the dots above the
letter ‘" and in the exclamation marks were resolved.

6 Discussion

So far we have only addressed the super-resolution related
aspects of Penrose tiling. We have mentioned before that
Penrose rthombus tiling is 3-colorable, allowing the use of
RGB color filter arrays on the sensor. Which coloring to use,
and the best way to demosaic the image, are open problems.
An interesting aspect of Penrose Pixels is their irregular sam-
pling. The acquired images are not subject to strong Moiré ef-
fects that can plague conventional digital photography, partic-
ularly in video. Also, Penrose rhombus tiling is only one pos-
sible aperiodic tiling, which we selected mainly for its sim-

“4This is possible in a controlled environment such as the “Jitter Cam-
era” [0], and saves a lot of storage space and computation time. In un-
controlled environments, all captured images should be fed directly into the
super-resolution algorithm to reduce noise and misalignments artifacts.
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Figure 10. Real image super-resolution result. Left: real image captured by the camera (enlarged). Middle: input view for the super-
resolution algorithm using our cCD model. The little black dots are gaps between pixels and have null value. Right: super-resolution
result. Notice the details at the magnified view, in particular the dots above the letter ‘i’ and in the exclamation marks.

plicity. Further research is needed to determine which tiling,
if any, performs best.

Another potentially interesting application of our approach is
researching super-resolution in biological vision systems. It
is well known that the acuity of many biological vision sys-
tems (including the human eye) exceeds the resolution im-
plied by the size of their sensory cells. This phenomena is
commonly known as “hyper-resolution”. Though we do not
claim that the eye’s hyper-resolution actually operates in a
similar way to reconstruction based super-resolution, we do
believe that our method can estimate the upper limit for the
resolving power of biological retinal structures. This can pro-
vide an objective tool for comparing the potential visual acu-
ity of different animals.

As an example, Fig.11(a) shows the cell structure of a human
fovea. We can see that the structure is nearly hexagonal, but
definitely irregular. We modeled this structure by a centroidal
Voronoi diagram shown in Fig.11(b), and we applied our al-
gorithm to the “face” image. The resulting super-resolution
image with a magnification factor of roughly 18 is shown in
Fig.11(e). This image looks better and has lower RMS error
than the result of the regular pixel layout with a magnification
factor of 16. This suggests that the retinal irregular structure
theoretically has better resolving power than the regular struc-
ture.

Before we conclude our paper, we briefly address the plau-
sibility of a hardware Penrose pixel implementation. At first
glance, manufacturing an image sensor that uses an aperiodic
pixel layout might seem implausible. In today’s sensor tech-
nologies (CMOS and CCD chips), control signals and power
supplies are routed to each pixel using metal wires. These
wires are opaque and run on top of the silicon substrate con-
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Figure 11. Super-resolution using a centroidal Voronoi grid. (a)
cross section of a human eye’s fovea. (b) our centroidal Voronoi
model with magnification factor of approx. 18 (c¢) ground truth
image. (d) a low-resolution image. (c) reconstructed image RMS
error is 9.4.

taining the photodetectors in each pixel. On a regular grid,
wires can be run between pixels to minimize their negative
impact on the pixels’ light gathering efficiency. This is not
true for Penrose tiling.

Penrose pixel routing becomes much simpler if we assume
a back-illuminated CMOS sensor. In such devices, the chip
is thinned and mounted upside down in the camera so that
light enters from the back of the chip. The metal layers are
now underneath the photodetectors, so they do not block light.
This technology is becoming more appealing as pixel physi-



cal dimensions shrink. Researchers at SONY, for example, re-
cently demonstrated a high-sensitivity, four megapixel color
CMOS image sensor with 3.45um square pixels and back-
illumination [17].

With no concerns about occluding pixels, Penrose pixel rout-
ing becomes much simpler. Generally, in CMOS sensors,
each row of pixels shares a signal called a wordline, and each
column shares a bitline. When a wordline is asserted, that
row of pixels drives their data (a voltage) onto their bitlines to
be read out. The wiring challenge is to connect each pixel
to a unique wordline/bitline combination. Power supplies
and other control signals can run in parallel to these wires.
Slightly increasing the density of wordlines and bitlines be-
yond the theoretical minimum makes this task easy.

One might ask if it is feasible to fabricate an image sen-
sor with two different diamond-shaped pixels. The irregular
size of the photodetector itself is not a problem. Fujifilm,
for example, has produced an image sensor with two oblong,
differently-sized photodiodes under a single microlens in each
pixel [2]. We also require microlenses with shapes that match
the diamond-shaped pixels. Such microlens arrays can be pro-
duced using melting photoresist [9] in a similar way to hexag-
onal microlens array production [§].

Each of the two pixel shapes occur in five different orienta-
tions, so a maximum of only ten unique pixel designs would
be necessary. Assuming we place the pixels with custom soft-
ware, standard IC wire routing tools could easily connect each
pixel to the necessary wires (e.g. power supplies, a unique
wordline/bitline combination, and so on) while ensuring other
desirable properties like small signal wire lengths. Thus, we
believe it is possible to produce a Penrose pixel image sensor
using existing proven technologies.

7 Conclusion

We present a novel approach to super-resolution based on
aperiodic Penrose tiling and a novel back projection super-
resolution algorithm. Our tests show that our approach signif-
icantly enhances the capability of reconstruction based super-
resolution, and brings it closer to bridging the gap between
the optical resolution limit and the sensor resolution limit. We
also argue that constructing a real Penrose tiling sensor is fea-
sible with current technology. This could prove very benefi-
cial for demanding imaging applications such as microscopy
and astronomy.

Another exciting possibility is to adapt current image stabi-
lization jitter mechanisms [1] for use with super-resolution.
Even a modest 4x linear magnification would turn an 8MP
camera into a 128MP one for stationary and possibly moving
[6] scenes, without changing the field of view.
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