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Abstract

We present a simple new criterion for classification, based on principles from lossy
data compression. The criterion assigns a test sample to the class that uses the min-
imum number of additional bits to code the test sample, subject to an allowable
distortion. We prove asymptotic optimality of this criterion for Gaussian data and
analyze its relationships to classical classifiers. Theoretical results provide new
insights into relationships among popular classifiers such as MAP and RDA, as
well as unsupervised clustering methods based on lossy compression [13]. Mini-
mizing the lossy coding length induces a regularization effect which stabilizes the
(implicit) density estimate in a small-sample setting. Compression also provides
a uniform means of handling classes of varying dimension. This simple classi-
fication criterion and its kernel and local versions perform competitively against
existing classifiers on both synthetic examples and real imagery data such as hand-
written digits and human faces, without requiring domain-specific information.

1 Introduction

One quintessential problem in statistical learning [9, 20] is to construct a classifier from labeled
training data (@;,v;) ~ud px,y (x,y). Here, x; € R™ is the observation, and y; € {1,..., K} its
associated class label. The goal is to construct a classifier g : R™ — {1,..., K’} which minimizes
the expected risk (or probability of error): g* = arg min E[I,(x).y]. where the expectation is taken
with respect to px,y . When the conditional class distributions p x|y (z|y) and the class priors py (y)
are given, the maximum a posterior (MAP) assignment

j(x) = arg ming ey g} — Inpxy(zly) —Inpy(y) (D

gives the optimal classifier. This amounts to a minimum coding length principle: the optimal clas-
sifier minimizes the Shannon optimal (lossless) coding length of the test data x with respect to
the distribution of the true class. The first term is the number of bits needed to code x w.r.t. the
distribution of class ¥, and the second term is the number of bits needed to code the label y for .

Issues with Learning the Distributions from Training Samples. In the typical classification
setting, the distributions px |y (x|y) and py (y) need to be learned from a set of labeled training
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data. Conventional approaches to model estimation (implicitly) assume that the distributions are
nondegenerate and the samples are sufficiently dense. However, these assumptions fail in many
classification problems which are vital for applications in computer vision [10, 11]. For instance, the
set of images of a human face taken from different angles and under different lighting conditions
often lie in a low-dimensional subspace or submanifold of the ambient space [2]. As a result, the as-
sociated distributions are degenerate or nearly degenerate. Moreover, due to the high dimensionality
of imagery data, the set of training images is typically sparse.

Inferring the generating probability distribution px y from a sparse set of samples is an inherently
ill-conditioned problem [20]. Furthermore, in the case of degenerate distributions, the classical
likelihood function (1) does not have a well-defined maximum [20]. Thus, to infer the distribution
from the training data or to use it to classify new observations, the distribution or its likelihood
function needs to be properly “regularized.” Typically, this is accomplished either explicitly via
smoothness constraints, or implicitly via parametric assumptions on the distribution [3]. However,
even if the distributions are assumed to be generic Gaussians, explicit regularization is still necessary
to achieve good small-sample performance [6].

In many real problems in computer vision, the distributions associated with different classes of data
have different model complexity. For instance, when detecting a face in an image, features associated
with the face often have a low-dimensional structure which is “embedded” as a submanifold in a
cloud of essentially random features from the background. Model selection criteria such as minimum
description length (MDL) [12, 16] serve as important modifications to MAP for model estimation
across classes of different complexity. It selects the model that minimizes the overall coding length
of the given (training) data, hence the name “minimum description length” [1]. Notice, however, that
MDL does not specify how the model complexity should be properly accounted for when classifying
new test data among models that have different dimensions.

Solution from Lossy Data Coding. Given the difficulty of learning the (potentially degenerate)
distributions px|y (z|y) from a few samples in a high-dimensional space, it makes more sense to
seek good “surrogates” for implementing the minimum coding length principle (1). Our idea is to
measure how efficiently a new observation can be encoded by each class of the training data subject
to an allowable distortion, and to assign the new observation to the class that requires the minimum
number of additional bits. We dub this criterion “minimum incremental coding length” (MICL) for
classification. It provides a counterpart of the MDL principle for model estimation and as a surrogate
for the minimum coding length principle for classification.

The proposed MICL criterion naturally addresses the issues of regularization and model complexity.
Regularization is introduced through the use of lossy coding, i.e. coding the test data x upto an
allowable distortion' (placing our approach along the lines of lossy MDL [15]). This contrasts with
Shannon’s optimal lossless coding length, which requires precise knowledge of the true distributions.
Lossy coding length also accounts for model complexity by directly measuring the difference in the
volume (hence dimension) of the training data with and without the new observation.

Relationships to Existing Classifiers. While MICL and MDL both minimize a coding-theoretic
objective, MICL differs strongly from traditional MDL approaches to classification such as those
proven inconsistent in [8]. Those methods chose a decision boundary that minimizes the total num-
ber of bits needed to code the boundary and the samples it incorrectly classifies. In contrast, MICL
uses coding length directly as a measure of how well the training data represent the new sample.
The inconsistency result of [8] does not apply in this modified context. Within the lossy data cod-
ing framework, we establish that the MICL criterion leads to a family of classifiers that generalize
the conventional MAP classifier (1). We prove that for Gaussian distributions, the MICL criterion
asymptotically converges to a regularized version of MAP? (see Theorem 1) and give a precise es-
timate of the convergence rate (see Theorem 2). Thus, lossy coding induces a regularization effect
similar to Regularized Discriminant Analysis (RDA) [6], with similar gains in finite sample per-
formance with respect to MAP/QDA. The fully Bayesian approach to model estimation, in which
posterior distributions over model parameters are estimated also provides finite sample gains over

'Information Bottleneck also uses lossy coding, but in an unsupervised manner, for clustering, feature
selection and dimensionality reduction [19]. We apply lossy coding in the supervised (classification) setting.
2MAP subject to a Gaussian assumption is often referred to as Quadratic Discriminant Analysis (QDA) [9].



ML/MAP [14]. However, that method is sensitive to the choice of prior when the number of samples
is less than the dimension of the space, a situation that poses no difficulty to our proposed classifier.

When the distributions involved are not Gaussian, the MICL criterion can still be applied locally,
similar to the popular k-Nearest Neighbor (k-NN) classifier. However, the local MICL classi-
fier significantly improves the k-NN classifier as it accounts for both the number of samples and
the distribution of the samples within the neighborhood. MICL can also be kernelized to handle
nonlinear/non-Gaussian data, an extension similar to the generalization of Support Vector Machines
(SVM) to nonlinear decision boundaries. The kernelized version of MICL provides a simple alter-
native to the SVM approach of constructing a linear decision boundary in the embedded (kernel)
space, and better exploits the covariance structure of the embedded data.

2 C(lassification Criterion and Analysis

2.1 Minimum Incremental Coding Length.

A lossy coding scheme [5] maps vectors X = (x1,...,xT,,) € R"*™ to a sequence of binary bits,
from which the original vectors can be recovered upto an allowable distortion E[||z — z||?] < £2.
The length of the bit sequence is then a function L. (X)) : R"*™ — Z, . If we encode each class
of training data X; = {x; : y; = j} separately using L.(X}) bits, the entire training dataset can be
represented by a two-part code using Zj{zl L.(X;) — |X;|log, py () bits. Here, the second term is
the minimum number of bits needed to (losslessly) code the class labels y;.

Now, suppose we are given a test observation € R”, whose associated class label y(x) = j is
unknown. If we code x jointly with the training data X; of the jth class, the number of additional
bits needed to code the pair (x, y) is 0L (x, j) = L. (X;U{x})— L (X;)+ L(j). Here, the first two
terms measure the excess bits needed to code (x, X;) upto distortion £2, while the last term L(j)
is the cost of losslessly coding the label y(x) = j. One may view these as “finite-sample lossy”
surrogates for the Shannon coding lengths in the ideal classifier (1). This interpretation naturally
leads to the following classifier:

Criterion 1 (Minimum Incremental Coding Length). Assign x to the class which minimizes the
number of additional bits needed to code (x, ), subject to the distortion &:

g(x) = arg minjery gy 0L (x, 7). 2)

The above criterion (2) can be taken as a general principle for classification, in the sense that it can be
applied using any lossy coding scheme. Nevertheless, effective classification demands that the cho-
sen coding scheme be approximately optimal for the given data. From a finite sample perspective,
L. should approximate the Kolmogorov complexity of X', while in an asymptotic, statistical setting
it should approach the lower bound given by the rate-distortion of the generating distribution [5].

Lossy Coding of Gaussian Data. We will first consider a coding length function L. introduced
and rigorously justified in [13], which is (asymptotically) optimal for Gaussians. The (implicit) use
of a coding scheme which is optimal for Gaussian sources is equivalent to assuming that the condi-
tional class distributions px |y can be well-approximated by Gaussians. After rigorously analyzing
this admittedly restrictive scenario, we will extend the MICL classifier (with this same L. function)
to arbitrary, multimodal distributions via an effective local Gaussian approximation.

For a multivariate Gaussian source N (p,Y), the average number of bits needed to code a vector

subject to a distortion €2 is approximately R (X) = 3 log, det (I+2X) (bits/vector). Observations

X = (@1,...,@,) with sample mean 1 = -1 > x; and covariance 2(X) = LS (i —
fu)(zz; — 1)T can be represented upto expected distortion £2 using &~ mR. () bits. The optimal

codebook is adaptive to the data, and can be encoded by representing the principal axes of the

covariance using an additional nR.(X) bits. Encoding the mean vector p requires an additional

5 log, ( 1+ ’1;’1 ) bits. The total number of bits required to code X is therefore
m+n n . n ﬂTﬂ
Lo(%) = 2 log, det (1+ 5—22(;&) + 5 log, (1+ 5F0). 3)
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Figure 1: MICL harnesses linear structure in the data to interpolate (left) and extrapolate (center) in
sparsely sampled regions. Popular classifiers such as k-NN and SVM-RBF do not (right).

The first term gives the number of bits needed to represent the distribution of the x; about their mean,
and the second gives the cost of representing the mean. The above function well-approximates the
optimal coding length for Gaussian data, and has also been shown to give a good upper bound on the
number of bits needed to code finitely many samples lying on a linear subspace (e.g., a degenerate
Gaussian distribution) [13].

Coding the Class Label. Since the label Y is discrete, it can be coded losslessly. If the test class
labels Y are known to have the marginal distribution P[Y" = j] = 7, then the optimal coding
lengths are (within one bit): L(j) = —log, ;. In practice, we may replace 7; with the estimate
#t; = |X;|/m. Notice that as in the MAP classifier, the 7, essentially form a prior on class labels.
Combining this coding length the class label with the coding length function (3) for the observations,
we summarize the MICL criterion (2) as Algorithm 1 below:

Algorithm 1 (MICL Classifier).

1: Input: m training samples partitioned into K classes X, >, ..., Xk and a test sample x.
2: Compute prior distribution of class labels 7; = |X;|/m.
3. Compute incremental coding length of & for each class:

0Le(z,j) = Le(X; U{x}) — Le (X)) — logy 7,

whete LX) =2 log, det I+ 5(V)) + $og, (14 E22).
4: Output: §(x) = argminj—y g 0L.(,j).

The L.(X;U{z}) can be computed in O(min(m, n)?) time (see [21]), allowing the MICL classifier
to be directly applied to high-dimensional data. Figure 1 shows the performance of Algorithm 1 on
two toy problems. In both cases, the MICL criterion harnesses the covariance structure of the data
to achieve good classification in sparsely sampled regions. In the left example, the criterion inter-
polates the data structure to achieve correct classification, even near the origin where the samples
are sparse. In the right example, the criterion extrapolates the horizontal line to the other side of the
plane. Methods such as k-NN and SVM do not achieve the same effect. Notice, however, that these
decision boundaries are similar to what MAP/QDA would give. This raises an important question:
what is the precise relationship between MICL and MAP, and when is MICL superior?

2.2 Asymptotic Behavior and Relationship to MAP

In this section, we analyze the asymptotic behavior of Algorithm 1 as the number of training samples
goes to infinity. The following result, whose proof is given in [21], indicates that MICL converges
to a regularized version of ML/MAP, subject to a reward on the dimension of the classes:

Theorem 1 (Asymptotic MICL [21]). Let the training samples {(x;, y;)} 721 ~iid Px,y (2, y), with
p; = EX|Y = j|, 8 = Cov(X|Y = j). Then as m — oo, the MICL criterion coincides
(asymptotically, with probability one) with the decision rule
2
N € 1
§(@) = argmax L6 (x| g 2y + 1)+l + 5 D), “)

where Lq(-| p,X) is the log-likelihood function for a N (u,X) distribution , and D.(X;) =
tr(X; (2, + %I)_l) is the effective dimension of the j-th model, relative to the distortion €.
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Figure 2: Left: Excess risk incurred by using MAP rather than MICL, as a function of € and m. (a)
isotropic Gaussians. (b) anisotropic Gaussians. Right: Excess risk for nested classes, as a function
of n and m. (c) MICL vs. MAP. (d) MICL vs. RDA. In all examples, MICL is superior for n > m.

This result shows that asymptotically, MICL generates a family of MAP-like classifiers parametrized
by the distortion £2. If all of the distributions are nondegenerate (i.e. their covariance matrices %
are nonsingular), then lim._,o(X; + %I) = ¥; and lim. ¢ D.(X;) = n, a constant across the
various classes. Thus, for nondegenerate data, the family of classifiers induced by MICL contains
the conventional MAP classifier (1) at ¢ = 0. Given a finite number, m, of samples, any reasonable
rule for choosing the distortion £ should therefore ensure that e — 0 as m — oco. This guarantees
that for non-degenerate distributions, MICL converges to the asymptotically optimal MAP criterion.

Simulations (e.g., Figure 1) suggest that the limiting behavior provides useful information even
for finite training data. The following result, proven in [21], verifies that the MICL discriminant
functions d L. (x, j) converge quickly to their limiting form 6 L2°(x, 5):

Theorem 2 (MICL Convergence Rate [21]). As the number of samples, m — oo, the MICL criterion
(2) converges to its asymptotic form, (4) at a rate of m~z. More specifically, with probability at least
1— o, [0L:(2,)) — 0L (2, j)| < c(a) - m™2 for some constant ¢(ct) > 0.

2.3 Improvements over MAP

In the above, we have established the fact that asymptotically, the MICL criterion (4) is just as good
as the MAP criterion. Nevertheless, the MICL criterion makes several important modifications to
MAP, which significantly improve its performance on sparsely sampled or degenerate data.

Regularization and Finite-Sample Behavior. Notice that the first two terms of the asymptotic
MICL criterion (4) have the form of a MAP criterion, based on an AV (u, > + %I ) distribution.

This is somewhat equivalent to softening the distribution by =- along each dimension, and has two
important effects. First, it renders the associated MAP decision rule well-defined, even if the true
data distribution is (almost) degenerate. Even for non-degenerate distributions, there is empirical

evidence that for appropriately chosen ¢, S+ %I gives more stable finite-sample classification [6].

Figure 2 demonstrates this effect on two simple examples. The generating distributions are param-
eterized as (a) p; = [—3,0], py = [3,0l, &1 = Ty = L, and (b) py = [—3,0], py = [3,0],
¥y = diag(1,4), X3 = diag(4,1). In each example, we vary the number of training samples, m,
and the distortion . For each (m, &) combination, we draw m training samples from two Gaus-
sian distributions N'(p;, 2;), ¢ = 1,2, and estimate the Bayes risk of the resulting MICL and MAP
classifiers. This procedure is repeated 500 times, to estimate the overall Bayes risk with respect to
variations in the training data. Figure 2 visualizes the difference in risks, Ry;ap — Ryrrcor- Posi-
tive values indicate that MICL is outperforming MAP. The red line approximates the zero level-set,
where the two methods perform equally well. In the isotropic case (a), MICL outperforms MAP for
all sufficiently large €. with a larger performance gain when the number of samples is small. In the
anisotropic case (b), for most ¢, MICL dramatically outperforms MAP for small sample sizes. We
will see in the next example that this effect becomes more pronounced as the dimension increases.

Dimension Reward. The effective dimension term D (X;) in the large-n MICL criterion (4) can
be rewritten as D (X;) = i, Ai/ (% + \;), where ); is the ith eigenvalue of 3;. If the data lie
near a d-dimensional subspace (A1 ... Ay > €2/nand \gy1...\, < €2/n), D. ~ d. In general,



D, can be viewed as “softened” estimate of the dimension?, relative to the distortion 2. MICL

therefore rewards distributions that have relatively higher dimension.* However, this effect is some-
what countered by the regularization induced by ¢, which rewards lower dimensional distributions.

Figure 2(right) empirically compares MICL to the conventional MAP and the regularized MAP (or
RDA [6]). We draw m samples from three nested Gaussian distributions: one of full rank n, one of
rank n/2, and one of rank 1. All samples are corrupted by 4% Gaussian noise. We estimate the Bayes
risk for each (m, n) combination as in the previous example. The regularization parameter in RDA
and the distortion ¢ for MICL are chosen independently for each trial by cross validation. Plotted
are the (estimated) differences in risk, Ry;ap — Rarror (Fig. 2 (¢)) and Rgrpa — Ryrcor (Fig. 2
(d)). The red lines again correspond to the zero level-set of the difference. Unsurprisingly, MICL
outperforms MAP for most (m, n), and that the effect is most pronounced when n is large and m is
small. When m is much smaller than n (e.g. the bottom row of Figure 2 right), MICL demonstrates
a significant performance gain with respect to RDA. As the number of samples increases, there is a
region where RDA is slightly better. For most (m, n), MICL and RDA are close in performance.

2.4 Extensions to Non-Gaussian Data

In practice, the data distribution(s) of interest may not be Gaussian. If the rate-distortion function is
known, one could, in principle, carry out similar analysis as for the Gaussian case. Nevertheless, in
this subsection, we discuss two practical modifications to the MICL criterion that are applicable to
arbitrary distributions and preserve the desirable properties discussed in the previous subsections.

Kernel MICL Criterion. Since X X7 and X7 X have the same non-zero eigenvalues,
log, det (I+a XXT) = log,det(I+a X" X). (5)

This identity shows that L.(X") can also be computed from the inner products between the a;. If the
data x (of each class) are not Gaussian but there exists a nonlinear map ¢ : R® — H such that the
transformed data 1 (x) are (approximately) Gaussian, we can replace the inner product &7 x5 with
a symmetric positive definite kernel function k(x1, x2) = 1 (x1)? 1 (x2). Choosing a proper kernel
function will improve classification performance for non-Gaussian distributions. In practice, popular
choices include the polynomial kernel k(z1, x2) = (x¥'xy + 1)4, the radial basis function (RBF)
kernel k(zx1, z2) = exp(—v||z1 — 2||?) and their variants. Implementation details, including how
to properly account for the mean and dimension of the embedded data, are given in [21].

A similar transformation is used to generate nonlinear decision boundaries with SVM. Notice, how-
ever, that whereas SVM constructs a linear decision boundary in the lifted space H, kernel MICL
exploits the covariance structure of the lifted data, generating decision boundaries that are (asymp-
totically) quadratic. In Section 3 we will see that even for real data whose statistical nature is unclear,
kernel MICL outperforms SVM when applied with the same kernel function.

Local MICL Criterion. For real data whose distribution is unknown, it may be difficult to find an
appropriate kernel function. In this case, MICL can still be applied locally, in a neighborhood of the
test sample . Let N*(x) denote the k nearest neighbors of z in the training set X'. Training data in
this neighborhood that belong to each class are NJ’-€ (x) = X; N N¥(z),j =1,..., K. In the MICL

classifier (Algorithm 1), we replace the incremental coding length § L. (, 7) by its local version:
dLe(x,j) = Le(N} (@) U{z}) — Lo (N} (@) + L(j), (6)

with L(j) = — log2(|]\7]’-c (x)|/|N*(x)|). Theorem 1 implies that this gives a universal classifier:

Corollary 3. Suppose the conditional density p;(x) = p(x|y = j) of each class is nondegenerate.

Then if k = o(m) and k,m — oo, the local MICL criterion converges to the MAP criterion (1).

This follows, since as the radius of the neighborhood shrinks, the cost of coding the class label,
—log, (|NJ()|/|N*(x)|) — —log, pj(x), dominates the coding length, (6). In this asymptotic
setting the local MICL criterion behaves like k-Nearest Neighbor (k-NN). However, the finite-
sample behavior of the local MICL criterion can differ drastically from that of k-NN, especially

3This quantity has been dubbed the effective number of parameters in the context of ridge regression [9].
*This contrasts with the dimension penalties typical in model selection/estimation.



(a) KMICL-RBF (b) SVM-RBF (c) LMICL (d) 5-NN
Figure 3: Nonlinear extensions to MICL, compared to SVM and k-NN. Local MICL produces a

smoother and more intuitive decision boundary than k-NN. Kernel MICL and SVM produce similar
boundaries, that are smoother and better respect the data structure than those given by local methods.

| Method | Error | Method | Error | [ Method [ Error || Method | Error |
LMICL | 1.6% | SVM-Poly [20] | 1.4% LMICL | 4.9% | KMICL-Poly | 4.7%
k-NN 3.1% | Best [18] 0.4% k-NN 5.3% || SVM-Poly [4] | 5.3%

Table 1: Results for handwritten digit recognition. Left: MNIST dataset. Right: USPS dataset, with
identical preprocessing and kernel function. Here, kernel-MICL slightly outperforms SVM.

when the samples are sparse and the distributions involved are almost degenerate. In this case, from
(4), local MICL effectively approximates the local shape of the distribution p;(x) by a (regularized)
Gaussian, exploiting structure in the distribution of the nearest neighbors (see figure 3).

3 Experiments with Real Imagery Data

Using experiments on real data, we demonstrate that MICL and its nonlinear variants approach the
best results from more sophisticated systems, without relying on domain-specific information.

Handwritten Digit Recognition. We first test the MICL classifier on two standard datasets for
handwritten digit recognition (Table 1 top). The MNIST handwritten digit dataset [10] consists of
60,000 training images and 10,000 test images. We achieved better results using the local version
of MICL, due to non-Gaussian distribution of the data. With k¥ = 20 and ¢ = 150, local MICL
achieves a test error 1.59%, outperforming simple methods such as k-NN as well as many more
complicated neural network approaches (e.g. LeNet-1 [10]). MICL’s error rate approaches the
best result for a generic learning machine (1.4% error for SVM with a degree-4 polynomial kernel).
Problem-specific approaches have resulted in lower error rates, however, with the best reported result
achieved using a specially engineered neural network [18].

We also test on the challenging USPS digits database (Table 1 bottom). Here, even humans have
considerable difficulties (=~ 2.5% error). With k& = 35 and € = 0.03, local MICL achieves an error
rate of 4.88%, again outperforming k-NN. We further compare the performance of kernel MICL
to SVM (using [4]) on this dataset with the same homogeneous, degree 3 polynomial kernel, and
identical preprocessing (normalization and centering), allowing us to compare pure classification
performace. Here, SVM achieves a 5.3% error, while kernel-MICL achieves an error rate of 4.7%
with distortion € = 0.0067 (chosen automatically by cross-validation). Using domain-specific infor-
mation, one can achieve better results. For instance [17] achieves 2.7% error using tangent distance
to a large number of prototypes. Other preprocessing steps, synthetic training images, or more ad-
vanced skew-correction and normalization techniques have been applied to lower the error rate for
SVM (e.g. 4.1% in [20]). While we have avoided extensive preprocessing here, so as to isolate the
effect of the classifier, such preprocessing can be readily incorporated into our framework.

Face Recognition. We further verify MICL’s effectiveness on sparsely sampled high-dimensional
data using the Yale Face Database B [7], which tests illumination sensitivity of face recognition
algorithms. Following [7, 11], we use subsets 1 and 2 for training, and report the average test error
across the four subsets. We apply Algorithm 1, not the local or kernel version, with ¢ = 75. MICL
significantly outperforms classical subspace techniques on this problem (see Table 2), with error
0.9% near the best reported results in [7, 11] that were obtained using a domain-specific model of



Method Error || Method Error - = - =g
MICL 0.9% || Eigenface [7] | 25.8% 7 =9 7 =N =2 ~

Subspace [7] | 4.6% || Best[11] 0% Subsets 1,2 (training) Subsets 1-4 (testing)

Table 2: Face recognition under widely varying illumination. MICL outperforms classical face
recognition methods such as Eigenfaces on Yale Face Database B [7].

illumination for face images. We suggest that the source of this improved performance is precisely
the regularization induced by lossy coding. In this problem the number of training vectors per class,
19, is small compared to the dimension, n = 32, 256 (for raw 168 x 192 images). Simulations (e.g.
Figure 2) show that this is exactly the circumstance in which MICL is superior to MAP and even
RDA. Interestingly, this suggests that directly exploiting degenerate or low-dimensional structures
via MICL renders dimensionality reduction before classifying unnecessary or even undesirable.

4 Conclusion

We have proposed and studied a new information theoretic classification criterion, Minimum In-
cremental Coding Length (MICL), establishing its optimality for Gaussian data. MICL generates a
family of classifiers that inherit many of the good properties of MAP, RDA, and k-NN, while ex-
tending their working conditions to sparsely sampled or degenerate high-dimensional observations.
MICL and its kernel and local versions approach best reported performance on high-dimensional vi-
sual recognition problems without domain-specific engineering. Due to its simplicity and flexibility,
we believe MICL can be successfully applied to a wide range of real-world classification problems.
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