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Style-preserving English handwriting synthesis
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Abstract

This paper presents a novel and effective approach to synthesize English handwriting in the user’s writing style. We select the most important
features that depict the handwriting style, including character glyph, size, slant, and pressure, special connection style, letter spacing, and
cursiveness. The features can be efficiently computed with the aid of our specially designed sample collecting user interface. Given ASCII
text, the user handwriting is synthesized hierarchically. First, character glyphs are sampled and shape variation is added. Second, words are
generated by aligning the character glyphs on the baseline with proper horizontal inter-character space and vertical offset from the baseline. The
heads and tails of the letters may be trimmed to avoid severe overlap and facilitate possible connections between neighboring letters. Adjacent
letters may be connected to each other by polynomial interpolation. Finally, after the pressure is assigned, the handwriting is rendered word
by word and then line by line. The experimental results prove the capability of our system to adapt to the user’s writing style.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Pen-based computing has become an active research area
in human-computer interaction with the flourish of many pen-
based devices such as Tablet PCs, personal digital assistants
(PDAs), and Electronic White-boards. Besides handwritten
document analysis (e.g., [1]), pen-based user interface (UI,
e.g., [2]), and handwriting recognition (e.g., [3]), handwriting
manipulation, such as handwriting editing, error correction,
and script searching, is also a hot topic in pen-based comput-
ing. In contrast, handwriting synthesis, i.e., converting ASCII
text into the user’s personal handwriting, is an important yet
much less explored problem. It adds a personal touch to com-
munications, e.g., enabling the receiver of an e-mail to read
the handwriting of the sender [4]. Like wallpapers and favorite
software settings, synthesized handwriting also contributes
to the personalization of one’s computing devices [4]. More-
over, it can free the user from lengthy and stressful writing,
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e.g., when preparing many handwritten documents such as
greeting cards with different text. Handwriting synthesis may
also be helpful to forensic examiners [5], the disabled [4], and
the handwriting recognizer (by generating more training or test-
ing samples for the recognizer [6]).

Existing methods for handwriting synthesis can be roughly
divided into two categories. The first one is based on the hand-
writing reconstruction process [7,8], in which the handwriting
trajectory is analyzed and modeled by velocity or force func-
tions. Though physically plausible, these methods may not be
convenient for synthesizing non-cursive handwriting. The sec-
ond category involves glyph-based methods [9–11], which usu-
ally record the glyphs directly and reuse or sample the glyphs
when synthesis. These methods require intensive user involve-
ment in the sample collection process and cannot produce
various handwriting styles, e.g., from handprint style to fully
cursive style, in a natural way.

In this paper, we present a novel and practical approach to
English handwriting synthesis. It generates different handwrit-
ing even for the same ASCII text and supports different hand-
writing styles. The synthesized handwriting looks natural and
is similar to the user’s original handwriting as shown by the
experimental results. Compared with the existing methods, our
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system requires less user involvement in the process of collect-
ing handwriting samples.

It is observed that the visual appearance of English hand-
writing is affected by many factors [12,13]. In our system we
extract features, such as character glyph, size, slant, and pres-
sure, special connection style, letter spacing, and cursiveness,
as the user’s writing style. The feature extraction is efficiently
done with the aid of the specially designed sample collecting
UI. In particular, the user is only required to input each dis-
tinct character three times, several special pairs of letters, and
several multi-letter words.

After extracting the writing style, our system synthesizes
handwriting hierarchically. It firstly selects appropriate charac-
ter glyphs after deciding the connection states between lower-
case letters in a word. Then each glyph is geometrically per-
turbed and aligned on the baseline with appropriate horizontal
distance between neighboring glyphs and vertical offsets from
the baseline. Next, the adjacent letters are connected to each
other using high-order polynomial interpolation, if they are de-
cided to be connected according to the connection states. The
heads or tails of the glyphs may be trimmed in order to avoid
severe overlap and to ease connection. Then the pressure is as-
signed to the ligature, and words are rendered one by one to
form a line. The lines are further stacked into paragraphs.

The rest of this paper is organized as follows. Section 2 re-
views related work. Then the following three sections intro-
duce the factors that depict the handwriting style, the extraction
of the user’s handwriting style, and the handwriting synthesis
process, respectively. Next, we present the experimental results
in Section 6. Finally, we give conclusions and future work in
Section 7.

2. Related work

Since the late 1980s, people have tried to interpret handwrit-
ing from an underlying physical scheme [7,14]. Different com-
putational models have been proposed for relating velocity and
force to the handwriting trajectory. A typical example is the
delta log-normal model [8,3]. Li et al. [15] employed this model
to represent the velocity of handwriting trajectory and encode
the trajectory by a group of parameters. Bezine et al. [16] pro-
posed a beta-elliptic model to estimate the correlation between
geometry and kinematics in fast handwriting generation. These
models prove to be successful for representing, compressing,
and reconstructing captured handwriting (e.g., [17,18,15]), but
not synthesizing novel handwriting. Schomaker et al. [7] in-
troduced another computational model for the production of
handwriting. Assuming that the handwriting is ballistic and
fluently cursive, the handwriting is segmented into compound
strokes that are modeled by a group of parameters in the veloc-
ity domain. Given an input text, a grammar for the connection
of cursive allographs determines abstract codes for connect-
ing strokes, then symbols are translated into a sequence of pa-
rameterized strokes. Their method requires that the handwrit-
ing samples be non-hesitant and written by experienced adult
writers.

On the other hand, recording the user’s handwriting directly
with a digital capturing device and “redrawing” it faithfully on
the (receiver’s) computer with the recorded information, such as
pen-tip position, pressure, and brush style, may be the simplest
way to produce personal handwriting. A pen-based system, such
as a Tablet PC, provides such a functionality, with which users
are able to write on the screen using a digital pen and save the
handwritten document. It turns out to be laborious for users in
case of long-time writing, such as preparing lengthy e-mails or
numerous e-greeting cards. In addition, whenever handwriting
is required the user has to write him/herself.

Personal font design provides a more automatic way to pro-
duce handwriting. There have been many commercial font de-
sign services, such as Personal Font and ParaType. Customers
are usually required to fill a form and send it to a font de-
sign company [4]. Font experts will select good handwriting
samples and make sophisticated adjustments before creating a
TrueType� or a PostScript� font for the customer. Then the
user uses the personal font as a system font. However, users
may feel inconvenient as the font creation requires the involve-
ment of font designers. Furthermore, the output handwriting
has no variation in character glyphs or word appearance that
natural handwriting is supposed to have. In addition, without
careful writing and font tuning, cursive handwriting cannot be
generated because the characters in system fonts can only be
rendered side by side without generating the ligature on the fly.

Handwriting synthesis can combine the advantages of the
above two approaches. Like personal font, it lets users type on
the keyboard or simply copy text, then the system will generate
the handwritten script. Moreover, it enables users to produce
more natural handwriting without depending on font experts. In
the following, we review some important work on handwriting
synthesis.

In 1996, Guyon [9] introduced a straightforward approach
to synthesize handwritten words. The system collects hand-
written glyphs of single characters and letter groups that most
frequently appear in English text, such as “tion” and “ing”.
When synthesizing a word, the system splits the word into letter
groups or characters. For example, “believe” may be partitioned
into “be”, “li”, and “eve”. Then the corresponding glyphs are
placed side by side without additional effort to connect them
into a fluent handwriting. This method does not handle glyph
variation (although a global transform is tried). As a result, the
synthesized handwriting has a regular appearance, and possible
connections exist within each glyph only. In addition, the sys-
tem requires users to write more than a thousand letter groups
in order to provide complete samples, which is tedious and im-
practical.

In 2002, Wang et al. [10] proposed a learning-based cursive
handwriting synthesis system. The trajectory is represented by
a set of sparse control points and B-spline interpolation is used
to reconstruct it. They employ a tri-unit letter model in which a
letter is segmented into the head, body, and tail parts. The let-
ter glyphs and ligatures (i.e., parts connecting neighboring let-
ters) of the cursive words are extracted by template matching.
The distribution of the control points of each character is learnt
via PCA. For each ligature, the segmented samples also form
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a generative distribution. During synthesis, the letters and lig-
atures are randomly sampled from the generative distributions.
Then a geometric deformable model is applied to smooth the
ligature part which consists of the tail of the previous letter, the
ligature, and the head of the latter letter.

In 2003, Wang et al. [11] proposed an improved algorithm
over [10] to achieve better results in letter segmentation and
ligature generation. Given a handwritten sample, they extracted
features at two levels: coordinates of trajectory points and script
codes that depict the shape of letter glyph at a higher level. Then
a two-level framework of level building is applied to optimally
segment single letters from cursive handwritten samples, which
reaches a correct segmentation rate of about 86%. Finally, they
adopted the delta log-normal model [8,3] to synthesize smooth
cursive handwriting .

The work of Wang et al. [10,11], however, has several draw-
backs. First, their systems always require the user to write in
fully cursive style. Unfortunately, partially cursive handwriting
and handprint styles are also common in real situations. Sec-
ond, a large handwriting database should be collected to learn
the a priori distribution of letter glyphs for letter segmentation.
Third, during the segmentation process human interaction is
demanded to fix the letter segmentation error as automatic seg-
mentation is not always correct [10,11,19]. Such a procedure
is not natural to non-technical users. Fourth, the sparse con-
trol point representation and PCA learning of character glyphs
may result in distortion such that the generated glyphs may
be invalid. Finally, their systems do not consider the pressure
variation of the strokes, which may make the synthesized hand-
writing less realistic and less readable because letter spotting,
as the first step of reading, becomes more difficult without the
help of stroke width variation to indicate the beginning and the
end of each letter.

Choi et al. [20] presented a character generation method
based on Bayesian networks, which integrates on-line hand-
writing recognizers. Instead of fluent handwriting, their method
generates separated characters only as they did not consider the
ligature between letters in the case of cursive handwriting. Fur-
thermore, the method discards the personal handwriting char-
acteristics since the Bayesian networks represent the “average”
writing style of all users. Though it could be extended to adapt
to personal writing styles, a large amount of handwriting sam-
ples may have to be collected for each user.

3. Factors that contribute to the handwriting style

The handwriting of different people differs in many aspects.
These aspects actually define the handwriting style of a person.
As suggested by handwriting analysis techniques in forensic
inspection [13] or character analysis [12], factors that are eas-
ily noticeable to ordinary people to distinguish different hand-
writing styles include: 1. the glyph and the size of characters;
2. the pressure distribution and the slant of handwriting; 3. the
relative sizes of the middle, the upper, and the lower zones of
letters; 4. the existence and the shape of lead-in, connecting,
and ending parts; 5. the letter, the word, and the line spacings;
6. the embellishment; and 7. the simplified or neglected strokes.

In our system, we choose features that depict the first five
factors since they are relatively easy to be computed by com-
puters (as will be shown in Section 4), or simply be provided
by the user as samples. The synthesis of embellishment and
the simplified or neglected strokes may require a thorough un-
derstanding of handwriting dynamics [7,14,8] or even psychol-
ogy, which is still not fully available. Experimental results (in
Section 6) show that our system is capable of characterizing
many aspects of handwriting style and adapting to various hand-
writing styles.

4. Computing the features of handwriting style from
samples

To make the system practical for ordinary users, we need a
natural and intuitive way by which a user “tells” the computer
what his/her writing style is. In our first approach, we requested
users to write a paragraph of text and segmented the samples
from the handwritten document. However, automatic segmen-
tation does not always produce correct results [19,10,11]. Man-
ually fixing the segmentation errors is unnatural and inconve-
nient for a non-technical user. In our current system, we let
users write isolated characters (with ligature parts if users pre-
fer cursive writing) instead. Though there might be mismatch
between the ligatures exhibited in isolated characters and those
that appear when writing words, writing isolated characters
makes the glyphs of individual characters easily available to
the computer. Specifically, we carefully design a sample col-
lecting UI (Fig. 1) which facilitates extracting features of the
handwriting style. The UI consists of three parts for collecting
samples of individual characters, special letter pairs, and multi-
letter words, respectively. The user is requested to follow three
stages (corresponding to each part of the sample collecting in-
terface), during which certain characters and character pairs are
collected.

4.1. Features from individual characters

At the first stage, the user is asked to write all individual
characters that appear on a QWERTY keyboard (94 characters
in total) three times (Figs. 1(a)–(d)). The three samples for each
character serve for glyph variation during synthesis. If the user
prefers cursive writing (which can be detected later when the
user writes multi-letter words), the three samples of lowercase
letters will be viewed as their appearance at the beginning, the
middle, and the end of words, respectively. The UI also reminds
the user to provide the head and/or tail parts of the lowercase
letters for possible connection (Fig. 1(a)). Note that three sam-
ples per character may not capture all possible variants. To
avoid asking the user to input a large number of samples, we
choose to add glyph variation during synthesis instead. Based
on the samples, the following features are computed for each
character:

(1) Character glyph: We use a dense sequence of control points
to represent the character glyph. To do so, Sklansky’s al-
gorithm [21] is adopted to approximate each stroke, i.e.,
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Fig. 1. The user interface (UI) to collect user handwriting samples. (a) The overall appearance of the UI when collecting the samples of lowercase letters.
(b)–(f) The sample collection boxes when collecting the samples of capital letters, digits, punctuations, special letter pairs, multi-letter words, respectively.

the trajectory of pen from pen-down to pen-up, by a poly-
line. Intermediate points may be inserted to the sequence
of polyline vertices if successive vertices are farther than
the average length of the polyline segments or the polyline
has high curvature at those points. These polyline vertices
are taken as the control points of the character glyph.
This representation supports easy control on the character
glyph in two aspects compared to the wave function ap-
proximation [8,3]. First, glyph variation can be efficiently
realized by simply moving control points around. Second,
ligatures between neighboring letters can be conveniently
generated by adding control points. In comparison to
Wang et al.’s sparse control point representation [10,11],
our dense control point representation better preserves the
character glyph and eases the letter head/tail trimming
(Section 5.2.2) and ligature generation (Section 5.2.3).

(2) Character size: The size of character glyph may differ sig-
nificantly when the characters are written separately in our
UI. As a result, the relative sizes among characters may ap-
pear unbalanced when synthesizing a line or a paragraph.
Therefore, size normalization is necessary. However, mak-
ing the height or the width of characters identical may re-
move natural size variation. Instead, we develop a scaling
algorithm so that the abnormal size variance among the
characters is minimized while the natural size variation is
preserved. Readers may refer to Appendix for the details.

(3) Pressure: It is the measure of how heavily the user presses
the pen against the screen. It is physically captured when
the user writes on a Tablet PC.

(4) Slant: The letter slant is estimated as the average direction
of letter strokes [22]. The global writing slant is taken as the
average of all the letter slants. Then each letter is de-slanted
with its own slant so that during synthesis the global writing
slant can be applied to generate handwriting with a more
uniform slant. It is possible to add small slant variation to
every character so that the synthesized handwriting looks
more casual.

(5) Average height of capital letters, middle zone letters, and
descendent letters (please refer to Appendix for their clas-
sification): They are estimated from the normalized letters.
In particular, the average height of middle zone letters is
very useful for aligning letters and punctuations that do not
lie on the baseline.

(6) Existence and shape of lead-in, connecting, and ending
pieces: They are provided by the user, e.g., the head and/or
tail parts of lowercase letters. However, whether the user
prefers cursive writing and how a lowercase letter connects
to others are still unknown. Such information will be further
probed by asking the user to write special letter pairs and
multi-letter words.

4.2. Features from special letter pairs

Our current system assumes that only lowercase letters may
be connected to each other. We further separate lowercase let-
ters into uni-stroke letters and multi-stroke letters. The multi-
stroke letters include “f”, “i”, “j”, “t”, “x”, and “z”, which are
probably written in multiple strokes. Here “z” is considered
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Fig. 2. Different connections between “t” and “a”. (1)–(6) Different ways of
writing “at”. (7)–(12) Different ways of writing “ta”. Note that in (8) the t-bar
is the first stroke of “t”, while in (10) the t-bar is the second stroke of “t”.

as a multi-stroke letter because some people like to add a dot
to the middle of it (Fig. 14(b)). The rest lowercase letters are
uni-stroke letters. Note that multi-stroke letters have more than
one way of connecting to other lowercase letters. For exam-
ple, when writing “ta” (Figs. 2(7)–(12)), the user may write the
t-stem first and then connect ‘a’ to the t-bar (Fig. 2(9)), or write
the t-bar first and then connect ‘a’ to the t-stem (Fig. 2(8)).
Though uni-stroke letters may be written in multiple strokes,
we assume they have only one connection type, i.e., connection
happens at the beginning point or the end point of the letter.

The second stage of sample collection is designed to identify
the special connection style of multi-stroke lowercase letters,
i.e., how they are connected to other lowercase letters. For
simplicity, the connection between two multi-stroke letters are
not considered in the current system. The user is asked to write
special letter pairs, “af”, “fa”, “ai”, “ia”, “aj”, “ja”, “ta”, “at”,
“ax”, “xa”, “az”, and “za” (Fig. 1(e)) once. We pair multi-stroke
lowercase letters with “a” to determine their connection styles
because: 1. “a” is easy to connect when the user prefers cursive
writing; 2. “a” is usually written in a single stroke, which greatly
reduces the complexity of analysis; and 3. its shape and stroke
length make it robust for the bounding box test and the length
test described in Algorithm 1.

Fig. 2 shows possible ways of writing “at” and “ta”. The
examples show that the connection style of multi-stroke letters
can be very complex. The connection style includes the head
connection type and the tail connection type. Let us start from
the tail connection, using “t” as an example. In Fig. 2, cases
7–9 illustrate three possible ways in which the end point of a
“t” glyph is the connection point. This case is defined as the
NORMAL type. Note that “t” may be written as a uni-stroke in
case 7, or two strokes in cases 8 & 9. In cases 11 & 12, “t” has no
connection to “a”. This is defined as the NO_CONNECTION
type. Case 10 shows a special situation where the last point
of the first stroke of “t” is the connection point, i.e., the t-bar
is a late stroke. This is defined as the SPECIAL_TAIL type.
Similarly, for the head connection, cases 1–4 have letter “a”
connected to the beginning point of a “t” glyph. Therefore,
they belong to the NORMAL type. And cases 5 & 6 are of
NO_CONNECTION type.

The following pseudo code (Algorithm 1) shows the heuristic
rules of determining the tail connection type of letter “t” by
checking the number, the bounding boxes, and the lengths of
the strokes in the letter pair “ta”. The head connection type of

letter “t” can be determined in a similar manner. Although the
algorithm is presented to deal with letter “t”, it is applicable to
other multi-stroke lowercase letters “f”, “i”, “j”, “x”, and “z”.

Algorithm 1. Determine the tail connection type of letter “t”.
input: Strokes S for letter pair “ta”
output: Tail connection type tailType
if S contains 1 stroke

tailType = NORMAL;
else if S contains equal or more than 3 strokes then

tailType = NO_CONNECTION;
else

Compute the bounding boxes, B1 and B2, of the two
strokes;
Compute the lengths, L1 and L2, of the two strokes;
if overlap between B1 and B2 is small then

tailType = NO_CONNECTION;
else if L1 < c · L2 //c = 1.0 for letter “t”

tailType = NORMAL;
else

tailType = SPECIAL_TAIL;
end

end

4.3. Features from multiple-letter words

In this stage, the user is asked to write several multiple-letter
words (Fig. 1(f)) in order to get information of spacing and
cursiveness.

(1) Letter spacing: It is defined as the distance between the
central lines of neighboring letters. We estimate it as the
average letter width of multi-letter words after de-slanting
the words. Each multi-letter word provides an estimate of
the letter spacing. For simplicity, we model the distribution
of the letter spacing by a Gaussian.

(2) Cursiveness: Cursiveness is a measure of how much the
user prefers cursive writing. It is between 0 and 1, where
0 represents that the user prefers handprint writing while 1
denotes that the user likes completely cursive writing. Dur-
ing synthesis, the system has to determine which pair of
adjacent letters in a word is connected. It would be ideal
if we compute the connection probability from handwrit-
ten samples. However, it is impractical in real practice due
to the large amount of letter pairs. Because writing all the
pairs once is laborious, and writing each letter pair only
once cannot provide an accurate estimate of the connection
probability. Instead, we decouple the pairwise connection
probability into two components: the writer-independent a
priori connection probability, which defines the easiness of
connecting a pair of letters and is estimated by counting
the frequencies of their connection in handwriting samples
(not those samples provided by the user), and the writer-
dependent cursiveness, which measures how much the user
prefers cursive writing. The two components jointly esti-
mate the connection probability of any letter pair during
synthesis (please refer to Section 5.1.1). The user cursive-
ness can be estimated as follows.
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In the UI the user is asked to write a particular set of words.
Given the ith word, let ni be the number of letters, mi be
the number of expected strokes when the word is written in
handprint style, and ki be the number of detected strokes.
The cursiveness pi of the ith word is defined by

pi = min

(
max

(
mi − ki

ni − 1
, 0

)
, 1

)
.

For example, “table” has five letters (ni = 5), and six ex-
pected strokes (mi = 6) assuming “t” is written in two
strokes and each of the rest letters written in a single stroke.
A user may write the whole word in one stroke only (ki=1).
Then we have pi = 1.
The user cursiveness is calculated as

Puser = 1

M

M∑
i

pi ,

where M is the number of multi-letter words that the user
writes. It is easy to check that, the fully cursive writing
style yields Puser = 1; the complete handprint style yields
Puser = 0; and the mixed style (partial cursive and partial
handprint) yields Puser ∈ (0, 1). A similar definition of
cursivity index is introduced in Ref. [23].

5. Handwriting synthesis process

Based on the features of handwriting style, our system syn-
thesizes handwriting in a hierarchical way. For an input ASCII
text, the glyphs of characters are first generated. Then the char-
acters are aligned on the baseline and are connected when
needed to form a word. Finally, the words are aligned into lines
and further paragraphs. During synthesis, the extracted hand-
writing style features will be used in the subsequent processing
steps described in Sections 5.1–5.3.

5.1. Character generation

Fig. 3 shows the flowchart of character generation and the
required information of the handwriting style. As the glyphs of
a lowercase letter when connected or disconnected to other let-
ters may differ significantly, we generate the letter glyph based

Connection

Prob. Table
Connection State Sampling

Connection States

Choose Character Glyph

Initial Character Glyph

Character Glyphs

Geometric Deformation

Perturbed Character Glyph

Cursiveness

ASCII Word

Fig. 3. The flowchart of character generation.

on the knowledge of its connection state, i.e., whether it is con-
nected to its previous or subsequent letters, so that appropriate
samples can be chosen (please refer to the first paragraph of
Section 4.1). For the remaining characters, the three samples
are randomly selected. Then a geometric deformation is ap-
plied to perturb the character glyph. In the following, we will
present these steps in more details.

5.1.1. Connection state sampling
With the user cursiveness Puser , we can estimate the proba-

bility of connecting the ith and the jth letters as

Pij =
{

Puser if Puser = 0, 1,

min(�Puserpij , 1) otherwise,
(1)

where �−1 = ∑
ijpij /(26 × 26), and pij is the writer-

independent a priori connection probability (i.e., the relative
easiness of connecting the ith and the jth letters, see Section
4.3).

For an input ASCII word, the connection probability Pij of
every pair of neighboring lowercase letters is approximated by
Eq. (1). Our system then generates a random number r that
is uniformly distributed on [0, 1]. If r �Pij , this letter pair is
decided to be connected. Otherwise, they will not be connected.
After each adjacent pair is processed, the states for whether a
letter connects with its previous or next one are determined.

5.1.2. Glyph initialization
For each letter in the word, we choose one of its three sam-

ples as the initial glyph. Recall that we assume only lowercase
letters might be connected to each other, and that the three sam-
ples are supposed to appear at the beginning, middle, and end
of words, respectively. The initial glyph of a lowercase letter
will be selected according to its position in the word and its
sampled connection state. More specifically, the “beginning”
sample is chosen when the lowercase letter is at the beginning
of the word, or at a middle position but not connected with the
previous letter. The “end” sample is chosen if the letter is at the
end position or at a middle position but not connected with the
subsequent letter. The “middle” sample is chosen only when
the letter is at a middle position and connected to both its previ-
ous and subsequent letters. For example, given a word “hello”
if the connection state sampling decides that every two neigh-
boring letters will be connected except for “e” and the first “l”
(Fig. 4). Then we will chose the “beginning” samples for “h”
and the first “l”, the “middle” sample for the second “l”, and
the “end” samples for “e” and “o”, as shown in Fig. 4. If the
word has only one letter, the “beginning” sample is chosen.
For capital letters, digits, or punctuations, the three samples are
selected randomly.

5.1.3. Geometric deformation
We apply geometric deformation to simulate handwriting

variation in real situations. This method brings the advantage
of avoiding the collection of a large number of handwritten
samples. As illustrated in Fig. 5, for stroke pieces delimited
by high curvature points, we sequentially apply local random
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“beginning” samples “middle” sample

“end” samples

Fig. 4. Selecting lowercase letter samples according to their positions in the
text word and the connection states.

Fig. 5. Adding geometric deformation to each stroke piece sequentially. With
small random scaling and rotation of each stroke piece (delimited by the
high-curvature points indicated by the dots), the perturbed stroke (solid stroke)
may be different, but still similar, to the original stroke (dashed stroke).

Letter Alignment

Aligned Letter Glyphs

Letter Glyphs

Connection Generation

Word Glyph

Pressure Alignment

Word Strokes

Size + Letter

Spacing + Slant

Pressure

Special 

Connection Style

Fig. 6. The flowchart of word composition.

rotation and random scaling to them, where the starting point
of the current piece is fixed at the end point of the last piece that
has undergone perturbation. The deformation is at a small scale
so that the perturbed glyph looks similar to, but still different
from, the original one.

5.2. Word composition

To compose the glyph of a word (Fig. 6), we first align the
letter glyphs, vertically and horizontally, against the baseline.

The heads or tails of the glyphs may be trimmed to avoid
severe overlap and to facilitate smooth connection. Then the
ligatures between neighboring glyphs are generated by utilizing
high-order polynomial interpolation. Finally the ligatures are
assigned with pressure values.

5.2.1. Vertical alignment
Vertical alignment places letter glyphs vertically with respect

to a horizontal baseline. More specifically, for middle-zone let-
ters, ascendent letters, capital letters, and digits (please refer to
Appendix), the bottom of their bounding boxes is expected to
meet the baseline. For descendent letters, the top of their bound-
ing boxes is expected to meet the top of the middle zone, which
is determined by the height of middle zone letters. For all-zone
letters (such as “j”) and punctuations, we assign the vertical
offsets from the baseline as scales of the middle zone height.
The scales are class-dependent so we choose not to spread out
the empirical formulae due to the page limit.

5.2.2. Horizontal alignment
Horizontal alignment places letter glyphs horizontally along

the baseline. We expect the distance between the central lines of
the bodies of two neighboring letters to be d, which is sampled
from the letter spacing distribution (please refer to Section 4.3).
However, the letter samples often have the head and the tail
parts that are useful for connection but may interfere in accurate
central line computation. The letter glyphs may also severely
overlap each other when the head or tail parts are too long. As a
result, the synthesized handwriting may look weird or it may be
hard to produce smooth ligatures. In the following, we present
a head/tail trimming scheme to remove redundant portions of
heads/tails.

To detect the head and the tail, the end of the head part and
the beginning of the tail are first roughly estimated at the first
cusp and the last cusp of the letter (Fig. 7), respectively. At these
cusps, the turning angles exceed a threshold. Such an estimation
may not be accurate for letters without salient head or tail part.
We may refine the head/tail positions by detecting the points
that have maximum or minimum values in either horizontal
or vertical coordinates within the roughly estimated head/tail
part (Fig. 7). The index of the refined head/tail position is the

Fig. 7. Detecting the head and the tail. The end point of the head part and
the beginning point of the tail part are first detected as the cusps (round
dots) that are close to the ends of the stroke, and are then refined with the
x-min–max or y-min–max points (square and diamond dots) in the estimated
head or tail parts. In this example, the head part is detected as the part before
the hollow dot because it is also the x-max and y-max point, and the tail
part is the part after the diamond dot.
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A                 B C D

Fig. 8. The rule of trimming head/tail parts of a letter. If part of the head or
tail part is outside the bounding box of the body and inside the bounding box
of its neighboring letter, this part is clipped. In this example, the bounding
boxes of “a”, its body part, and the subsequent letter “d” are the thin solid,
the thick solid, and the dashed rectangles, respectively. Therefore, the tail
part of “a” between lines C and D is clipped.

a b

Fig. 9. (a) The original ligature between two letters. The dots are the control
points on the ligature. (b) The first control point of the head part of the
second letter may be dropped so that the slant of the linking line segment is
smaller. This will be a better initial shape for ligature.

minimum/maximum of the indices of these points, in which the
beginning or end points of the stroke are not taken into account.

After detecting the head and the tail, the remaining parts
form the body of the letter. If a part of the head/tail is outside
the bounding box of the body and inside the bounding box of
its neighboring letter, this part is clipped as a redundant part
(Fig. 8).

Up to now, letter glyphs still have vertical central lines since
the letter samples are de-slanted when extracting the writing
style (please refer to Section 4.1). After cutting the head/tail
parts of all letter pairs in the word, we may shear these letter
glyphs with the global writing slant.

5.2.3. Ligature generation
When two neighboring letters are connected according to

the sampled connection states, a smooth ligature is expected to
occur between them. We propose using a high-order polynomial
to fit the ligature part, which consists of the tail part T of
the first letter, the head part H of the second letter, and the
line segment L linking the end point of T and the beginning
point of H (Fig. 9(a)). In particular, for multi-stroke lowercase
letters, their head/tail connection types tell which stroke may
contribute to the head/tail part. For example, let the t-bar and
the t-stem be the first and second stroke of “t” separately. If
the tail connection type of “t” is NORMAL, the t-stem will be
selected to connect “t” and the next lowercase letter (Fig. 2(8)).
If the tail connection type of “t” is SPECIAL_TAIL, the t-bar
instead will be selected for connection (Fig. 2(9)).

Assume the ligature to be parameterized by

P(t) =
N∑

k=0

Pkt
k, t ∈ [0, 1],

where Pk are the control points of the ligature to be determined,
and N is the number of control points. We impose three con-
straints on the ligature: similarity to the original ligature, de-
formation energy from the original ligature, and smoothness of
the ligature.

The similarity requires that the new ligature should be close
to the original ligature. It is defined as

E1 =
∫ 1

0
�1(s)‖O(s) − P(s)‖2 ds,

where �1(s) is a weighting function and O(s) is the parametric
function for the original ligature interpolated from the control
points by cubic splines. In order to allow larger deviation at the
part of L, �1(s) should be smaller when s is parameterizing L.

The deformation energy requires that, conceiving the ligature
as a spring, the new ligature should be deformed from the old
one with least energy. The deformation energy is defined by

E2 =
∫ 1

0
‖O′(s) − P′(s)‖2 ds.

The smoothness requires that the resulting ligature is smooth,
defined as

E3 =
∫ 1

0
�3(s)‖P′′(s)‖2 ds,

where �3(s) is a weighting function. Because the non-
smoothness occurs around the end points of L, �3(s) should be
larger when s is parameterizing the parts around the end points
of L.

Based on the above energy functions, the control points Pk ,
k = 1, . . . , N , should minimize the following function:

E({Pk}Nk=1) = �1E1 + �2E2 + �3E3,

with boundary conditions:

P0 = O(0),

N∑
k=0

Pk = O(1), P1 = O′(0),

N∑
k=0

kPk = O′(1),

where �1, �2, and �3 are constants. They are chosen as �1=0.89,
�2 = 0.085, and �3 = 0.025, respectively, by trial and error.
The above problem turns out to solve a linear equation for Pk ,
k = 1, . . . , N .

In implementation, some details should be considered when
preparing the ligature from neighboring letter glyphs. First,
additional control points may be inserted to ensure that both T
and H have at least three control points (could be replicative).
Second, if L is close to vertical, it may be difficult to connect
two glyphs smoothly. In this case, the first point of H is dropped
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and L is updated as the line segment linking the end point of
T and the second point of H (Fig. 9(b)), so that the slope of L
can be smaller.

5.2.4. Pressure assignment
The variation in stroke width not only adds liveliness to hand-

writing, but also helps reading as the letter spotting becomes
easier when the strokes of the letter end with diminishing width.
The stroke width variation can be fulfilled by introducing pen
pressure to the stroke. Recall that the pressure on the letter
samples has been captured during handwriting sample collec-
tion, so the pressure of points at the body part simply inherits
its original value. For the ligature, we assign the pressure by
“transferring” the pressure from the head and the tail parts. As-
sume that there are m points on the head and the tail parts, and
p1, . . . , pm are their pressure values captured in letter samples.
If there are n points on the new ligature, the pressure value of
the ith point is assigned by

p̃i = pk where k is the integer part of i · m

n
.

Given the stroke points and pen pressure, the rendering APIs
provided by Microsoft� Tablet PC Ink SDK will automatically
render the strokes, where low-pressure parts have small width
and high-pressure parts have large width.

5.3. Line and paragraph composition

In our system, multiple words are rendered one by one with
the inter-word spacing, i.e., the distance between the right of
the bounding box of the first word and the left of the bounding
box of the second word, being assumed as half of the letter
spacing. Should the handwriting appear in multiple lines, we
have to choose an appropriate line spacing. We have observed
that users often have the top of the second line meet the bottom
of the first line. Then we may take the spacing as follows:

dline = Hcap + Hdes − Hmid + �h,

where Hcap, Hdes , and Hmid are the height of capital letters,
descendent letters, and middle-zone letters (please refer to Sec-
tion 4.1), respectively, and �h is a small positive value to en-
sure that the handwriting on two lines does not overlap, so that
the synthesized handwriting is more readable. In our system,
�h is empirically chosen as 10. Randomness can also be added
to �h to enrich the naturalness of synthesized handwriting.

6. Experimental results

We build the handwriting synthesis system on a Tablet PC
with which the users can write directly on the screen with a
digital pen. Eight testers are invited to test our system. They are
from China, USA, and Japan, respectively. Their handwriting
styles vary from handprint to completely cursive, as shown in
the left column of Fig. 10. Four testers have no experience
of writing on a Tablet PC and they are allowed to practise to

get accustomed to writing on the screen. Usually, a user can
finish inputting his/her handwriting samples at his/her normal
writing speed within 20 min. The sample collecting process can
be much faster if the writer is experienced of using Tablet PCs,
as tested by the authors.

Fig. 10 shows some handwriting samples of the eight users
and the synthesized glyphs. One can see that most of the syn-
thesized words are quite similar to the original samples. Note
that the synthesized words vary from handprint to completely
cursive. Therefore, the cursiveness of the writers is well pre-
served. Fig. 11 shows handwriting paragraphs synthesized by
our system using the writing styles of the eight users, respec-
tively. On a Pentium 2.8 GHz PC, it takes about 1 s to synthe-
size this paragraph of text for each user using our unoptimized
codes. The computation of horizontal alignment and ligature
generation accounts for the majority of time. Table 1 is the cross
rating among the testers, i.e., each tester evaluates whether the
synthesized handwriting of every writer is similar to its corre-
sponding real handwriting. The evaluation shows that the per-
formance of our system is rather satisfactory.

Fig. 12 shows the paragraphs generated by the approach
proposed in Ref. [10] in the styles of the second and the eighth
writers (Figs. 10(b1),(b2),(h1),(h2) and 11(b),(h)). One can see
that our approach produces more natural, readable, and user-
dependent handwriting, and the difference in visual appearance
among different writers is much larger than that in Wang’s
results.

We also have our system integrated with Microsoft� Office�

Outlook�. Fig. 13 shows an example of the communication
via e-mails. Although the sender sends a text e-mail, what the
receiver reads is a handwriting e-mail. The handwritten script is
sent as an image so that the requirement on the receiver’s system
is minimal. We choose the image format as TIFF which ensures
a small image size while preserving the visual quality of thin
strokes. For the given example, the image of the handwriting
is about 22 kB.

7. Conclusions and future work

In this paper, we presented a novel handwriting synthesis
system which extracts the user’s handwriting style and syn-
thesizes new handwritten scripts according to the user’s writ-
ing style. Particularly, our system respects the cursiveness that
varies from completely handprint to completely cursive, as
well as the special connection styles of multi-stroke lowercase
letters. The experimental results demonstrate that our system
can produce personal handwriting with pleasing visual qual-
ity.

The proposed system, however, does not capture all aspects
of the handwriting style. For example, we only provide connec-
tion between lowercase letters and the variance of letter glyphs
is simply approximated by geometric deformation. Moreover,
our system assumes that the users write at constant speed.
But in real situations users may write more quickly and less
patiently after some time such that the handwriting may
become crabbed. We may incorporate such an effect by in-
troducing the impact of time and speed on the handwriting
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Fig. 10. Comparison of the captured handwriting samples (left column) of eight writers and the synthesized handwriting (right column).

appearance. Other handwriting psychology should also be un-
derstood to make our system more robust. As shown in Fig.
10, some synthesized words, such as the synthesized glyphs of
“people” and “little” for the eighth writer, look different from

their counterparts. It is mainly because the isolated letter sam-
ples were written with quite long head/tail parts that actually
do not appear when the user writes words. Finally, although
currently our system only supports English handwriting, it is
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Fig. 11. Synthesized handwriting paragraphs in the style of the eight writers.

Table 1
Cross rating among the testers

Tester 1 Tester 2 Tester 3 Tester 4 Tester 5 Tester 6 Tester 7 Tester 8

Tester 1 4 4 5 5 4 4 4 2
Tester 2 5 3 4 5 3 5 3 2
Tester 3 4 5 4 5 5 4 4 2
Tester 4 4 4 5 4 4 5 5 3
Tester 5 5 5 5 5 3 5 5 3
Tester 6 5 4 4 4 3 4 4 2
Tester 7 5 4 5 5 4 4 4 2
Tester 8 4 4 5 5 4 4 4 1

The score at the cross of row i and column j is the rating of the tester i on the similarity between the synthesized handwriting and the real handwriting of
the tester j. The scores are between 1 and 5, with 1 being completely dissimilar and 5 being very similar.

Fig. 12. Examples of the synthesized handwriting by Wang’s system [10] in the styles of the second and the eighth writers, respectively. Note that they look
similar although the actual handwritings are quite dissimilar. Moreover, the completely cursive writing style required by the system causes severe deformation
in letter glyphs.

possible to be extended to support other western languages
with some modifications. Considering general handwriting
synthesis, incorporating part of our techniques, e.g., the treat-
ment on handprint and partial cursive writing styles and the
multi-stroke letters, with the computational model proposed
by Schomaker et al. [7] may be a possible way. In this case,
the ligature insertion method described in Ref. [7] might be
adapted to make the ligature generation process simpler.

As argued above, there are opportunities to improve our
current system. However, in this paper we have discussed

various advantages of our approach. First, due to the prag-
matic procedure of collecting a relatively small amount of
samples, the required involvement of the user is minimal
compared to other systems. Second, our results appear visu-
ally acceptable (for both cursive and handprint handwriting),
which was sustained by a user study presented in this pa-
per. Third, we believe that compared to the commercial font
design services, our approach offers a valuable and more
personal alternative, which mimics true handwriting in a
better way.
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Fig. 13. Integration of our handwriting synthesis system with Microsoft� Office Outlook�. (a) The text e-mail composed by the sender. (b) The synthesized
handwriting e-mail read by the receiver. The handwriting is sent as an image.

Appendix. Size normalization

In paragraph writing, the relative sizes among characters usu-
ally appears uniform. But they may differ significantly when
the characters are written separately in our input UI. Therefore,
size normalization should be done among the same class of
characters or among the samples of a character. The characters
can be classified into seven classes:

(1) Middle zone letters: a, c, e, m, n, o, r, s, u, v, w, x.
(2) Ascendent letters: b, d, h, i, k, l, t.
(3) Descendent letters: g, p, q, y.
(4) All-zone letter: f, j.
(5) Capital letters: A–Z.
(6) Digits: 0–9.
(7) Others: z and the rest characters.

For the first six classes of characters, the size normalization is
applied so that the heights of the normalized characters in the
same class are almost the same. For the last class of characters,
the size normalization is done among the three samples of each
character only. Note that “z” is singled out because it has at
least three kinds of glyphs in handwriting (Fig. 14), and one of
the glyphs is descendent (Fig. 14(c)).

a b c

Fig. 14. Different ways of writing “z”.

We wish not to make the heights of the characters in the
same class identical in order to preserve the natural size varia-
tion. Therefore, we propose a scaling algorithm so that the size
variance among the characters is minimized, and on the other
hand the scaling factor for each sample is also close to 1. These
constraints try to preserve the natural size variation while sup-
pressing abnormal size variation. Suppose the scaling factor for
each character is si , and their optimal width is Wopt . We have
to find Wopt and s = (s1, . . . , sN ) to minimize both functions:

g(s, Wopt ) = 1

2

N∑
i=1

(siwi − Wopt )
2

+ 1

2

N∑
i=1

⎛
⎝sihi − 1

N

N∑
j=1

sjhj

⎞
⎠

2

,

�(s) = 1

2

N∑
i=1

(si − 1)2, (2)

where wi and hi are the width and height of the ith sample, and
N is the number of samples in a given class. The minimization
of g aims at making the size of the scaled characters be as
uniform as possible, while the minimization of � requires the
scaling factors to be as close to 1 as possible. We do not replace
Wopt with (1/N)

∑N
j=1 sjwj because we want the width of the

characters to be more uniform so that the horizontal alignment
can be easier. The solution to (2) is

Wopt = 1TAw
‖Aw‖2 , s = WoptAw,

where 1 = (1, . . . , 1)T, w = (w1, . . . , wN)T, and A = (� −
N−1hhT)−1, in which � = diag(h2

1 + w2
1, . . . , h2

N + w2
N) and

h = (h1, . . . , hN)T. After normalization, the average width and
height of each character are recorded for later use.
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