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Abstract—Current techniques for generating animated scenes involve either videos (whose resolution is limited) or a single image

(which requires a significant amount of user interaction). In this paper, we describe a system that allows the user to quickly and easily

produce a compelling-looking animation from a small collection of high resolution stills. Our system has two unique features. First, it

applies an automatic partial temporal order recovery algorithm to the stills in order to approximate the original scene dynamics. The

output sequence is subsequently extracted using a second-order Markov Chain model. Second, a region with large motion variation

can be automatically decomposed into semiautonomous regions such that their temporal orderings are softly constrained. This is to

ensure motion smoothness throughout the original region. The final animation is obtained by frame interpolation and feathering. Our

system also provides a simple-to-use interface to help the user to fine-tune the motion of the animated scene. Using our system, an

animated scene can be generated in minutes. We show results for a variety of scenes.

Index Terms—Texture synthesis, animation.

Ç

1 INTRODUCTION

A single picture conveys a lot of information about the
scene, but it rarely conveys the scene’s true dynamic

nature. A video effectively does both but is limited in
resolution. Off-the-shelf camcorders can capture videos
with a resolution of 720� 480 at 30 fps, but this resolution
pales in comparison to those for consumer digital cameras,
whose resolution can be as high as 16 MPixels.

What if we wish to produce a high resolution animated
scene that reasonably reflects the true dynamic nature of the
scene? Video textures [15] is the perfect solution for
producing arbitrarily long video sequences—if only very
high resolution camcorders exist. Chuang et al.’s system [6]
is capable of generating compelling-looking animated
scenes, but there is a major drawback: Their system requires
a considerable amount of manual input. Furthermore, since
the animation is specified completely manually, it might not
reflect the true scene dynamics.

We use a different tack that bridges video textures and
Chuang et al.’s system: We use as input a small collection of
high resolution stills that (under-)samples the dynamic
scene. This collection has both the benefit of the high
resolution and some indication of the dynamic nature of the
scene (assuming that the scene has some degree of
regularity in motion). We are also motivated by a need for

a more practical solution that allows the user to easily
generate the animated scene.

In this paper, we describe a scene animation system that
can easily generate a video or video texture from a small
collection of stills (typically, 10 to 20 stills are captured
within 1 to 2 minutes, depending on the complexity of the
scene motion). Our system first builds a graph that links
similar images. It then recovers partial temporal orders
among the input images and uses a second-order Markov
Chain model to generate an image sequence of the video or
video texture (Fig. 1). Our system is designed to allow the
user to easily fine-tune the animation. For example, the user
has the option to manually specify regions where animation
occurs independently (which we term independent animated
regions (IAR)) so that different time instances of each IAR
can be used independently. An IAR with large motion
variation can further be automatically decomposed into
semi-independent animated regions (SIARs) in order to make
the motion appear more natural. The user also has the
option to modify the dynamics (e.g., speed up or slow down
the motion, or choose different motion parameters) through
a simple interface. Finally, all regions are frame interpolated
and feathered at their boundaries to produce the final
animation. The user needs only a few minutes of interaction
to finish the whole process. In our work, we limit our scope
to quasi-periodic motion, i.e., dynamic textures.

There are two key features of our system. One is the
automatic partial temporal order recovery. This recovery
algorithm is critical because the original capture order
typically does not reflect the true dynamics due to temporal
undersampling. As a result, the input images would
typically have to be sorted. The recovery algorithm
automatically suggests orders for subsets of stills. These
recovered partial orders provide reference dynamics to the
animation. The other feature is its ability to automatically
decompose an IAR into SIARs when the user requests and
treat the interdependence among the SIARs. IAR decom-
position can greatly reduce the dependence among the
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temporal orderings of local samples if the IAR has
significant motion variation that results in unsatisfactory
animation. Our system then finds the optimal processing
order among the SIARs and imposes soft constraints to
maintain motion smoothness among the SIARs.

2 PRIOR WORK

There are many approaches to synthesizing videos of
dynamic scenes. One approach that has garnered a lot of
attention is video texture [15], which reuses frames to
generate a seamless video of arbitrary length. Video
textures work by figuring out frames in the original video
that are temporally apart but visually close enough, so that
jumping between such frames (via a first-order Markov
Chain model) appears seamless. This work was extended to
produce video sprites [14], which permit high-level control
of moving objects in the synthesized video. Unlike videos,
the ordering of our input stills may not be 1D. Thus, we can
only use partial orders as reference dynamics. In addition,
we adopt a second-order Markov Chain model for generat-
ing image sequences, rather than the first-order Markov
Chain model in [15]. While the video texture paper [15]
mentioned used independent regions (IARs in our case), it
did not address the issue of local region decomposition. As
we demonstrate in our paper, local (IAR) decomposition is
another important operation required to produce seamless
animation.

Kwatra et al. [8] further extended video textures by
recomposing different frames with graph cuts instead of
reshuffling the complete frames. Agarwala et al. [1] created
panoramic video textures using min-cut optimization to
select fragments of video that can be stitched together both
spatially and temporally. They also manually partitioned
the scene into static and dynamic regions. Sun et al. [18]
developed a video-input driven animation system to extract
physical parameters such as wind speed from real videos.
These parameters are then used to drive the physical
simulation of synthetic objects.

Many approaches rely on user input to specify motion in
the synthesized video. Bhat et al. [4], for instance,
synthesized flow-based videos by analyzing the motion of
textured particles in the input video along user-specified
flow lines and synthesizing seamless video of arbitrary
length by enforcing temporal continuity along other user-
specified flow lines. Litwinowicz and Williams [12] used
keyframe line drawings to deform images to create
2D animation. Treuille et al. [20] also used keyframes to
control the smoke simulation. In [5], video sequences of a
person’s mouth were extracted from a training sequence of
the person speaking and then reordered in order to match
the phoneme sequence of a new audio track. Aoki et al. [2]
combined physically-based animation and image morphing

techniques to simulate and synthesize plants. Chuang
et al.’s [6] system allows the user to animate a single image.
Here, all motion is assumed to be caused by wind. In
addition, the user has to manually segment the image layers
and specify the motion model for each layer.

Some approaches for synthesizing dynamic scenes are
based on more mathematically rigorous analysis. For
example, Wang and Zhu [21] modeled the motion of
texture particles in video using a second-order Markov
chain. Soatto et al. [17] applied nonlinear dynamic systems
to model dynamic textures and borrowed tools of system
identification to capture the essence of the dynamic
textures. Szummer and Picard [19] built a spatio-temporal
autoregressive model for temporal textures.

Human perception has also been considered in produ-
cing dynamic textures. Freeman et al. [10] applied quad-
rature pairs of oriented filters to vary the local phase in an
image to give the illusion of motion. Paintings can also be
illuminated by sequentially timed lights to create the
illusion of motion, e.g., the kinetic waterfall [11].

3 SCENE ANIMATION SYSTEM

The basic pipeline of our system, shown in Fig. 1, is fully
automatic. The system first builds a graph that links similar
images, then recovers partial temporal orders among the
stills. Finally, the video or video texture is generated by
sampling the graph. However, a fully automatic process
may not result in satisfactory videos or video textures as the
computer does not have high-level understanding of the
scene. The user has the option of modifying or fixing the
dynamics of the animated scene through simple interfaces.
The optional procedures (described later) may be added at
places labeled with (A), (B), and (C) in Fig. 1.

3.1 Building a Graph of Image Similarity

The system first builds a graph that connects similar
images. Each image is a node in the graph and the weight
of the edge connecting two nodes is the similarity measure
of the corresponding two images. To speed up computation,
the L2 norm is used as the distance measure.

Next, the edges with weights larger than twice the mean
weight of all the edges indicate that the corresponding
image pairs are dissimilar and are deleted. The distances
between nodes with their edges deleted are recomputed as
the minimum sum of weights along a path linking them
[13]. The minimal weight path can be efficiently computed
using Floyd’s algorithm [16], [13].

Once the graph is built and distances computed, the
system decimates the stills to about 800� 600 and computes
low resolution optical flow between adjacent pairs of nodes
(images) hierarchically [3]. The optical flow fields are stored
and used for fast video preview as a feedback mechanism.

Unfortunately, the capture order may not reflect the true
dynamics. The River example in the submitted video1

(Fig. 6a) shows that an unusual effect was produced using
the original capture order. However, in many cases, it is
hard to sort the input images manually (the River data set in
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1. All videos can also be found at http://research.microsoft.com/
~zhoulin/Animation.htm.

Fig. 1. Outline of our system. All these steps are automatic; user-

specified operations (A), (B), and (C) may be added to improve the

visual quality of the video.



Fig. 2 is a good example). In addition, it may be impossible
to arrange the stills into a 1D sequence without repeating
some images, which makes manual sorting even more
difficult. Independent local motions (such as in the Candles
data set in Fig. 6b) also complicates manual sorting. To
handle these problems, we propose a partial temporal order
recovering algorithm that discovers orderings for subsets of
stills automatically. These partial temporal orders are
critical to providing reference dynamics for the output
image sequence (regular video or video texture).

3.2 Recovering Partial Temporal Orders

To recover the partial orders, we find, for each node of the
graph, the node farthest from it (Fig. 3). This generates two
paths connecting these nodes (in opposite directions),
which we call extremal paths. Extremal paths are recorded
as they are generated; they are important because the end
nodes correspond to two extreme scene appearances and
the intermediate nodes correspond to the sequential scene
appearances between the two extremes. For example, if the
scene consists of a pendulum swinging sideways, the two
end nodes would correspond to times when the pendulum
is to the far left and to the far right, respectively. Also, the
intermediate nodes would correspond to the action of the
pendulum swinging from the far left and to the far right or
from the far right to the far left.

However, an extremal path may be part of another
extremal path. This is not desirable, because traversal along
one extremal path could end up in another, possibly
disrupting the overall dynamics. Hence, we remove
extremal paths that are either identical to or subsets of
other extremal paths. The nodes (images) on the remaining
extremal paths should be in the correct temporal order
(forward or backward in time). Fig. 4 shows two examples
as validation of our ordering algorithm. After partial order
recovery, the animated River (Fig. 6a) appears much more
natural.

3.3 Sampling the Graph to Create Image Sequences

We formulate the image sequence selection process as a
problem of sampling a second-order Markov Chain on the

graph. Given the previous and the current frames fn�1 and

fn, respectively, the next frame is computed as follows:

First, we compute the penalties over all paths and nodes,

with the penalty defined as

ws;k ¼ DistðImgðs; k� 1Þ; fn�1Þ þDistðImgðs; kÞ; fnÞ; ð1Þ

where Imgðs; kÞ is the kth node (image) on the sth path. The

value of Dist() can be directly taken from the precomputed

distance lookup table. The distribution of ws;k determines

the probability of choosing Imgðs; kþ 1Þ as the next frame in

the following way:

P Imgðs; kþ 1Þjfn�1; fnð Þ � exp �ws;k= �
X
s;k

ws;k

 ! !
; ð2Þ

where � is a user controllable parameter and its default
value is 0.1. This is a sampling scheme of a second-order
Markov Chain. Intuitively, (1) and (2) jointly imply that if
the ðk� 1Þth and the kth images of the sth path are close
to fn�1 and fn, respectively, then it is likely to choose the
ðkþ 1Þth images of the sth path as the next frame fnþ1. In
the above sampling scheme, the image subsequence
specified by an extremal path provides a reference of
the scene dynamics.
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Fig. 2. Close-ups of images of a river (4 out of 12, shown in their capture order). Their temporal order is hard to determine manually. If they are

interpolated directly in the same order they were captured, an unnatural-looking effect results. (Please see the video submission.)

Fig. 3. Finding extremal paths in the graph. Each image is a node in the graph, with the numbers indicating the capture order. The edges indicate the
corresponding images they connect are similar, with the weights being the similarity (the lengths of edges drawn here are not proportional to the
similarities). (a)-(e) We start from every node to find the extremal paths. The red dots represent the starting nodes to find the extreme paths. For
each node, the farthest node is found to construct an extremal path, which is represented by red edges. The rest edges are shown in black. The
reverse of an extreme path is also an extreme path, but extremal paths that are part of other extremal paths are deleted. In this example, the
extremal paths in (b) and (c) are deleted, leaving four extremal paths (a), (d), (e), and the reverse of (e).

Fig. 4. Examples of extremal paths. In path (a)-(e), the flame is swaying

from left to right. In path (f)-(j), the flame gradually thins and lengthens.

The ordering looks visually plausible.



Note that this frame selection framework is quite
different from that in [15], where the model is a first-order
Markov chain and the dynamics are respected by diag-
onally filtering the distance matrix. We cannot filter the
distance matrix in the same way because it is possible that
all the images are not in the correct order. As a result, we
cannot reduce the second-order Markov Chain to a first-
order Markov Chain.

Because many extremal paths share the same subpaths
so that ws;ks in (1) are the same for these paths, our system
can choose among different extremal paths smoothly. A
video texture can be generated if the random loop feature in
our system is enabled. Otherwise, a video of finite length is
generated instead. The user can adjust the relative global
speed of motion using a scroll bar. Depending on the speed,
fewer or more intermediate frames are generated. Note that
the preview optic flow fields are refined at the original
resolution for the final output.

4 FINE-TUNING BY IMAGE DECOMPOSITION

The image decomposition process is labeled (A) in Fig. 1.
Breaking up images can make the temporal sorting of

different regions relatively independent, hence can make
better use of the very limited number of available stills. A
similar idea has appeared in video texture [15] as “motion
factorization.”

In our system, there are three kinds of regions. The first
is IARs (Fig. 5a), each of which contains an independently
moving object. Each IAR is roughly the union of the area
that an object occupies in each image. The second is
stationary regions (Fig. 5a). For such regions, it is sufficient
to sample them from any one image and replicate them
throughout the synthesized video in order to remove
random motion that is of no interest. The user marks the
first two kinds of regions on any one of the image samples.
The third is the remaining unmarked regions that are
considered to contain small movements (Fig. 5a), so that
their temporal ordering is inconsequential. Each region is
dilated by a few pixels. Once the videos for the IARs have
been synthesized in the same way as described in Section 3,
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Fig. 5. Image decomposition and the creation of SIARs from an IAR for
the Lake data set (Fig. 6c). (a) The IAR (blue), the stationary region
(pink), and the slow moving region (yellow). (b) The common low-
frequency area ALF (black) of the IAR. (c) The initially skeletonized ALF .
(d) The final boundaries selected to produce SIARs. Here, we have five
SIARs, numbered 1 to 5. The length of the mutual boundary between
SIARs i and j is lij. The dynamics incompatibility among the SIARs is
measured based on lij.

Fig. 6. Examples of animated scenes from still images. (a), (e) River. (b), (f) Candles. (c), (g) Lake. (d), (h), Curtain. (a), (b), (c), and (d) each show

one of the frames of the animated scene, while (e), (f), (g), and (h) show the IARs (marked in red) or SIARs (marked in blue, only in (g)), the slow

moving regions (marked in black), and the stationary regions (marked in white, only in the central rows of (g)). In (g), the red curves indicate the

boundaries of the SIARs. In (h), the whole image is an IAR. (Please see the submitted video for the animations.)



all regions are feathered linearly at the boundaries per
frame to produce a seamless-looking video.

Note that although there has been some research on
automatic region segmentation (e.g., [7]), in our case, the
input stills are temporally undersampled. As a result, the
dynamic texture is unknown. In our work, we attempt to
discover this by estimating the temporal order first. The
problem of segmentation with unknown temporal order and
unknown motion cannot be solved with prior techniques
(that we know of). Consequently, having the user quickly
specify the regions seems like a good compromise.

4.1 Handling IARs with Large Motion Variation

When an IAR with a relatively large area has significant
motion variation, the number of time instances will still be
too sparse to realize the true dynamics in the IAR. The Lake
animation (Fig. 6c) in our video submission shows that
when the whole water surface is a single IAR, the resulting
motion of the wave appears rather peculiar.

In such a case, the user can request that the IAR be
automatically decomposed into SIARs for further analysis
and reanimation, where weak constraints between adjacent
SIARs are enforced to ensure that their overall flow fields
are similar. This is a feature not seen in other proposed
animation systems (that we are aware of).

4.1.1 Decomposing an IAR into SIARs

The boundaries between SIARs should ideally lie within
low frequency areas of the scene in order to not cause
significant blur in the final result. Manually partitioning the
IAR is difficult; instead, our system does this automatically.

The system first identifies the common low-frequency
areas ALF of all time instances of the IAR (Fig. 5b), then
skeletonizes it using the technique of [9] (Fig. 5c). This
usually produces too many small regions that typically do
not preserve the global visual effect when animated
simultaneously. Consequently, our system only selects
optimal boundaries among the skeleton of ALF to break
the IAR into several SIARs (typically 5) (Fig. 5d).

To do so, a graph is first built such that each junction in
the skeleton is a node. The weight between directly
connected junctions is the sum of the gradient magnitudes
along the skeleton connecting the junctions and over all
time instances. The system then computes the minimum
spanning tree [16] of the graph. Finally, the system finds
several paths on the tree sequentially to separate the IAR
into SIARs. The procedure is as follows. Starting with the
IAR, at each pass the system finds the longest path that is
completely inside (the endpoints being the exceptions) one
of the existing regions. This longest path separates the
region containing it into two subregions. Typically, the
procedure stops when five SIARs are found. Take Fig. 5d
for example: The original single IAR is separated into two
subregions 1 [ 5 and 2 [ 4 [ 3 by the skeleton l12 [ l14 [ l13.
Then l24, l34, and l15 further separate the subregions into the
final five SIARs sequentially. We deem that five is roughly
the optimal value for the number of the SIARs because
fewer SIARs may not decouple the large motion in the IAR
sufficiently, while more SIARs may not preserve the global
visual effect well when animated simultaneously.

After an IAR is broken into SIARs, for each SIAR the steps

of building a graph and a list of extremal paths are exactly the

same as those for IARs. In addition, the average optical flow

directions between every two similar time instances of an

SIAR are computed and stored. The average flow directions

will be used as a soft constraint between spatially neighboring

SIARs when creating videos for SIARs.

4.1.2 Finding Optimal Processing Order for SIARs

Taking into account the dynamics compatibility among all

the SIARs simultaneously is complex. Particularly, the input

stills are often temporally undersampled, making the

dynamics within each SIAR incorrect without appropriate

sorting of the time instances. As a middle ground, we

choose to process the SIARs sequentially. The amount of

dynamics incompatibility among the SIARs is dependent on

the processing order of the SIARs. Therefore, we have to

find the optimal processing order of SIARs so that such

incompatibility among them is minimized. The analysis is

detailed below.
Except the first processed SIAR, the motion in each of

the SIARs Sk is dependent on the previously processed SIARs:

Sr, Si1 ; Si2 ; � � � ; Sim , that are spatially neighbor to Sk, where Sr
has the longest common boundary with Sk (Fig. 5d). We

use Sr as the reference of Sk and make the motion in Sk
compatible with that in Sr. Then the dynamics incompat-

ibility between Sk and Si1 ; Si2 ; � � � ; Sim can be measured by

the sum of the length of the common boundary between Sk
and Si1 ; Si2 ; � � � ; Sim .2 Minimizing the total dynamics in-

compatibility, however, is a combinatorial problem. As the

number of SIARs is usually small (which we limit to five),

a brute force search is adequate to find the optimal order.

While this optimal order may not be unique, it does not

cause a problem for the examples presented in this paper.

4.1.3 Creating Videos for SIARs

The video for the first processed SIAR is generated in exactly

the same way as described in Section 3. However, the other

SIARs cannot be generated independently. Each of them has

to use the dynamics of its reference SIAR as the constraint. To

account for their weak dependence on their reference SIARs

that have been processed, we add an extra term

� �vðImgðs; kÞ; Imgðs; kþ 1ÞÞ � �v f̂n; f̂nþ1

� ���� ��� ð3Þ

to ws;k in (1), and sample the graph as before using (2). Here,

� is a value that we set to be 0.05 times the average weight

of the graph that connects similar time instances of the

SIAR. �vðx; yÞ is the average optical flow direction between x

and y. Note that f̂n refers to the nth frame of the image

sequence previously generated for the reference SIAR (not

the current SIAR). The extra term specified in (3) forces the

average flow direction from the current frame to the next

frame to be close to that in the reference SIAR.
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2. Since our system is designed to choose the boundaries between SIARs
in the common low-frequency areas, the motion along these boundaries is
small. As a result, the amount of incompatibility should be roughly
proportional to the length of the boundaries.



5 OTHER USER OPTIONS

It is possible that the default video output may not be
satisfactory to the user (say, due to incorrectly interpreted
dynamics). Our system was designed to provide the user
some flexibility to fix or fine-tune the video through simple
interfaces. More specifically, the user has the option of
reordering the time instances of a region and editing the
motion dynamics.

5.1 Temporal Reordering

This process is labeled (B) in Fig. 1. The system may ask the
user to verify if the images that it deemed similar are
actually perceptually close; if they are not deemed percep-
tually close, the appropriate edges are deleted from the
graph. The user can also manually sort part of the images.
The path connecting the images in this new order is added
to the path list. After temporal reordering, the distance
matrix and the path list are updated accordingly as
described in Sections 3.1 and 3.2.

5.2 Editing Motion Dynamics

This process is labeled (C) in Fig. 1. The user can verify if
the motion direction in an extremal path is acceptable, e.g.,
the user can reject a path that corresponds to a car moving
backward.

The user can also specify the properties of motion for
each IAR.3 Unlike Chuang’s approach [6], in which the user
specifies the physics of motion, our system only asks the
user to provide several parameters. The first is the value of
� in (2), which controls the motion smoothness. The second
is a number between 0 and 1 that is a measure of motion
irregularity, which gives the probability of accepting fnþ1

sampled in Section 3.3 if fn�1, fn, and fnþ1 are on the same
extremal path and the direction from fn to fnþ1 is the
reverse of that from fn�1 to fn. The third is an option of
whether the motion speed has to decelerate or accelerate
when the motion direction reverses. Although, in theory,
these parameters alone cannot fully depict the complex
motion in the scene, considering that the collection of stills
has already captured some characteristics of the motion,
changing these parameters can effectively fine-tune the
dynamics of the scene.

6 RESULTS

The video submission shows the videos created using our
system on a variety of scenes, including River, Candles,
Lake, and Curtain (Figs. 6a, 6b, 6c, and 6d. More demos
can be found at http://research.microsoft.com/~zhoulin/
Animation.htm). Note that Curtain is a very difficult scene
to animate using traditional techniques. The reader is
strongly encouraged to view the videos as the generated
effects are hard to show in the paper. Some statistics about
the data sets and performance are listed in Table 1. In the
experiments, user interaction took just a few minutes. (Note
that the interaction time excludes “offline” processes
indicated by CT1, CT2, and CT3 in Table 1.)

Our system was implemented on an Intel Pentium 4
3.0 GHz PC with 1 GB RAM. The timing information for the
animations is listed in Table 1. The times to compute low

resolution optical flows are relatively short. However,
refining the optical flow took a lot longer, with the times
depending on the sizes of (S)IARs. The timings for frame
interpolations also vary significantly due to the different
numbers of frames interpolated. (These timings could be
improved by optimizing the code.) Note that the optical
flow refinement and high resolution frame interpolation
need only be done after the user is satisfied with the
previewed video. These operations do not impact the real-
timeness of user interaction.

7 DISCUSSION AND FUTURE WORK

Our technique works best for scenes with spatially separ-
able moving objects so that a few images are enough to
capture different phases of the motion of each object. Scenes
with superimposed moving objects may require signifi-
cantly more image samples. We currently do not consider
the issue of layer separation.

Unlike video textures [15], we do not deliberately avoid
dead ends because our primary goal is to animate a scene.
Dead ends can be easily avoided by deleting the “dead end”
branches. However, this would reduce the number of
usable images, particularly when some “dead end”
branches are long. A long “dead end” branch may still be
used at the end of the output video if looping ends.

Our system relies on optical flow estimation [3] for frame
interpolation, which typically fails in cases with large object
motion or finely textured areas. It remains a challenge to
design a robust optical flow estimation technique, and
adding an interface for user-specified hints and correction is
an option we are currently exploring.

There is also the question as to how many input images
are adequate. Intuitively, having more stills is better
because with more stills it is easier to find similar images
and the optical flow can be more accurate. Unfortunately,
as for the minimum number of stills, there does not
appear to be a clear-cut answer, because the number
should depend on the magnitude and the complexity of
the motion and when the snapshots were taken relative to
the motion period. Too few stills may result in no
similarity between any two images, and the large motion
between the two images simply makes the optical flow
computation impossible.
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3. The motion properties of SIARs are inherited from the IAR.

TABLE 1
Statistics for the Examples

CI is the approximate capture interval of the stills. CT1 is the time to
compute the low resolution optical flows in (S)IARs. CT2 is the time for
refinement to high resolution optical flows. CT3 is the frame interpolation
time. UT is the time a user took using the interface.



8 CONCLUSION

We have presented a system that is capable of generating
high resolution animated videos from a small number of
stills with very little user assistance. There are two key ideas
that made this possible. For one, we have proposed a new
framework that involves graph generation with partial
temporal orders and a second-order Markov Chain model
to produce plausible dynamics for each (S)IAR. Second, to
handle an IAR with a large motion variation, we have
proposed an automatic algorithm that further decomposes
it into SIARs and imposes soft constraints to ensure the
motion compatibility among the SIARs. Our system also
features user-friendly interfaces to allow the user to fine-
tune the motion quickly and effectively.
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