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Abstract Learning-based superresolution (SR) is a popular
SR technique that uses application dependent priors to infer
the missing details in low resolution images (LRIs). How-
ever, their performance still deteriorates quickly when the
magnification factor is only moderately large. This leads us
to an important problem: “Do limits of learning-based SR al-
gorithms exist?” This paper is the first attempt to shed some
light on this problem when the SR algorithms are designed
for general natural images. We first define an expected risk
for the SR algorithms that is based on the root mean squared
error between the superresolved images and the ground truth
images. Then utilizing the statistics of general natural im-
ages, we derive a closed form estimate of the lower bound
of the expected risk. The lower bound only involves the co-
variance matrix and the mean vector of the high resolution
images (HRIs) and hence can be computed by sampling real
images. We also investigate the sufficient number of samples
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to guarantee an accurate estimate of the lower bound. By
computing the curve of the lower bound w.r.t. the magnifi-
cation factor, we could estimate the limits of learning-based
SR algorithms, at which the lower bound of the expected
risk exceeds a relatively large threshold. We perform experi-
ments to validate our theory. And based on our observations
we conjecture that the limits may be independent of the size
of either the LRIs or the HRIs.
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1 Introduction

Superresolution (SR) is a technique that produces an im-
age or video with a resolution that is higher than those of
any of the input images or frames. Roughly speaking, SR
algorithms can be categorized into four classes (Borman
and Stevenson 1998; Farsiu et al. 2004; Park et al. 2003).
Interpolation-based algorithms (e.g., Komatsu et al. 1993;
Nguyen and Milanfar 2000; Shah and Zakhor 1999) register
low resolution images (LRIs) with the high resolution im-
age (HRI), then apply nonuniform interpolation to produce
an improved resolution image which is further deblurred.
Frequency-based algorithms (e.g., Kim and Su 1993; Rhee
and Kang 1999; Tsai and Huang 1984) make use of the alias-
ing that exists in each LRI and try to dealias the LRIs by uti-
lizing the phase difference among the LRIs. Reconstruction-
based algorithms (e.g., Elad and Feuer 1997; Hardie et al.
1997; Lin and Shum 2004; Patti et al. 1997) rely on the
registration relationship between the LRIs and the HRI to
build a linear system that relates the LRIs and the HRI, and
then assume various kinds of priors on the HRI in order
to regularize this ill-posed inverse problem. Recently, many
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learning-based algorithms (LBAs) have attracted much at-
tention. Learning-based SR algorithms are new SR tech-
niques that may start from the seminal papers by Freeman
and Pasztor (1999) and Baker and Kanade (2002). Com-
pared to traditional methods, which basically process im-
ages at the signal level, learning-based SR algorithms in-
corporate application dependent priors to infer the unknown
HRI. For instance, a probabilistic model is often learned
from a training set of image pairs, i.e., corresponding LRI
and HRI images, and then the output HRI is inferred from
the input LRIs based on that probabilistic model. Often, they
can achieve better results if the training set agrees well with
the statistics of the input LRIs.

Existing LBAs vary from generic to specific, incorporat-
ing different levels of prior knowledge. Among them, the
algorithms in Freeman and Pasztor (1999), Bégin and Ferrie
(2004), Bishop et al. (2003), Candocia and Principe (1999),
Kursun and Favorov (2003), Miravet and Rodríguez (2003),
Pickup et al. (2003), Sun et al. (2003), Zhang and Pan (2002)
can be applied to general images or videos (Bishop et al.
2003). As the image/video sizes are not fixed, all of them can
only use patch-based approaches. In contrast, the algorithms
in Baker and Kanade (2002), Capel and Zisserman (2001),
Dedeoǧlu et al. (2004), Li and Lin (2004a, 2004b), Liu et al.
(2001, 2005a, 2005b, 2005c) are devoted to face hallucina-
tion only. They all utilize the strong structural information of
faces by aligning the face images. Hence most of them use
eigen-faces. Despite some drawbacks such as a fixed magni-
fication factor and dependence of performance on how well
the input LRI matches the training low resolution (LR) sam-
ples, LBAs have several advantages, which make them very
popular nowadays. For example, they require fewer LRIs yet
still achieve higher magnification factors than traditional SR
algorithms, because they already have more specific prior
knowledge of the image/video. Most of the algorithms can
even work on a single image, which is impossible for tra-
ditional algorithms. Moreover, it is possible to design fast
LBAs, e.g., eigen-face based face hallucination or neural
network based SR algorithms, while traditional SR algo-
rithms (except nonuniform interpolation Park et al. 2003)
are usually iterative and slow, making real-time SR diffi-
cult. Finally, if we change the prior for LBAs, the HRIs
may exhibit an artistic style (Freeman and Pasztor 1999;
Pickup et al. 2003). This may enable LBAs to perform style
transfer. In contrast, traditional SR algorithms do not have
such capability.

Although more specific prior knowledge, e.g., the strong
structure of faces, has been incorporated in LBAs, people
have found that the SR results are still unsatisfactory even
though the magnification factors are still not very large. This
poses an important question: “Do limits exist for learning-
based superresolution?”, i.e., “Does there exist an upper
bound for magnification factors such that no SR algorithm

can produce satisfactory results?” In this paper, we provide
some theoretical analysis on the limits of LBAs for general
natural images, which is the first work on this problem ac-
cording to the best of our knowledge. In comparison, the
counterpart analysis for reconstruction-based SR algorithms
has been presented in Lin and Shum (2004) and Baker and
Kanade (2002). This paper has two major contributions:

1. A closed form lower bound of the expected error between
the superresolved and the ground truth images is proved.
This formula only involves the covariance matrix and the
mean of the prior distribution of HRIs. This lower bound
is used to estimate the limits of LBAs.

2. A formula on the sufficient number of HRI samples is
provided to ensure the accuracy of the sample-based
computation of the lower bound.

Moreover, from our experiments, we have also observed that
the limits may be independent of the sizes of both LRIs and
HRIs.

Currently, we limit our analysis to general natural im-
ages, i.e., the set of all natural images of given size, because
the statistics of general natural images have been studied for
a long time (Srivastava et al. 2003) and there have been some
pertinent observations on their characteristics that are useful
for our analysis. In particular, we will use the following two
properties:

1. The distribution of HRIs is not concentrated around sev-
eral HRIs and the distribution of LRIs is not concentrated
around several LRIs either. Noticing that general natural
images cannot be classified into a small number of cate-
gories will justify this property.

2. Smoother LRIs have a higher probability than non-
smooth ones. This property is actually called the
“smoothness prior” that is widely used for regulariza-
tion, for instance, when performing reconstruction-based
SR.

In contrast, for specific class of images, e.g., face or text
images, there is no similar work on their statistics to the best
of our knowledge. So currently we have to focus on the SR
of general natural images.

The rest of this paper is organized as follows. We first
review the existing LBAs in Sect. 2. Then we formulate our
problem and prove the lower bound of the expected risks of
LBAs in Sect. 3. In Sect. 4, we investigate the problem of
the sufficient number of samples needed for estimating the
lower bound. Next, we present the experimental results in
Sect. 5 and discuss the case of involving the noise in Sect. 6.
Finally, we give the conclusions and future work in Sect. 7.

2 Overview of Learning-Based SR Algorithms

Based on our own understandings, the existing LBAs can
roughly be categorized into indirect maximum a posteriori
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(MAP) inference and direct MAP inference, where the for-
mer can be further classified as global and local.

2.1 Indirect MAP inference LBAs

Indirect MAP inference algorithms model the SR problems
as:

H = arg max
H

P({ L̇i}Ni=1|Ḣ)P (Ḣ),

where H is the HRI, Ḣ is some feature or quantity related
to the HRI (Ḣ could be identical to H), and L̇i are some
features or quantities related to the LRIs ( L̇i could be iden-
tical to the LRI Li too). Different algorithms differ in the
definitions of P({ L̇i}Ni=1|Ḣ) and P(Ḣ).

2.1.1 Locally Indirect MAP inference LBAs

Locally indirect MAP LBAs infer an HRI patch by patch.
The final HRI is obtained by resolving the mismatch among
neighboring patches.

Freeman and Pasztor (1999) model the SR problem as an
inference problem of the high frequency:

H = L̄1 + Ĥ,

where L̄1 is the image by interpolating the LRI L1 to the
size of H, and Ĥ is the missing high frequency such that:

Ĥ = arg max
Ĥ

P( L̃1|Ĥ)P (Ĥ),

where L̃1 is the mid-frequency of L̄1. In their framework,
P( L̃1|Ĥ) and P(Ĥ) are defined via local patches in the
HRI. They use a Markov network to model the relationship
between the high resolution (HR) patches and LR patches:
nearby HR patches are connected to each other and each
HR patch is also connected to its corresponding LR patch.
The weights in this Markov network are learnt from sam-
ple images and are approximated by mixture of Gaussians.
Standard Belief Propagation algorithm is adopted to find the
optimal Ĥ iteratively.

Bégin and Ferrie’s algorithm (Bégin and Ferrie 2004) fol-
lows the framework of Freeman and Pasztor (1999). How-
ever, they argue that to have good SR performance the LR
sample patches matching the input LRI should have similar
point spread functions to that of the input LRI. Bishop et al.
(2003) and Dedeoǧlu et al. (2004) further extend Freeman
and Pasztor’s work (Freeman and Pasztor 1999) to videos,
but the former simplifies the algorithm a lot and the latter
only targets on face hallucination.

Baker and Kanade’s hallucination algorithm (Baker and
Kanade 2002) models the likelihood as

P({Li}Ni=1|H) ∼ exp
{−λ‖H − PL‖2}, (1)

where L is the concatenated vector of LR pixels in {Li}Ni=1
and P is the coefficient matrix relating the HR pixels and the
LR pixels. The prior probability P(H) of HRIs is designed
according to the pixels in the HRIs that best match the pixels
in LRIs. In Pickup et al. (2003), the likelihood is the same as
(1), but the prior probability of HRIs is learnt from texture
samples.

2.1.2 Globally Indirect MAP Inference LBAs

Globally indirect MAP LBAs do not infer the HRI patch
by patch. Instead, the existing algorithms assume that the
HRI can be decomposed into “bases”. Therefore, what the
algorithms compute is actually the combination coefficients
among the bases. Usually, for a global algorithm to work ef-
fectively, the HRIs should have a consistent structure. There-
fore, all existing global LBAs are proposed for face halluci-
nation.

Gunturk et al. (2003) represent both the HR and the LR
face images as linear combinations of corresponding eigen-
faces. The SR problem becomes:

h = arg max
h

P(h)P ({li}Ni=1|h),

where h is the combination vector for the HR face image
and li are the combination vectors for the LR face images.
P(h) and P({li}Ni=1|h) are defined via Gaussians. Following
Gunturk et al. (2003), Li and Lin (2004b) further consider
the pose variation in the input faces. In contrast, all the rest
of the face hallucinating algorithms deal with frontal faces
only.

Liu et al.’s face hallucination algorithm (Liu et al. 2001)
is actually a hybrid of global and local approaches. The in-
ference of the global face image Hg in Liu et al. (2001) fol-
lows a methodology that is similar to that of Gunturk et al.
(2003). As for the local feature image Hl , like Freeman and
Pasztor (1999), Liu et al. also adopt an MRF model that par-
titions the LRI and the HRI into patches and use the global
feature image Hg to infer the local feature image Hl :

Hl = arg max
Hl

P (Hl |Hg).

Simulated annealing algorithm is applied to find the opti-
mal Hl . Capel and Zisserman’s framework (Capel and Zis-
serman 2001) resembles that of the inference of the global
face image in Gunturk et al. (2003), Liu et al. (2001). How-
ever, the faces are partitioned into five regions: left eye, right
eye, nose, left cheek, right cheek, and mouth. The SR is then
done in each region separately. As the alignment among in-
dividual parts of faces is better than aligning the whole face,
the SR results exhibit more details than those in Liu et al.
(2001) and Gunturk et al. (2003). The side effect is that the
boundaries between the regions may be discontinuous. Also
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inspired by Liu et al. (2001), Li and Lin (2004a) propose
a computationally efficient approach to compute the global
face and the residue. When computing the global face, both
the HRI and the LRI are assumed to be a linear combination
of HR and LR principal components, respectively. As they
adopt the smoothness prior, the resultant HRI is inevitably
blurred.

2.2 Direct MAP Inference LBAs

The existing direct MAP inference LBAs are all patch based.
So there is no need to classify them as either global or local.
This class of methods model the SR problem as:

H = arg max
H

P(Ḣ|{ L̇i}Ni=1)

where the notations follow those in Sect. 2.1.
Sun et al. (2003) use the primal sketch prior to infer the

high frequency:

H = L̄ + Hp,

where L̄ is the image by interpolating the LRI L to the size
of HRI and

Hp = arg max
Hp

P (Hp| L̄),

is the missing high frequency. The algorithm first prepares
many examples of HR and corresponding LR patches ex-
tracted along edges in training images using Gabor filters.
To compute P(Hp| L̄), the authors approximate it as:

P(Hp| L̄) ≈
∏

k

P (Ck| L̄),

where Ck are the contours in L̄ and have already been ap-
proximated by candidates of HR patches. To resolve the in-
consistency among the overlapping patches, each contour is
modelled as a first order Markov chain. Their methodology
is very similar to that in Freeman and Pasztor (1999) and
Belief Propagation is also adopted to find the optimal HR
patches.

Hertzmann et al. (2001) propose a very simple algorithm
that transfers styles between images. Given a pair of images

A and A′ and another image B , the goal is to synthesize
a new image B ′ such that the transform from B to B ′ is
similar to that from A to A′. According to the algorithm,
B ′ is synthesized pixel by pixel in a scan-line order, based
on features extracted from the Gaussian pyramids of A, A′
and B . When A is the LRI and A′ is the corresponding HRI,
the algorithm outputs an HRI B ′ for image B .

By assuming that the manifolds of LR patches and HR
patches have similar local geometry, i.e., if an input LR
patch is a linear combination of its k-nearest neighbors in
the LR training patches, then its HR patch should roughly be
the linear combination of corresponding HR training patches
using the same combination coefficients, Liu et al. (2005a,
2005b, 2005c) develop algorithms for face hallucination,
where the intermediate HR patches and the HR residue are
inferred successively. And Chang et al. (2004, 2006) and Fan
and Yeung (2007) apply similar methodology to generic im-
ages.

There are also several papers that utilize neural networks
(NNs) for SR. For example, Zhang and Pan (2002) train
an adaptive linear NN that maps LR residual errors to HR
residual errors. Candocia and Principe (1999) use an NN
to cluster LR patches as well as infer HR patches from LR
patches. Miravet and Rodríguez (2003) use a hybrid mul-
tilayer perception (MLP) and probabilistic neural network
(PNN) for SR via nonuniform interpolation. Kursun and Fa-
vorov (2003) build a biologically inspired NN that mim-
ics the SINBAD (Set of INteracting BAckpropagating Den-
drites) cells in the visual cortex, and claim that the SINBAD
NN can identify high-order regularities in natural images.
Therefore, the SINBAD NN can have excellent SR perfor-
mance when interpolating the missing pixels.

3 Limits of Learning-Based SR Algorithms

Figure 1 outlines our analysis on the limits of learning-based
SR algorithms. We first define an expected risk of a learning-
based SR algorithm. The risk is minimized by an optimal SR
function. Using the statistics of general natural images, we
derive a closed form formula for the lower bound of the risk,
which only involves the covariance matrix and the mean

Fig. 1 Our methodology of estimating the limits of learning-based SR algorithms. Please refer to Sect. 3 for more details
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of the distribution of the HRIs. By sampling the real-world
HRIs, we can obtain a curve of the lower bound of the risk
w.r.t. the magnification factor. Finally, by choosing a rela-
tively large threshold for the lower bound of the risk, we can
roughly estimate the limit of learning-based SR algorithms.

3.1 What are the Limits of Learning-Based SR
Algorithms?

To investigate the limits of LBAs quantitatively, we have to
consider this problem in an abstract level in order to build a
mathematical model. Although the existing LBAs differ in
implementation details, they are simply different functions
that map LRIs to corresponding HRIs, i.e., mappings s from
a low-dimensional Euclidean space to a high-dimensional
one. If we define a function d that downsamples HRIs to
LRIs, then the composite function f = s ◦ d is a mapping
between HRIs, and different LBAs correspond to different
f ’s. Let A be the set of admissible f ’s: A = {f (·, α)|α ∈ I },
where I is an index set for differentiating different f ’s (Vap-
nik 1998). Then designing an LBA can be translated into
determining a function in A. Hence each LBA is associ-
ated with an index α. Given an HRI, the performance of an
LBA f (·, α) should be evaluated by how good this HRI is
recovered. In a language of statistical learning theory (Vap-
nik 1998), this can be depicted by a risk function r . As an
LBA performs differently for different HRIs (e.g., it is usu-
ally more difficult to recover HRIs with more details), we
should look at its average performance, which corresponds
to its expected risk (Vapnik 1998):

R(α) =
∫

r(h,f (h,α))p(h)dh, (2)

where p(h) is the probability density function of the HRIs
h. It is possible that an LBA performs extremely well on
a particular LRI. However, if the SR results on many other
LRIs are poor, we still do not consider it a good SR algo-
rithm. That is why the average performance is a preferred
criterion to evaluate an LBA. More generally, in statistical
learning theory the expected risk is often used to evaluate
the performance of a learning function.

Now we have to define an appropriate risk function for
LBAs. As suggested in Lin and Shum (2004), a good SR al-
gorithm should produce HRIs that are close to the ground
truth. Otherwise, the produced HRI will not be what we de-
sire, no matter how high its resolution is (e.g., an HR car
image will not be considered as the HRI of an LR face im-
age no matter how many details it presents). Therefore, we
may define the risk function as the closeness between an
HRI and its superresolved version. As the root mean squared
error (RMSE) is a widely used measure of image similarity
in the image processing community (e.g., the peak signal to
noise ratio in image compression) and also in various kinds

of error analysis, we may define the risk function using the
RMSE between an HRI and its superresolved version.

Although small RMSEs do not necessarily guarantee
good recovery of the HRIs, large RMSEs should nonethe-
less imply that the recovery is poor. Therefore, we may con-
vert the problem to a tractable one: find the upper bound of
the magnification factors such that the expected risk is be-
low a relatively large threshold. Such an upper bound can
be considered the limit of learning-based SR algorithms.

3.2 Problem Formulation

For simplicity, we present the arguments for the 1D case
only. Those for the 2D case are similar but the expressions
are much more complex.

As argued in Sect. 3.1, we use the RMSE between the
recovered HRI and the ground truth HRI to evaluate the
performance of a learning-based SR algorithm. This moti-
vates us to define the following expected risk of the SR al-
gorithm:1

g(N,m) =
(

1

mN
g̃(N,m)

) 1
2

, where

g̃(N,m) =
∫

h
‖h − s (Dh)‖2 ph(h)dh,

(3)

in which s is the learnt SR function that maps N -dimensional
images to mN -dimensional ones, m > 1 is the magnification
factor and always makes mN an integer, ph is the probabil-
ity density function of the HRIs and D is the downsampling
matrix that downsamples mN -dimensional signals to N -
dimensional ones. The downsampling matrix is introduced
here to simulate the image formation process. One may ar-
gue that the downsampling matrix may not be identical for
different images, or the downsampling process may even be
nonlinear. However, all these kinds of discrepancy can be
viewed as part of the noise, which would be discussed in
Sect. 6.

Equation (3) defines the expected risk of a particular SR
algorithm s, which should be evaluated by running the algo-
rithm on a large number of HRIs. This is very time consum-
ing. Moreover, for a particular SR algorithm, its magnifica-
tion factor is often fixed. Therefore, estimating the expected
risk of a particular SR function does not help to find the lim-
its of all learning-based SR algorithms. Consequently, we
have to study the lower bound of (3).

Before going on, we first introduce the corresponding up-
sampling matrix U which upsamples N -dimensional signals
to mN -dimensional ones. We expect that images are un-
changed if they are upsampled and then downsampled. This

1Throughout our paper, vectors or matrices are written in boldface,
while scalars are in normal fonts. Moreover, all the vectors without the
transpose are column vectors.
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implies that DU = I, where I is the identity matrix. This up-
sampling matrix is purely a mathematical tool to facilitate
the derivation and the representation of our results.

3.3 Theorem on the Lower Bound of the Expected Risk

The central theorem of our paper is the following:

Theorem 3.1 (Lower Bound of the Expected Risk) When
ph(h) is the distribution of general natural images, namely
the set of all natural images, g̃(N,m) is effectively lower
bounded by b̃(N,m), where

b̃(N,m) = 1

4
tr
[
(I − UD)�(I − UD)t

]+ 1

4

∥
∥(I − UD)h̄

∥
∥2

,

(4)

in which tr(·) is the trace operator, the superscript t repre-
sents the matrix or vector transpose, and � and h̄ denote the
covariance matrix and the mean of the HRIs h, respectively.
Hence g(N,m) is lower bounded by

b(N,m) =
(

1

mN
b̃(N,m)

) 1
2

. (5)

For an HRI h, (I − UD)h = h − U(Dh) is its high fre-
quency. So (4) is essentially related to the richness of the
high frequency component in the HRIs. Hence Theorem 3.1
implies that the richer the high frequency component in the
HRIs is, the more difficult the SR is. This agrees with our
intuition.

Note that Theorem 3.1 holds for all possible SR functions
s as it gives the lower bound of the risk. By investigating the
lower bound, we are freed from taking care of the details of
different learning-based SR algorithms.

3.4 Sketch of the Proof

In this subsection, we present the idea of proving Theo-
rem 3.1. Now that different HRIs can result in the same LRI
(Dh can be identical for different h), it may be easier to an-
alyze (3) by fixing Dh. This can be achieved by performing
a variable transform in (3). To do so, we find a complemen-
tary matrix (not unique) Q such that

( D
Q

)
is a non-singular

square matrix and QU = 0. Such a Q exists. The proof can
be found in Appendix. Denote M = (R V) = ( D

Q

)−1. From
( D

Q

)
(R V) = I, we know that R = U.

Now we perform a variable transform h = M
( x

y
)
. Then

(3) becomes

g̃(N,m) =
∫

x,y

∥∥∥∥(U V)

(
x
y

)
− s (x)

∥∥∥∥

2

px,y

((
x
y

))
dxdy

=
∫

x
px(x)V (x)dx, (6)

where

px,y

((
x
y

))
= |M|ph

(
M

(
x
y

))
,

V (x) =
∫

y
‖Vy − φ (x)‖2 p̃y (y|x)dy.

px(x) is the marginal distribution of x, p̃y (y|x) is the condi-
tional distribution of y given x and φ(x) = s(x) − Ux is the
recovered high frequency component of the HRI given the
LRI x. For this reason, we call φ(x) the high frequency func-
tion. Note that x = Dh, and Vy = h − Ux. So x is the LRI
downsampled from h, and Vy is the high frequency of h.

One can see that there is an optimal high frequency func-
tion such that V (x) (hence g(N,m)) is minimized:

φopt(x; p̃y) = V
∫

y
yp̃y (y|x)dy, (7)

where φopt(x;p) denotes the optimal φ w.r.t. the distribu-
tion p. This means that the optimal high frequency compo-
nent should be the expectation of all possible high frequen-
cies associated to the LRI x. The introduction of the opti-
mal high frequency function (or equivalently, the optimal SR
function, since sopt(x) = φopt(x)+Ux) frees us from dealing
with the details of different learning-based SR algorithms,
because sopt attains the minimum of the expected risk.

Then one can easily verify that

V (x) =
∫

y
‖Vy‖2 p̃y (y|x)dy − ∥∥φopt(x; p̃y)

∥∥2
. (8)

In Appendix, we show that for general natural images,

∥∥φopt(x; p̃y)
∥∥2 ≤ 3

4

∫
y ‖Vy‖2 px,y

(( x
y
))

dy

px(x)
. (9)

Therefore, from (6), (8) and (9) we have that

g̃(N,m) =
∫

x
px(x)

(∫

y
‖Vy‖2 p̃y (y|x)dy

− ∥∥φopt(x; p̃y)
∥∥2

)
dx

≥ 1

4

∫

x
px(x)

∫

y
‖Vy‖2 p̃y (y|x)dydx

= 1

4

∫

x,y
‖Vy‖2 px,y

((
x
y

))
dxdy

= 1

4

∫

h
‖VQh‖2 ph(h)dh

= 1

4
tr
(
(I − UD)�(I − UD)t

)+ 1

4

∥∥(I − UD)h̄
∥∥2

,

where we have used VQ = I − UD, which comes from
(U V)

( D
Q

) = I. This proves Theorem 3.1.
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We see that the variance and the mean of the HRIs plays
a key role in lower bounding g(N,m). Although it is intu-
itive that ph(h) is critical for the limits of learning-based SR
algorithms, Theorem 3.1 quantitatively depicts how ph(h)

influences the SR performance.

3.5 Limits of Learning-Based SR Algorithms

If at a particular magnification factor, b(N,m) (see (5)) is
larger than a threshold T , i.e., the expected RMSE between
h and sopt(Dh) is larger than T , then for any SR function
s, the RMSE between h and s(Dh) is also expected to be
larger than T because b(N,m) is the lower bound of the
expected risk. This implies that at this magnification factor
no SR function can effectively recover the original HRI.

Therefore, if we have full knowledge of the variance and
the mean of the prior distributions ph(h) at different magni-
fication factors, we can define a curve of b(N,m) as a func-
tion of m. Then the limit of learning-based SR algorithms is
upper bounded by b−1(T ).

Note that the lower bound b(N,m) is proved in a con-
servative way. Consequently, the estimate on the limits of
learning-based SR algorithms using (5) is also conservative.
And also note that ph(h) being the distribution of the set of
all natural images is important for us to arrive at (4). Other-
wise, we will not come up with the coefficient 1/4 therein
and g̃(N,m) may be arbitrarily close to 0. For example, if
there is only one HRI, we can always recover the HRI no
matter of how low resolution the input LRI is.

4 The Sufficient Number of HRI Samples

To compute b(N,m) using (4), we have to know the co-
variance matrix and the mean of HRIs h for general natural
images. There has been a long history of natural image sta-
tistics (Srivastava et al. 2003). Unfortunately, all the existing
models only solve the problem partially: the natural images
fit some models, but not all images that are sampled from
these models are natural images. On the other hand, we do
not need the full knowledge of ph(h): its covariance matrix
and mean already suffice.

This motivates us to sample HRIs from real data, because
accurately estimating the mean and the variance of ph(h)

by sampling is relatively easy. To make sure that sufficient
images have been sampled to achieve an accurate estimate
of b̃(N,m), we provide a theorem below.

4.1 Theorem on the Sufficient Number of HRI Samples

Theorem 4.1 (Sufficient Number of Samples) If we sam-
ple M(p,ε) HRIs independently, then with probability of at

least 1 − p, | ˆ̃b(N,m) − b̃(N,m)| < ε, where ˆ̃
b(N,m) is the

value of b̃(N,m) estimated from real samples,2

M(p,ε) = (C1 + 2C2)
2

16pε2
, (10)

C1=
√

E(‖(I − UD)(h − h̄)‖4) − tr2[(I − UD)�(I − UD)t],
and C2 =

√
b̄t�b̄, in which E(·) is the expectation operator

and b̄ = (I − UD)t (I − UD)h̄.

Note that both C1 and C2 are related to the variance of
the high frequency component of the HRIs. So Theorem 4.1
implies that the larger the variance is, the more samples are
required.

4.2 Sketch of the Proof

We first denote ˆ̄�M = 1
M

∑M
k=1(ĥk − h̄)(ĥk − h̄)t and the

estimated covariance matrix �̂M = 1
M

∑M
k=1(ĥk − ˆ̄h)(ĥk −

ˆ̄h)t ,3 where ĥk’s are i.i.d. samples and ˆ̄h = 1
M

∑M
k=1 ĥk is

the estimated mean. Then one may check that

�̂M = ˆ̄�M − ( ˆ̄hM − h̄)( ˆ̄hM − h̄)t .

In the following, we denote B = (I − UD)t (I − UD) and
b̄ = Bh̄ for brevity, and denote the i-th entry of a vector a as
ai and the (i, j)-th entry of a matrix A as Aij .

With some calculation we have

| ˆ̃b(N,m) − b̃(N,m)| ≤ 1

4

∣∣∣∣∣

mN∑

i,j=1

Bij

( ˆ̄�M;ij − �ij

)
∣∣∣∣∣

+ 1

2

∣∣∣∣∣

mN∑

i=1

b̄i (
ˆ̄hM;i − h̄i )

∣∣∣∣∣
. (11)

The details can be found in Appendix. So we have to esti-
mate the convergence rates of both terms.

Therefore, we define ξ = ∑mN
i,j=1 Bij

ˆ̄�M;ij = tr(B ˆ̄�)

and η = ∑mN
i=1 b̄i

ˆ̄hM;i = b̄t ˆ̄hM . Then their expectations are

E (ξ) = tr(B�), and E(η) = b̄t h̄,

respectively. And their variances can be found to be

var(ξ) = C2
1

M
, (12)

2Throughout our paper, we use the embellishment ∧ above a value to
represent the sampled or estimated quantities.
3For unbiased estimation of the covariance matrix, the coefficient be-
fore the summation should be 1/(M − 1). However, we are more in-
terested in the error of b̃(N,m), rather than the covariance matrix it-
self. If 1/(M − 1) is used instead of 1/M , there will be an additional
O(1/M) term at the right hand side of (15), indicating that the con-
vergence might be slightly slower. Nonetheless, when M is large, the
difference is negligible.
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and

var(η) = C2
2

M
, (13)

respectively. The proofs can be found in Appendix.
Then by Chebyshev’s inequality (Shiryaev 1995),

P

⎛

⎝

∣∣∣∣∣∣

mN∑

i,j=1

Bij

( ˆ̄�M;ij − �ij

)
∣∣∣∣∣∣
≥ δ

⎞

⎠

= P (|ξ − E(ξ)| ≥ δ) ≤ var(ξ)

δ2
= C2

1

Mδ2
,

P

(∣∣∣∣∣

mN∑

i=1

b̄i

( ˆ̄hM;i − h̄i

)
∣∣∣∣∣
≥ δ

)

= P (|η − E(η)| ≥ δ) ≤ var(η)

δ2
= C2

2

Mδ2
.

Therefore, at least at a probability of 1 − p,
∣∣∣∣∣∣

mN∑

i,j=1

Bij

( ˆ̄�M;ij − �ij

)
∣∣∣∣∣∣
≤ C1√

Mp
,

(14)∣∣∣∣∣

mN∑

i=1

b̄i

( ˆ̄hM;i − h̄i

)
∣∣∣∣∣
≤ C2√

Mp
.

Then by (11) and (14), with probability at least 1 −p, we
have
∣∣∣ ˆ̃b(N,m) − b̃(N,m)

∣∣∣ ≤ C1

4
√

Mp
+ C2

2
√

Mp
. (15)

Now one can check that Theorem 4.1 is true.
Note that

∣∣∣b̂(N,m) − b(N,m)

∣∣∣

=
∣∣∣
∣∣

√
1

mN

ˆ̃
b(N,m) −

√
1

mN
b̃(N,m)

∣∣∣
∣∣

=
1

mN

∣∣ ˆ̃b(N,m) − b̃(N,m)
∣∣

√
1

mN
ˆ̃
b(N,m) +

√
1

mN
b̃(N,m)

≈
1

mN

∣∣ ˆ̃b(N,m) − b̃(N,m)
∣∣

2
√

1
mN

b̃(N,m)

=
∣∣ ˆ̃b(N,m) − b̃(N,m)

∣∣

2mNb(N,m)
.

So in practice, we may choose p = 0.01 and ε = 1
2mN ×

b(N,m) in (10) in order to make |b̂(N,m) − b(N,m)| ≤

0.25 at above 99% certainty. Here we choose 0.25 as the
threshold because it is roughly the mean of the graylevel
quantization error.

5 Experiments

Collecting Samples We crawled images from the web and
collected 100,000+ images. They are of various kinds of
scenes: cityscape, landscape, sports, portraits, etc. There-
fore, our image library could be viewed as an i.i.d. sam-
pling of general natural images. To sample mN ×mN sized
HRIs, we first convert each color image into a graylevel
one, then decompose it into non-overlapping patches of size
mN ×mN with at least one pixel apart from each of them in
order to ensure the mutual independence. So each patch can
be regarded as a sample of HRIs of size mN × mN . Then
we blindly run our program to estimate the covariance and
the mean of the HRIs, where mN varies from 8 to 48 at a
step size of 4. The number of samples is of the order of 106

to 108. While one may argue that this number may not be
sufficient to estimate ph(h), recall that our goal is not on es-
timating ph(h); we are interested in the values of b(N,m)

only.

Characteristics of b(N,m) Next, we have to specify a
downsampling matrix in order to compute the lower bound
b(N,m) by (5). (The upsampling matrix U is determined by
D. See Sect. 3.2.) We simply choose a downsampling ma-
trix that corresponds to the bicubic B-spline filter.4 Then the
curves of b(N,m) w.r.t. m are shown in Fig. 2(a), where for
each individual curve N is fixed.

We can see that for fixed N , b
(1)
N (m) = b(N,m) in-

creases with m. A remarkable observation is that for dif-
ferent N ’s, the curves in Fig. 2(a) coincide well with each
other. This suggests that for general natural images b(N,m)

may be independent of N . Another interesting observation
on Fig. 2(a) is that b

(1)
N (m) seems to grow at the rate of

(m − 1)1/2. The important implication from these observa-
tions is: we may estimate the limits of learning-based SR
by trying relatively small sized images and small magnifica-
tion factors, rather than trying large sized images and large
magnification factors, which saves computation and mem-
ory without compromising the estimation accuracy.

4In the 1D case, a cubic filter can be written as:

k(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(a + 2)|x|3 − (a + 3)|x|2 + 1, if 0 ≤ |x| ≤ 1,

a|x|3 − 5a|x|2 + 8a|x| − 4a, if 1 ≤ |x| ≤ 2,

0, if |x| > 2.

(16)

When a = −1, it is the cubic B-spline filter. The downsampling ma-
trix for 2D images is the Kronecker product of the 1D downsampling
matrices.
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Fig. 2 (a)–(e) are curves of b(N,m) using different D’s, drawn with
N fixed for each individual curve. The corresponding N ’s are labelled
at the tails of the curves (in order not to make the graph crowded,
large N ’s for short curves are not shown). (a) uses a bicubic filter with
a = −1. The marks ‘*’ at (3, 11.1) and ‘#’ at (4, 12.6) represent the
expected risks of Sun et al. (2003) and Freeman and Pasztor (1999) SR

algorithms, respectively. (b) uses a bicubic filter with a = 0.5. (c) uses
a Gaussian filter with σ = 0.5. (d) uses a Gaussian filter with σ = 1.5.
(e) uses the bilinear filter. (f) are the curves of b(N,m) with mN fixed.
The corresponding mN ’s are labelled at the tails of the curves. The
filter used is the same as that in (a)

However, one should be cautious that strictly speaking
the D in (3) should be estimated from real cameras. Fortu-
nately, we have found that our lower bound does not seem
to be very sensitive to the choice of D. We have tried the
bilinear filter, Gaussian filters (with the variance varying
from 0.52 to 1.52) and bicubic filters (with the parameter
a varying from −1 to 0.5, see (16)), and have found that the
lower bounds are fairly close to each other. The curves in
Figs. 2(a)–(e) testify to this observation. Moreover, what we
have observed in the last paragraph is still true.

When training learning-based SR algorithms, one usu-
ally collects HRIs and downsamples them to LRIs. So it
is also helpful to draw the curves by fixing mN instead.
The same phenomenon mentioned above can also be ob-
served (Fig. 2(f)). And the curves of b

(2)
mN(m) = b(N,m)

by fixing mN also coincide well with those of b
(1)
N (m)

(please compare Figs. 2(a) and (f)), implying that b(N,m)

is also independent of the size of HRIs. This can be eas-
ily proved: if b(N,m) = c(m) for some function c, then
b

(2)
mN(m) = b(N,m) = b

(1)
N (m) = c(m).

Testing Theorem 3.1 We run the SR algorithm by Sun et
al. (2003) on over 50,000 16 × 16 LRIs that are downsam-

pled from 48 × 48 HRIs and that by Freeman and Pasztor
(1999) on over 40,000 12 × 12 LRIs that are also down-
sampled from 48 × 48 HRIs. Both algorithms are designed
for general images and they work at magnification factors
of 3.0 and 4.0, respectively. A few sample results are shown
in Fig. 3. The expected risks of Sun et al.’s algorithm and
Freeman and Pasztor’s are about 11.1 and 12.6, respectively,
which are both above our curves (Fig. 2(a)). Therefore, these
results are consistent with Theorem 3.1.

Estimating the Limits With the curves of b(N,m), we can
find the limits of learning-based algorithms by choosing an
appropriate threshold T (see Sect. 3.5). Unfortunately, there
does not seem to exist a benchmark threshold. So a practi-
tioner may choose a threshold that he/she deems appropri-
ate and then estimate the limits on his/her own. For exam-
ple, from the SR results of Sun et al.’s algorithm (Sun et al.
2003) (Fig. 3), we see that the fine details are already miss-
ing. Therefore, we deem that the estimated risk 11.1 of their
algorithm is a large enough threshold. Using T = 11.1 we
can expect that the limit of learning-based SR algorithms for
general natural images is roughly 10 (Fig. 2(a)). This limit
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Fig. 3 Part of the SR results using Sun et al.’s algorithm (Sun et al.
2003) (the magnification factor is 3.0) and Freeman and Pasztor’s al-
gorithm (Freeman and Pasztor 1999) (the magnification factor is 4.0).
In each group of images, the top left one is the LRI of 16 × 16, inter-
polated to 48 × 48 using bicubic interpolation. The middle left one is

the SR result by Sun et al.’s algorithm. The top right one is the LRI
of 12 × 12, interpolated to 48 × 48 using bicubic interpolation. The
middle right one is the SR result by Freeman and Pasztor’s algorithm.
At the bottom is the ground truth HRI

is a bit loose but it can be enhanced when the noise in LRIs
(see Sect. 6) is considered.

Testing Theorem 4.1 Finally, we present an experiment to
test Theorem 4.1. We sample over 1.5 million 8 × 8 images
and set m = 2 (hence N = 4). Figure 4 shows the curve of
predicted sufficient number of samples using the most up-
dated variance and mean of HRIs, where p and ε are chosen
as described at the end of Sect. 4.2. We see that the estimated
b(4,2) already becomes stable even the number of samples
is still smaller than the predicted number. There is still small
fluctuation in b(4,2) when M > M̂(p, ε) because we allow
the deviation from the true value to be within 0.25 at above
99% certainty. Therefore, this result is consistent with The-
orem 4.1.

6 Discussion on the Noise

In the above analysis, noise is neglected. To take noise into
account, g̃(m) should be changed to

g̃′(m) =
∫

h,n
‖h − s (Dh + n)‖2 ph,n

((
h
n

))
dhdn,

where ph,n is the joint probability density functions of the
HRIs and the noise. Note that here the noise comes from two
sources. One is the “real” noise in the LRIs. The other is the
“virtual” noise that results from the inaccuracy of modeling
the relationship between the LRIs and the HRIs with a single
identical downsampling matrix D (see Sect. 3.2).

When noise is considered, by assuming the independency
between the HRIs and the noise, (4) is changed to

Fig. 4 The evolution of b̂(4,2) w.r.t. the number M of HRI samples.
The dashed curve is the log of the estimated sufficient samples using
the currently available covariance matrix and mean. The dotted line is
used to identify when the estimated number of samples is enough. The
solid curve at the bottom is the estimated b(4,2) using M samples. The
horizontal axis is in log scale

b̃′(N,m) = 1

4
tr
[
(I − UD)�(I − UD)t

]

+ 1

4
tr
(
U�nUt

)

+ 1

4

∥
∥(I − UD)h̄ − Un̄

∥
∥2

, (17)

where �n and n̄ are the variance matrix and the mean of
the noise, respectively. We omit the details as the proof is
analogous. As b̃′(N,m) > b̃(N,m), a better estimate on the
limit of LBAs is expected.
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Unfortunately, according to our knowledge currently
there is no good noise model for natural images for our pur-
pose. And estimating the statistical property of the noise by
sampling is a very difficult problem: different images can
have different types and levels of noise. Things are even
more complicated when the virtual noise is also considered.
So currently we are still unable to performance experiments
where noise is involved.

7 Conclusions and Future Work

This paper presents the first attempt to analyze the limits
of learning-based SR algorithms. We have proven a closed
form lower bound of the expected risk of SR algorithms.
We also sample real images to estimate the lower bound. Fi-
nally, we prove the formula that gives the sufficient number
of HRIs to be sampled in order to ensure the accuracy of the
estimate.

We have also observed from experiments that the lower
bound b(N,m) may be dependent on m only and the growth
rate of b(N,m) may be (m − 1)1/2. These are important ob-
servations, implying that one may more conveniently com-
pute with small sized images and at small magnification fac-
tors and then predict the limits. This would save much com-
putation and memory. We hope to prove this conjecture in
the future.

As no authoritative threshold T is currently available,
our estimated limit (roughly 10 times) of learning-based
SR algorithms for general natural images is not convincing
enough. We are investigating how to propose an objective
threshold and how to effectively sample the statistics of the
noise in (17) to produce a tighter limit.

Also, we will investigate the limits of learning-based SR
algorithms under more specific scenarios, e.g., for face hal-
lucination and text SR. We expect that more specific prior
knowledge of the HRI distribution will be required.

Appendix

Proposition 8.1 Q exists.

Proof Suppose the SVD of U is: U = O1
(

�
0

)
Ot

2, where
� is a non-degenerate square matrix. Then all the solu-
tions to XU = 0 can be written as: X = O2(0 Y)Ot

1, where
Y is any matrix of proper size. On the other hand, from
DU = I we know that there exists some Y0 such that D =
O2(�

−1 Y0)Ot
1. Therefore,

( D
Q

) = O2
(

�−1 Y0
0 Y

)
Ot

1. When Y

is of full-rank,
( D

Q

)
is a non-degenerate square matrix. �

Proposition 8.2 Equation (9) is true.

Proof The optimal high frequency function given in (7) is
inconvenient for estimating a lower bound for g̃(N,m), be-
cause we do not know V and p̃y (y|x) therein. To overcome
this, we assume that the probability density of HRIs is pro-
vided by the mixture of Gaussians (MoGs):

ph(h) =
K∑

k=1

αkGh;k(h),

where αk > 0,
∑K

k=1 αk = 1, and Gh;k(h) = G(h;hk,�k)

is the Gaussian with mean hk and variance �k . Note that
the above MoGs approximation may not give an exact
ph(h). However, as every L2 function can be approxi-
mated by MoGs at an arbitrary accuracy (in the sense of
L2 norm) (Wilson 2000), and h − s(Dh) must be bounded
(e.g., every dimension is between −255 and 255), when the
MoGs approximation is sufficiently accurate, we will give a
sufficiently accurate estimate of g̃(N,m). Therefore, in or-
der not to introduce new notations, we simply write ph(h) as
MoGs in our proof. More importantly, as we will see, MoGs
actually serve as a bridge to pave our proving process. Our
final results do not involve any parameters from MoGs, as
shown in Theorem 3.1. If one wishes, a limit can be carried
on throughout the proof to make everything rigorous.

Writing in MoGs, we have

px,y

((
x
y

))
=

K∑

k=1

αkGx,y;k
((

x
y

))
,

px(x) =
K∑

k=1

αkGx;k(x),

p̃y (y|x) =
∑K

k=1 αkGx;k(x)G̃y;k (y|x)
∑K

k=1 αkGx;k(x)
,

where Gx,y;k
(( x

y
))

is the Gaussian corresponding to Gh;k(h)

after the variable transform, Gx;k(x) is the marginal distrib-
ution of Gx,y;k

(( x
y
))

and

G̃y;k(y|x) = Gx,y;k
(( x

y
))

Gx;k(x)

is the conditional distribution. As we will not use the ex-
act formulation of Gx,y;k

(( x
y
))

, Gx;k(x) and G̃y;k(y|x), we
omit their details.

Now φopt(x; p̃y) can be written as

φopt(x; p̃y) =
∑K

k=1 αkGx;k(x)V
∫

y yG̃y;k (y|x)dy
∑K

k=1 αkGx;k(x)

=
∑K

k=1 αkGx;k(x)φopt(x; G̃y;k)
∑K

k=1 αkGx;k(x)
, (18)
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where

φopt(x; G̃y;k) = V
∫

y
yG̃y;k (y|x)dy.

Next, we highlight two properties of general natural im-
ages, which will be used in our argument:

1. The prior distribution ph(h) is not concentrated around
several HRIs and the marginal distribution px(x) is not
concentrated around several LRIs either. Noticing that
general natural images cannot be classified into a small
number of categories will testify to this. This property
implies that the number K of Gaussians to approximate
ph(h) is not too small, and for every x, φopt(x; G̃y;k),
k = 1, . . . ,K , are most likely quite different from each
other.

2. Smoother LRIs have higher probability. This property is
actually called the “smoothness prior” that is widely used
for regularization, e.g., when doing reconstruction-based
SR. An ideal mathematical formulation of this property
is: px(x) ∼ exp(− 1

2β‖∇x‖2) for some β > 0 (Srivastava
et al. 2003).

Now we utilize the above two properties to argue for (9).
We first estimate a reasonable coefficient μ, such that most
likely the following inequality holds:

∥∥φopt
(
x; p̃y

)∥∥2 ≤ μ ·
∑K

k=1 αkGx;k(x)‖φopt(x; G̃y;k)‖2

∑K
k=1 αkGx;k(x)

,

∀x such that
K∑

k=1

αkGx;k(x) �= 0. (19)

Equation (18) shows that φopt(x; p̃y) is a convex combi-
nation of φopt(x; G̃y;k), k = 1, . . . ,K . Due to the convexity

of the squared vector norm, by Jensen’s inequality (Shiryaev
1995), we have that μ ≤ 1 is always true, where μ = 1 holds
only when φopt(x; G̃y;k), k = 1, . . . ,K , are identical. This
will not happen due to the first property of general natural
images. Another extreme case is μ = 0. This happens only
when φopt(x; p̃y) = 0. This will not happen either as this im-
plies that the simple interpolation sopt(x) = Ux produces the
optimal HRI.

Therefore, for general natural images μ can be close to
neither 0 nor 1. We also notice that the strong convexity
of the squared norm (thinking in 1D, there is large vertical
gap between the curve y = x2 and the line segment link-
ing (x1, x

2
1) and (x2, x

2
2) when x1 and x2 is not close to

each other) implies that the scattering of φopt(x; G̃y;k), k =
1, . . . ,K , will make ‖φopt(x; p̃y)‖2 far below the weighted
squared norms of φopt(x; G̃y;k), k = 1, . . . ,K . This implies
that although μ could be a random number between 0 and 1,
it should nevertheless strongly bias towards 0, i.e., the prob-
ability of 0 < μ ≤ 0.5 should be much larger than that of
0.5 < μ < 1. For those x whose μ is closer to 1, their corre-
sponding φopt(x; G̃y;k), k = 1, . . . ,K , should be quite clut-
tered, implying that there is not much choice of adding dif-
ferent high frequency to recover different HRIs. This more
likely happens when x itself is highly textured so that the
high frequency is already constrained by the context of the
image. Then by the second property of general natural im-
ages, such LRIs x have smaller probability than those requir-
ing smaller μ.

Summing up the bias of μ and px(x) = ∑K
k=1 αkGx;k(x),

we deem that the value 3/4 is sufficient for μ.5 To further
safeguard the upper bound for ‖φopt(x; p̃y)‖2 and obtain a
concise mathematical formulation in Theorem 3.1, we add
an extra nonnegative term to the right hand side of (19), i.e.,

∥∥φopt

(
x; p̃y

)∥∥2 ≤ 3

4

∑K
k=1 αkGx;k(x)(‖φopt (x; G̃y;k)‖2 + ∫

y ‖Vy − φopt (x; G̃y;k)‖2G̃y;k(y|x)dy)
∑K

k=1 αkGx;k(x)

= 3

4

∑K
k=1 αkGx;k(x)

∫
y ‖Vy‖2 G̃y;k(y|x)dy

∑K
k=1 αkGx;k(x)

= 3

4

∫
y ‖Vy‖2px,y

(( x
y
))

dy

px(x)
.

This proves (9). �

Proposition 8.3 Equation (11) is true.

5Actually, we believe that 1/2 already suffices due to the strong bias
resulting from the convexity of the squared norm. Here we choose a
larger value of 3/4 for additional guarantee.
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Proposition 8.4 Equation (12) is true.
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Proposition 8.5 Equation (13) is true.
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