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In this article, we propose techniques for modeling and rendering of heterogeneous translucent materials that enable acquisition from measured samples,

interactive editing of material attributes, and real-time rendering. The materials are assumed to be optically dense such that multiple scattering can be

approximated by a diffusion process described by the diffusion equation. For modeling heterogeneous materials, we present the inverse diffusion algorithm for

acquiring material properties from appearance measurements. This modeling algorithm incorporates a regularizer to handle the ill-conditioning of the inverse

problem, an adjoint method to dramatically reduce the computational cost, and a hierarchical GPU implementation for further speedup. To render an object

with known material properties, we present the polygrid diffusion algorithm, which solves the diffusion equation with a boundary condition defined by the

given illumination environment. This rendering technique is based on representation of an object by a polygrid, a grid with regular connectivity and an irregular

shape, which facilitates solution of the diffusion equation in arbitrary volumes. Because of the regular connectivity, our rendering algorithm can be implemented

on the GPU for real-time performance. We demonstrate our techniques by capturing materials from physical samples and performing real-time rendering and

editing with these materials.
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1. INTRODUCTION

Many materials in the real world exhibit a complex appearance
that arises from subsurface scattering of light. For heterogeneous
translucent objects, the light transport within the material volume is
determined by its geometry, the optical properties of its constituent
elements, and the spatial distribution of these elements in the vol-
ume. Because of the complex effects of these various factors on sub-
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surface scattering, models of these materials have been challenging
to acquire from real objects and to render in real time. Furthermore,
computational costs and/or modeling deficiencies have made inter-
active editing of material properties a difficult problem.

One approach for generating subsurface scattering effects is to
acquire and utilize a bidirectional scattering surface reflectance
distribution function (BSSRDF) [Nicodemus et al. 1977] that de-
scribes the subsurface transfer of light between two surface points.
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Various methods have been presented for recovering the BSSRDF
of a translucent object from images captured under sampled light-
ing conditions and viewpoints [Goesele et al. 2004; Tong et al.
2005; Peers et al. 2006]. However, in this surface-based approach,
physical material properties cannot be intuitively edited through
modifications of 4D appearance data, which itself can be trou-
blesome to manipulate. Moreover, rendering of surface appear-
ance involves an integration of BSSRDF contributions from all
points on the surface. Such global operations cannot be effectively
implemented on the GPU without precomputation from a fixed
BSSRDF.

Another approach is to construct an explicit model of scattering
coefficients throughout the material volume, and then simulate sub-
surface scattering based on physical principles. Although a material
representation can be directly modified in such a volume-based ap-
proach, scattering within heterogeneous translucent materials can-
not be rapidly computed using previous techniques [Stam 1995;
Chen et al. 2004; Li et al. 2005], thus limiting the ability to edit the
material in practice. Besides the need for offline rendering, these
methods do not provide a way to reliably acquire volumetric mate-
rial models from real world samples.

In this article, we propose techniques for modeling and render-
ing of heterogeneous translucent materials that enable acquisition
from measured samples, interactive editing of material attributes,
and real-time rendering. The material is represented as a discretized
volume in which spatially variant absorption and diffusion coeffi-
cients are associated with each volume element. We focus on mul-
tiple scattering and assume the material to be optically dense such
that subsurface scattering becomes nearly isotropic and can be well
approximated by a diffusion process [Ishimaru 1978]. This is called
the diffusion approximation. In medical imaging, the diffusion ap-
proximation has been widely used to model the multiple scatter-
ing in heterogeneous human tissues [Schweiger et al. 2003; Boas
et al. 2001]. For rendering participating media, Stam [1995] used
the diffusion approximation to model the multiple scattering in het-
erogeneous clouds, where the absorption and diffusion coefficients
can vary in the volume. For subsurface scattering, an analytic dipole
model derived from the diffusion approximation was used by Jensen
et al. [2001] for multiple scattering in homogeneous materials. In
this paper, we also address subsurface scattering, but deal with the
general case of multiple scattering in heterogeneous materials with
the diffusion approximation.

To model heterogeneous materials, we present the inverse dif-
fusion algorithm for recovering a volumetric material model from
appearance measurements by solving an inverse diffusion problem.
For a given distribution of spatially variant absorption and diffusion
coefficents, the corresponding diffusion process that generates the
material appearance can be expressed as a partial differential equa-
tion (PDE), defined over the volumetric elements, with the boundary
condition given by the lighting environment. Acquiring a volumetric
model from a material sample involves an inverse diffusion problem
in which we search for a distribution of spatially variant absorption
and diffusion coefficents such that the corresponding diffusion pro-
cess generates the material appearance that is most consistent with
the measured surface appearance in captured images. Since the im-
ages record an actual material sample, a solution to the inverse
diffusion problem certainly exists. This inverse problem, however,
is well known to be ill posed, since a range of different volumetric
models may have indistinguishable surface appearances [Arridge
and Lionheart 1998]. Consequently, the diffusion equations and im-
age measurements define a group of solutions. Since these solutions
correspond to the same visual appearance, any solution from this

group provides a valid volumetric appearance model of the given
material.

Finding a solution to the inverse diffusion problem is challenging
due to the nature of the inverse problem and the large number of
variables involved. The inverse diffusion problem is usually solved
with an iterative optimization procedure, in which each iteration
requires an expensive gradient evaluation. For a volume with el-
ements on an n3 grid, this gradient evaluation involves n3 × M
light diffusion computations, where M is the number of image mea-
surements. The inverse diffusion problem is also ill conditioned
numerically, which presents convergence problems for the iterative
solver. To ensure stable convergence, we incorporate a regularizer
on the diffusion coefficients and use an effective initialization that
assigns uniform diffusion coefficents among the voxels. We addi-
tionally employ an adjoint method [Lions 1971], widely used in
optimal control for gradient computation, to dramatically reduce
the cost of the gradient evaluation down to 2M light diffusion com-
putations. With these schemes and a GPU implementation of the
diffusion computation, we show that finding a solution of the in-
verse diffusion problem becomes feasible for volumes of moderate
size.

For rendering a volumetric model with known material properties,
we present the polygrid diffusion algorithm, which solves a diffu-
sion equation whose boundary condition is defined by the given
illumination conditions. That multiple scattering may be modeled
as a diffusion process was first observed by Stam [1995] in the
context of participating media rendering. He solved the diffusion
equation on a cubic volume using a regular grid and a finite differ-
ence method (FDM). Our rendering algorithm solves the diffusion
equation on 3D volumes of arbitrary shape using a polygrid and an
FDM. Our algorithm is centered around the polygrid representation,
which facilitates the solution of the light diffusion equation in arbi-
trary volumes. A polygrid is a grid with regular connectivity and an
irregular shape for a close geometric fit without fine sampling. The
regular connectivity allows us to develop a hierarchical GPU im-
plementation of our rendering algorithm for real-time performance.
We describe how to construct a polygrid on an arbitrary 3D object,
and present a technique for evaluating diffusion equations defined
among the irregular intervals of polygrid nodes.

With the proposed technique, models of various materials can be
readily captured and interactively transformed with adjustments of
scattering properties as shown in Figure 1. This system for flexible
use of real appearance data provides designers a valuable tool for
creating realistic objects with the visual features of heterogeneous
translucent materials. Indeed, this is the only method to date that
supports real-time rendering and editing of such volumes.

2. RELATED WORK

Subsurface scattering of light within a material has typically been
represented with models of radiative light transfer. Hanrahan and
Krueger [1993] proposed a model based on one-dimensional linear
transport theory for single scattering in layered materials. Jensen
et al. [2001] presented a practical model for subsurface scattering
in homogeneous materials based on an analytic dipole diffusion
approximation. In Donner and Jensen [2005], a shading model for-
mulated from multipole theory was proposed for light diffusion in
multilayered translucent materials. We utilize the diffusion equation
in our work, which allows for more general modeling of multiple
scattering effects in heterogeneous translucent materials.

In the following, we review related methods for acquiring sub-
surface scattering models, and rendering and editing of materials.
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Fig. 1. Synthesis of a bunny with marble material. (a) Physical sample. (b) Bunny rendered with the acquired material model. (c) After interactive editing to

add patterns. (d) After placing a pattern at a different depth.

2.1 Acquisition of Subsurface Scattering Models

Subsurface scattering models of heterogeneous materials may be
acquired directly from image appearance. Acquisition methods
have been presented for human faces [Debevec et al. 2000],
object-based models [Goesele et al. 2004], material-based models
for volumes with an even distribution of heterogeneous elements
[Tong et al. 2005], and material models for general heterogeneous
volumes [Peers et al. 2006]. These surface-based representations are
specific to the measured object or material. Although the appear-
ance of a material could potentially be modified in these models,
physical material properties cannot be edited in a meaningful way.

Models of subsurface scattering may also be acquired through
estimation of scattering parameters from a material sample. Param-
eter estimation, however, is often confounded by multiple scatter-
ing, whose appearance arises in a complex manner from a material’s
scattering properties. For homogeneous materials, multiple scatter-
ing can be approximated with analytic models [Jensen et al. 2001;
Narasimhan and Nayar 2003], which have greatly facilitated estima-
tion of scattering parameters. In Narasimhan et al. [2006], the effects
of multiple scattering are avoided by diluting participating media to
low concentrations, such that multiple scattering becomes negligible
and scattering parameters can be solved from only single scattering.
For heterogeneous, optically dense materials, multiple scattering
cannot be addressed with such simplifications. Our method is the
first to acquire volumetric models of heterogeneous materials.

Recently in medical imaging, special measurement devices based
on time- and frequency-modulated near infrared lighting have been
proposed for estimating material properties in body tissues with
multiple scattering effects [Schweiger et al. 2003; Boas et al. 2001].
This approach is showing promise in its early stage of development
[Gibson et al. 2005], but has limited application in computer graph-
ics. Although its use of infrared lighting may be well suited for tissue
penetration and categorization of volume elements into particular
tissue types, general scattering properties over the full visible spec-
trum need to be acquired for computer graphics purposes. Moreover,
existing reconstruction algorithms are computationally expensive,
and are practical only for coarse 3D volumes (e.g., 32 × 32 × 10
in Boas et al. [2001]) or for 2D slices. Unlike in medical imaging,
computer graphics applications need not recover the actual scat-
tering coefficients in a material volume, but instead need only to
obtain a material model whose appearance is consistent with image
measurements. This model must be acquired over the full visible
spectrum and with detailed material variations for high visual fi-
delity. Our work presents a technique for obtaining such volumetric
material models using conventional photographs. With our efficient

inverse diffusion algorithm, we can successfully acquire 3D material
models with a high level of detail.

2.2 Material Rendering and Editing

For rendering of BSSRDF models of subsurface scattering, several
hierarchical schemes [Jensen and Buhler 2002; Carr et al. 2003]
have been proposed to facilitate integration of BSSRDF contribu-
tions from all points on the surface. Since these hierarchical data
structures need to be precomputed before rendering, they cannot be
used in material editing. Mertens et al. [2003] proposed a hierarchi-
cal scheme that supports real-time updates, but since this method is
based on the dipole diffusion model, it can be used only for render-
ing homogeneous materials. In Lensch et al. [2003], local subsur-
face scattering is computed by a local image filter, while the global
scattering is determined from vertex-vertex transport. Although this
method can provide interactive rendering speed, precomputation of
the local filter and global transport makes this approach unsuitable
for material editing.

Subsurface scattering has been simulated for volumetric material
models using Monte Carlo methods [Dorsey et al. 1999; Pharr and
Hanrahan 2000] and photon tracing [Jensen and Christensen 1998],
but at a considerable expense in computation. Real-time rendering
can be achieved through precomputation of light transport [Hao and
Varshney 2004; Wang et al. 2005]. However, light transport quanti-
ties that have been precomputed with respect to a given volumetric
model are no longer valid after material editing.

For radiance transfer modeled as a diffusion process, the set of
PDE equations may be numerically solved to determine material ap-
pearance. Multigrid schemes and simplified volume representations
have been employed to facilitate rendering of participating media
in Stam [1995]. Haber et al. [2005] used embedded boundary dis-
cretization to solve for light diffusion in object volumes of arbitrary
shape, though not in real time. A finite element method (FEM) could
also be used in computing light diffusion within an arbitrary object.
However, FEMs require decomposition of the object into tetrahe-
dra, whose irregular connectivity makes GPU implementation dif-
ficult. In our proposed approach, real-time evaluation of diffusion
is achieved with a polygrid representation of the object volume and
an adaptive hierarchical scheme for diffusion computation that has
an efficient implementation on the GPU.

3. OVERVIEW

Figure 2 presents an overview of our approach. We denote the object
interior as volume V and the object surface as A. The outgoing
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Fig. 2. Overview. (a) Rendering with forward diffusion, from the volumet-

ric material properties (κ(x) and μ(x)) and illumination setting (Li ) to the

outgoing radiance (Lo). (b) Model acquisition with inverse diffusion, from

a set of illumination conditions (Li ) and measured outgoing radiances (Lo)

to the volumetric material properties (κ(x) and μ(x)).

radiance L(xo, ωo) at a surface point xo in direction ωo may be
computed by integrating the incoming radiance L(xi , ωi ) from all
incident directions ωi and points xi on surface A:

Lo(xo, ωo) =
∫

A

∫
�

S(xi , ωi , xo, ωo)Li (xi , ωi )(n · ωi )dωi dA(xi ),

where n is the surface normal at xi and S(xi , ωi , xo, ωo) is the
BSSRDF. The outgoing radiance can be divided into single- and
multiple-scattering components:

Lo(xo, ωo) = Ls(xo, ωo) + Lm(xo, ωo).

The single-scattering component Ls(xo, ωo) accounts for light
that interacts exactly once with the medium before exiting the vol-
ume, and may be evaluated by integrating the incident radiance
along the refracted outgoing ray, as described in Equation (6) of
Jensen et al. [2001].

In our method, we focus on multiple scattering Lm(xo, ωo) that
consists of light that interacts multiple times within the object vol-
ume, which is the dominant scattering component for optically dense
materials. For highly scattering, nonemissive materials, the multiple
scattering can be approximated by a diffusion process described by
the following equation [Ishimaru 1978]:

∇ · (κ(x)∇φ(x)) − μ(x)φ(x) = 0, x ∈ V, (1)

with boundary condition defined on the object surface A [Schweiger
et al. 1995]:

φ(x) + 2Cκ(x)
∂φ(x)

∂n
= q(x), x ∈ A, (2)

where φ(x) = ∫
4π

Lo(x, ω)dω is the radiant fluence (also known
as the scalar irradiance or radiant flux), κ(x) = 1/[3(μ(x) + σ ′

s (x)]
is the diffusion coefficient, μ(x) is the absorption coefficient, and
σ ′

s (x) = σs(1 − g) is the reduced scattering coefficient with g
being the mean cosine of the scattering angle. We define C =
(1 + Fdr )/(1 − Fdr ), where Fdr is the diffuse Fresnel reflectance
that is determined by the refraction index η of the material [Jensen
et al. 2001]. The diffused incoming light at a surface point x is given
by q(x) = ∫

�
Li (x, ωi )(n · ωi )Ft (η(x), ωi )dωi , where Ft (η(x), ωi )

is the incoming Fresnel transmission term. Note that this diffu-
sion process well describes light transport between voxels of differ-

ent optical properties since the κ and μ used in Equation (1) and
Equation (2) may vary throughout the volume.

With the diffusion approximation, the multiple scattering com-
ponent of the outgoing radiance is approximated by

Lm(xo, ωo) = −C

π
Ft (η(xo), ωo)κ(xo)

∂φ(xo)

∂n
, (3)

where φ(xo) is computed from Equation (1) and Equation (2)
[Schweiger et al. 1995; Jensen et al. 2001].

Our work centers on modeling and rendering multiple scattering
in a heterogeneous material using the diffusion approximation. For
rendering an object with known μ(x) and κ(x) throughout the object
volume V , we solve the diffusion problem with a given illumination
condition q(x) on the object surface A. Once the solution φ(x) is
found, the multiple scattering component of the outgoing radiance
can be easily evaluated using Equation (3). We note that the diffusion
equation assumes scattering to be frequent enough to be considered
nearly isotropic and independent of the phase function.

In acquiring the material properties from measured appearance,
we need to compute the absorption coefficients μ(x) and dif-
fusion coefficients κ(x) based on measured outgoing radiances
{Lo,m(x, ωo) | x ∈ A, m = 1, . . . M} from the object surface
due to multiple scattering under M different illumination conditions
{Li,m(x, ωi ) | x ∈ A, m = 1, . . . M} on the object surface. For this
purpose, we solve the inverse diffusion problem to find κ(x) and
μ(x) such that the corresponding diffusion problem, which is ex-
pressed by Equation (1), Equation (2), and Equation (3), produces
the outgoing radiance {L R

o,m(x, ωo)} that is most consistent to the
measured outgoing radiance Lo,m(x, ωo) under the same illumina-
tion conditions {Li,m(x, ωi )}. The inverse diffusion problem is thus
formulated as finding the values of κ(x) and μ(x) throughout the
volume that minimize the objective function

M∑
m=1

∫
A

∫
�

(
Lo,m(x, ωo) − L R

o,m(x, ωo)
)2

dA(x) dωo. (4)

To obtain multiple scattering components from image measure-
ments, a cross-polarization approach as described in Debevec et al.
[2000] may be employed. We instead utilize an image acquisition
scheme described in Section 4.1 that minimizes the presence of
single scattering and surface reflections in the image data.

4. INVERSE DIFFUSION ALGORITHM FOR
ACQUISITION OF MATERIAL MODEL

To acquire the volumetric material model of a real object, we obtain
images of the object under different illumination conditions and
then solve the inverse problem of light diffusion on the multiple
scattering components. In solving the inverse diffusion problem,
we search for the volumetric model (μ(x), κ(x)) whose forward
diffusion solution is most consistent with the acquired images. This
procedure is described in the following subsections.

4.1 Data Capture

We use a Canon 30D digital camera with a 17–45 mm lens to record
images of a material sample that is illuminated by an Optoma DLP
projector with a 4500:1 contrast ratio. In our experiments, the ma-
terial samples are all block-shaped and represented as a regular grid
with n × m × l sample points (n ≥ m ≥ l) on the grid nodes. As
shown in Figure 3, we utilize two setups depending on the thickness
of the sample. In both setups, we position the sample so that one of
the n × m faces is perpendicular to the optical axis of the projector.
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Fig. 3. Two experimental setups used for data acquisition. (a) Backlighting

setup for thin material samples. (b) Frontlighting for thick material samples.

For thin material samples (n, m � l), the camera is placed facing
the sample from the opposite side, such that the sample is imaged
with backlighting. For thick material samples with little transmis-
sion of light through the volume, we position the camera beside the
projector as done in Peers et al. [2006]. We will refer to the side of
the sample facing the camera as the front face.

The camera and projector are calibrated prior to image acquisi-
tion. For radiometric calibration of the camera, we apply the method
of Debevec and Malik [1997]. Geometric calibration of both the
camera and projector is done with the technique in Zhang [1999],
where for the projector we project a chessboard pattern onto dif-
ferent planes. The white balance of the camera is calibrated with
respect to the projector, based on the projection of a white image
onto a Macbeth Color CheckerTM chart with known albedos. The
color chart is also used in measuring the black level of the projector.
To avoid interference effects from the projector’s color wheel, we
utilize exposure times of at least 1/30 second.

In illuminating the sample, we subdivide the face that receives
direct lighting into 4 × 4 regions, and separately project light onto
each region while capturing an image sequence of the complete
sample with a fixed aperture and variable exposure times ranging
from 1/30 to 8 seconds. Using the method in Debevec and Malik
[1997], we construct an HDR image from the image sequence for
each illumination condition. Vignetting effects from the projector
are minimized by illuminating the sample using only the center of
the projector images. This capture process typically takes about half
an hour.

With this capture process, we obtain images of multiple scattering
data. In the thin-sample setup, the back-lighting is assumed to scatter
multiple times before exiting from the front face, such that captured
images contain only multiple scattering. In the setup for thick sam-
ples, we utilize image data only from surface points that are not di-
rectly illuminated by the projector. The appearance of these points is
considered to result only from multiple scattering. Since the projec-
tor and camera are aligned perpendicularly to the material sample in
both configurations, we can disregard the Fresnel transmittance ef-
fects on the measured multiple scattering, and drop the dependence
on ωo in Equation (4). For all examples in this paper, we follow
[Jensen et al. 2001; Tong et al. 2005] and assume that the refraction
index of all materials η is 1.3. For Equation (2) and Equation (3),
this value of η is used to derive the constant C = 2.1489.

Table I. Conjugate Gradient Algorithm for Minimizing fM

Set initial material properties: �κ0, �μ0

Set initial search direction: �d0 = −�z(κ0, μ0) and �p0 = �d0

Repeat following steps until fM < ε

Compute gradient �z(κt , μt ) =
(

d fM (�κ,�μ)
dκ(x) ,

d fM (�κ,�μ)
dμ(x)

)
Set pt = −�z(κt , μt )

Update search direction �dt = �pt + β · �dt−1, β = max(
�pT

t (�pt −�pt−1)

�pT
t−1 �pt−1

, 0)

Golden section search λ′ by min
λ′ [ fM ((�κt , �μt ) + λ′ �dt )]

Update solution (�κt+1, �μt+1) = (�κt , �μt ) + λ′ �dt

4.2 Volumetric Model Acquisition

For each captured image and corresponding lighting condition, we
map onto each grid node on the front and back faces its incoming
light intensity and measured outgoing radiance. The material model
is then acquired by solving for the scattering parameters (κ and μ) of
each node in the volume that would result in image appearances most
consistent with the measured data. With the M measured images of
the material sample, we thus aim to minimize the following objective
function:

fM (�κ, �μ) =
M∑

m=1

fm(�κ, �μ) + λ
∑
x∈V

‖∇κ(x)‖2,

where fm(�κ, �μ) = ∑
x∈A (Lo,m(x) − L R

o,m(x))2 measures the con-
sistency between the measured outgoing radiance Lo,m(x) from all
front face points x and the outgoing radiance L R

o,m(x) that is com-
puted from the estimated scattering parameters with the illumination
condition of image m. Note that in fm we drop the dependence on ωo

that is present in Equation (4) because of our imaging configuration.
The vectors �κ and �μ represent the set of diffusion and absorption
coefficients defined over all the grid nodes. Since model acquisition
is ill-conditioned with respect to κ , we add a regularization term∑

x∈V ‖∇κ(x)‖2 to the objective function, weighted by a constant λ
set to 1e − 5 in our implementation.

To minimize fM , we employ the conjugate gradient algorithm out-
lined in Table I. From an initialization of �κ and �μ, we first compute
the gradient of fM with respect to (�κ, �μ) over the set of measured
images. The search direction is then updated with the Polak-Ribiere
method [Press et al. 1992]. Subsequently, we perform a golden sec-
tion search to find the optimal step length λ′ along the search direc-
tion. Finally, we update �κ and �μ using the computed gradient �z(κ, μ)
and λ′. These steps are iterated to update �κ and �μ until the objective
function falls below a threshold set to ε = 10−4 × ∑

x∈A[Lo,m(x)]2

in our implementation. This optimization is performed separately
on the RGB channels.

To initialize the scattering parameters in this optimization, we
solve for the volumetric material model under the assumption that it
is homogeneous: that is, all the grid nodes have the same μ, κ . Since
there exist only two unknowns in this case, they can be quickly com-
puted using the conjugate gradient procedure with user-specified
initial values.

A key step in conjugate gradient optimization is the computation
of the fM gradient relative to the unknown κ and μ values at each
grid node. Since the diffusion equation has no analytic solution,
we compute the gradients numerically. A straightforward approach
for gradient computation is to perturb each of the variables and
obtain the resultant change in objective function value. One for-
ward diffusion simulation would then be necessary to compute each
gradient. Although this method is feasible for a system with few
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parameters (e.g., a homogeneous volume), it is impractical for ar-
bitrary heterogeneous volumes which have a large number of un-
knowns. Specifically, model acquisition for an n × m × l grid with
M measurements would require 2×n×m×l×M forward diffusion
simulations for each iteration, clearly a prohibitive expense.

4.3 Adjoint Method for Gradient Computation

To significantly expedite gradient computation, we take advantage
of the adjoint method [Giles and Pierce 1999], a technique that has
been widely used in optimal control [Lions 1971]. We describe here
how to directly use the adjoint method in our application, and give
derivation details in Appendix A.

To use the adjoint method in our solution, we first define the
adjoint equation of the original diffusion equation as

∇ · (κ(x)∇ϕ(x)) − μ(x)ϕ(x) = 0, x ∈ V, (5)

with boundary condition defined on the surface A:

ϕ(x) + 2Cκ(x)
∂ϕ(x)

∂n
= 2C

π

(
Lo,m(x) − L R

o,m(x)
)
, x ∈ A, (6)

where (Lo,m(x) − L R
o,m(x)) is the difference between the measured

outgoing radiance Lo,m(x) from all frontal sample points x and the
outgoing radiance L R

o,m(x) that is computed from the diffusion equa-
tion with the illumination condition qm of image m. Given ϕ, the gra-
dient of fM with respect to κ and μ at each grid point is computed by

d fM (�κ, �μ)
/

dκ(x) =
M∑

m=1

∇ϕm(x) · ∇φm(x) − 2λ�κ(x),

d fM (�κ, �μ)
/

dμ(x) =
M∑

m=1

ϕm(x)φm(x),

(7)

where φm(x) is determined from the diffusion equation with the
illumination condition qm of image m.

In contrast to the original diffusion equation, the adjoint method
utilizes “virtual” illumination to define the boundary condition. This
virtual illumination (2C/π )(Lo,m(x)−L R

o,m(x)), which may be nega-
tive, and φ are computed from the diffusion equation using the actual
illumination condition. With the virtual illumination, we solve the
adjoint equation for ϕ, and then determine the gradient of fM relative
to κ and μ using Equation (7). Using the adjoint method, only 2M
forward diffusion simulations are needed for gradient computation.
Because of its computational efficiency, the adjoint method has also
been used in McNamara et al. [2004] for gradient computation in
fluid control.

4.4 GPU-Based Diffusion Computation

In model acquisition, forward diffusion simulations are used not
only in gradient computation, but also for evaluating the objective
function in the golden section search. To solve the diffusion equation
on a 3D regular grid, we discretize the diffusion equation as a set of
linear equations over the grid nodes using the FDM scheme in Stam
[1995]:

6∑
j=1

1

h2
κ(v j )φ(v j ) − 6

h2
κ(vi )φ(vi ) − u(vi )φ(vi ) = 0,

φ(v′
i ) + 2Cκ(v′

i )
φ(v′

i )−φ(v′
j )

h = q(v′
i ),

(8)

where v j denotes one of six nodes directly connected to interior
node vi . h represents the distance between two neighboring nodes.
q(v′

i ) denotes the incoming radiance at boundary node v′
i . And v′

j is
the closest interior node to v′

i along the inward normal direction.
This linear system can be numerically solved using the relaxation

scheme described in Stam [1995], which involves considerable com-
putation and is the bottleneck in model acquisition. For efficient
processing, we present a GPU-based multiresolution scheme that
simulates forward diffusion in the pixel shader on grid values of κ ,
μ, and q packed into separate 2D textures. This GPU-based method
can be regarded as a regular-grid version of the rendering algorithm
in Section 5, where we provide further details.

In solving the diffusion equation on the GPU, we upload all the
relevant data from main memory to texture memory, and then out-
put the radiant fluence results from the frame buffer back to main
memory. The remaining optimization computations are all executed
on the CPU. Despite some overhead for data transfer, an apprecia-
ble overall reduction in computation costs is obtained through GPU
acceleration.

5. POLYGRID DIFFUSION ALGORITHM FOR
RENDERING AND EDITING

After acquiring a material model from a real sample, a volume of
arbitrary shape can be formed with this material using the mapping
techniques described in Chen et al. [2004] and Porumbescu et al.
[2005]. These approaches map the material properties into a shell
layer at the object surface, and construct the inner core volume by
synthesizing a user specified material texture or interpolating from
the inner boundary of the shell layer using mean value coordinates
[Ju et al. 2005].

With a given lighting condition and the material properties defined
throughout the object volume, the subsurface scattering effects from
the object can be rendered in a three-pass process. In the first pass,
we compute the incoming radiance on the object surface, based on
shadow map visibility for directional or point lighting, or from pre-
computed radiance transfer techniques [Sloan et al. 2002; Ng et al.
2003] for environment lighting. In the second pass, we render the
multiple scattering effects by simulating light diffusion inside the
object volume with the incident radiance on the surface as the bound-
ary condition. Then, a single scattering term and surface specular re-
flections from the incoming illumination is computed. The final ren-
dering result is obtained by adding all of these components together.

To efficiently solve for light diffusion on the GPU, we extend
the FDM scheme on regular volumetric grids to handle a polygrid
defined in the object volume. A polygrid is a grid with regular 6-
connections among evenly distributed nodes inside the volume, and
with boundary nodes that are aligned to the object surface and are
each connected to one interior node along the inward normal di-
rection. With the polygrid representation of the object volume, we
discretize the light diffusion equation and its boundary condition
into a system of linear equations:

6∑
j=1

w j iκ(v j )φ(v j ) −
(

6∑
j=1

w j i

)
κ(vi )φ(vi ) − u(vi )φ(vi ) = 0,

φ(v′
i ) + 2Cκ(v′

i )
φ(v′

i ) − φ(v′
j )

d ji
= q(v′

i ),

(9)

where v j denotes one of six nodes directly connected to interior
node vi with a weight w j i for the Laplacian operator, as described
in Appendix B. d ji represents the distance between a boundary node
v′

i and the closest interior node v′
j along the inward normal direction,

and q(v′
i ) denotes the incoming radiance at surface node v′

i .
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Fig. 4. A 2D illustration of polygrid construction. (a) Creating a polycube that approximates the object. (b) Generating a grid in the polycube. (c) Modifying

the corner nodes. (d) Projecting boundary nodes to the object surface. (e) Mapping nodes connected to boundary nodes to the object volume. (f) Computing

the final polygrid in the object volume. (g) and (h) are two schemes used to modify irregular corner nodes on 2D slices of the grid.

In the remainder of this section, we describe how to construct the
polygrid of an object volume and how to solve the diffusion equation
on the GPU. We also present a hierarchical scheme for accelerating
GPU evaluation of light diffusion on a polygrid.

5.1 Polygrid Construction

The steps in constructing a polygrid model of the object volume
are shown in Figure 4. We first manually assemble a polycube
[Tarini et al. 2004] of similar topology that approximates the vol-
ume. Within the cubes, we form regular grids of equal resolution,
and connect the grids between adjacent cubes. The interior nodes
directly linked to boundary nodes on the edges or corners of the cube
have connectivity to multiple boundary nodes, which may lead to
artifacts in the light diffusion computation. We address this prob-
lem by removing certain nodes and adjusting the links to obtain
single connections to boundary nodes. As shown in Figures 4 (g)
and (h), we examine axis-aligned 2D slices of the grid and utilize
different grid adjustment schemes depending on the grid convex-
ity in each slice. This procedure yields a polygrid defined in the
polycube.

We then map this polygrid to the object volume. To find a map-
ping, we first determine a projection of the polycube surface onto
the object surface, using a PolyCube-Map [Tarini et al. 2004] or
other mesh cross-parameterization method [Kraevoy and Sheffer
2004; Schreiner et al. 2004]. The boundary nodes of the polygrid

are then mapped to the object surface and adjusted to obtain an
even distribution [Turk 1992]. After that, the interior nodes directly
connected to the boundary nodes are placed within the object vol-
ume at a distance d along the inward normal directions, where d is
one-tenth the average distance between connected boundary nodes
on the object surface. The close placement of these nodes to the
boundary nodes is intended for accurate handling of the boundary
condition. The remaining interior nodes are then positioned within
the volume in a manner that minimizes the variance of distances
between connected nodes: min

∑
i ∈ interior Var({‖vi − v j‖ : j () i}),

where Var(·) denotes the variance of a set of scalars, vi is the 3D
position of node i , and j () i indicates that node j is connected
to node i . Figure 4 illustrates this construction procedure in 2D.
In principle, a conformal mapping [Gu and Yau 2003] should be
used to preserve the orthogonality of the original grid connections
and minimize distortion (see Appendix B). However, this remains
a challenging problem for 3D volumes, so in practice we utilize the
presented variance minimization scheme which we have found to
yield acceptable solutions.

This construction scheme maintains the regular connectivity of
nodes and produces locally uniform distributions of interior grid
nodes in the object volume. As exemplified in Figure 5, all the inte-
rior grid nodes of the polygrid are 6-connected, and each boundary
node is connected to exactly one interior node. The connectivity
between the boundary grid nodes is not used in rendering and can
be ignored in the diffusion computation.
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Fig. 5. The polygrid constructed in a 3D model.

Packed 2D TexturePolygrid

z

y
x

Fig. 6. Flattening a polygrid into a packed 2D texture.

5.2 GPU-Based Polygrid Diffusion Computation

With the constructed polygrid, we build a system of linear equations
for light diffusion. The material properties for each grid node are
sampled from the object volume, and the incoming illumination is
computed for boundary nodes. Although a general purpose GPU-
based linear system solver could be used for computation [Krüger
and Westermann 2003; Bolz et al. 2003], we have designed a more
efficient GPU implementation that is specific to diffusion computa-
tion on a polygrid.

In this method, the polygrid material parameters are packed into a
set of 2D textures for computation on the GPU. For efficient render-
ing, the textures must be packed such that the connected neighbors
of each node are easily accessible. Towards this end, we organize
each texture according to the positions of the polygrid nodes within
the original polycube. We traverse the cubes in the polycube in scan-
line order, and flatten the grid of each cube as shown in Figure 6.
The grid in each cube is divided into 2D x-y slices, which are each
treated as a texture block and ordered in the texture by increasing z
value. In packing the texture, we retain the empty positions of grid
nodes that were previously removed, so that the cubes have slices
of equal size. Two 2D textures Tκ and Tμ are created for the cor-
responding scattering parameters, and for the iterative computation
we maintain two swap radiance buffers IA and IB that are organized
in the same manner as Tκ and Tμ. In addition, we precompute the six
weights for the Laplacian operator, then similarly pack this data into
two textures Tw1 and Tw2. The incoming radiance is also packed into
a 2D texture Tl according to an access order that will be described
later.

After texture packing, we solve the diffusion equations on the
polygrid using the relaxation scheme in Stam [1995]. Starting from
the initial radiant fluence values φ0, we iteratively update the ra-
diant fluence values in the two radiance buffers until convergence.
With the radiant fluence at each node corresponding to one pixel in

the radiance buffer, this computation can be executed in the pixel
shader with parameters accessed from the textures. To reduce texture
fetches in the pixel shader, we store φ′ = κφ in the radiance buffer.
In each step, the radiant fluence values are updated as follows:

φ′
n+1(vi ) =

∑
1≤ j≤6

w j i (vi )φ
′
n(v j )

μ(vi )/κ(vi ) + ∑
1≤ j≤6

w j i (vi )
,

φ′
n+1(v′

i ) = q(v′
i )κ(v′

i )κ(v′
j )d + 2Cκ2(v′

i )φ
′
n(v′

j )

κ(v′
j )d + 2Cκ(v′

i )κ(v′
j )

,

where right-hand-side operators of the form f (·) involve a texture
access, and the radiance buffer for φ′

n is used as the texture while
the other radiance buffer is used as the rendering target for φ′

n+1.
As shown in Figure 7, there exist three types of nodes/pixels in the

radiance buffer, each with different texture access patterns for reach-
ing connected nodes. We render each type of node using a different
geometric primitive, represented by colored regions in the figure.
For a (blue) node that lies in the interior of a texture block, four of
its connected neighbors in the polygrid are also adjacent neighbors
in the 2D texture, while the other two neighbors can be found with
the same offset value in other texture blocks. We update the values
of these nodes by rendering a quadrilateral with the texture offsets of
the two nonadjacent neighbors as vertex attributes. After rasteriza-
tion, this offset information can be interpolated from the vertices to
each pixel in the quad. In a similar manner, the (green) nodes on each
texture block edge are rendered with a line, where three neighbors
are adjacent in the texture, and the texture offsets of the other three
are stored as line vertex attributes. The (red) nodes of each texture
block corner are rendered with points, with the texture offsets of
all six neighbors stored as vertex attributes. Slices that contain re-
moved nodes can also be rendered using these three primitives. All
of these geometric primitives and their vertex attributes can be pre-
computed and loaded into graphics memory before rendering. Since
the surface boundary nodes and the interior nodes are processed
differently, we render their corresponding geometric primitives in
two separate passes with different pixel shaders. After completing
this computation, we calculate the output radiance on the surface
by updating the boundary nodes in the radiance buffer as L(v′

i ) =
Ft (xo, ωo)[φ′(vi )−q(vi )κ(vi )]/[2πκ(vi )]. These boundary node val-
ues are then used as a texture for surface vertices in the final pass.

With this packing and rendering scheme, the radiant fluence val-
ues are updated with ten texture fetches for interior nodes and
five texture fetches for surface nodes. Compared to Krüger and
Westermann [2003] and Bolz et al. [2003], our scheme avoids extra
texture storage for node connectivity information and dependent tex-
ture accesses in rendering. We acknowledge that alternative schemes
for packing and rendering are possible and may be better, but we
nevertheless have obtained good performance with this method.

5.3 Hierarchical Acceleration

For greater efficiency in computing light diffusion, we employ a
hierarchical scheme to accelerate rendering with the polygrid. In
this scheme, we first construct a multiresolution polygrid in the
object volume. Starting from the original polygrid, the positions
and material properties of nodes at successively coarser levels are
determined by averaging the positions and material properties of
its eight children at the next finer level. For nodes whose children
contain removed nodes, we normalize the result by the number of
existing children. Before rendering, we pack the material properties
at each resolution and generate texture pyramids for Tκ , Tμ, Tw1,
and Tw2. Pyramids need not be generated for the radiance buffers
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Texture Blocks

Fig. 7. Geometric primitives for nodes with different texture access patterns. (a) Three types of nodes, rendered using different geometric primitives. Each

region is rendered by one primitive. (b) Geometric primitives for some texture blocks with removed nodes.

Fig. 8. A 2D illustration of the adaptive hierarchical technique used in

diffusion computation. In this scheme, we fix the values of the blue nodes

in the middle level after initialization from the coarsest level. The blue and

green nodes at the finest resolution are also fixed after initialization. Nodes

in the gray region are not used in the diffusion computation and are removed

from textures.

IA and IB , which can simply be reused for computation at each
level. During rendering, we first solve the diffusion equations at the
coarsest grid level, and then use the computed radiant fluence at
each node as initializations for its children nodes at the next finer
level. This process iterates until a solution at the original polygrid
resolution is obtained.

The hierarchical algorithm can be accelerated by employing an
adaptive scheme in which light diffusion is computed to different
resolutions at different depths in the volume. Since material vari-
ations deeper inside the object volume have more subtle effects
on surface appearance, it is sufficient to approximate light diffu-
sion at deeper nodes with coarser-resolution solutions. As shown in
Figure 8, after we obtain the solution at a coarse resolution and copy
it to a finer resolution, the radiant fluence values at nodes below a
certain depth are fixed, while the nodes closer to the boundary are
updated. In our implementation of this adaptive scheme, the com-
puted resolution at different depth levels is given by the user. Texture
blocks whose nodes are not used in computation at a given level are
removed to save on texture storage.

In our current implementation, we do not use the V-cycle multi-
grid algorithm to speed up light diffusion computation, since the
multigrid algorithm cannot easily be incorporated into our adaptive

scheme. Also, V-cycle multigrid algorithms require extra texture
storage for residual and temporary radiant fluence values in each
level. If all grid nodes are used in light diffusion, our hierarchical
solution algorithm can be regarded as a simplified N-cycle multigrid
scheme without the V-cycles for each resolution [Press et al. 1992].

A favorable property of the light diffusion algorithm is that the
coherence between frames can be exploited to facilitate rendering.
For applications in which the lighting or material changes gradually,
the rendering result of the last frame provides an excellent initial-
ization for the current frame. With good initial values, the number
of iteration steps can be significantly reduced.

5.4 Editing

With this real-time rendering system, the acquired volumetric ma-
terial model can be interactively edited with real-time feedback on
the modified appearance. To illustrate this capability, we developed
a simple editing system shown in Figure 9. In addition to painting
new values for μ(x) and κ(x), various ways to modify existing μ(x)
and κ(x) are supported. The user can directly adjust μ(x) and κ(x)
by multiplying them with or adding them to user-supplied constants.
Alternatively, the user can modulate the μ and κ values within a pat-
tern mask using a texture. With our volumetric representation, users
can also modify a material at specific depth levels. For a demon-
stration of a material editing session, please view the supplemental
video.

In our system, all editing operations are executed as pixel oper-
ations on the GPU. We maintain extra buffers T ′

κ and T ′
μ of the κ

and μ textures as rendering targets for editing. In each frame, T ′
κ

and T ′
μ are modified by user-specified operations, and then swapped

to Tκ and Tμ for rendering. To support editing operations on local
regions, we store the positions of grid nodes in a texture Tp . Then
when the user selects a region on the screen for editing, we com-
pute the screen projection of each grid node based on its position in
the editing shader, and execute the editing operations only for the
nodes within the user-specified local region. In material editing, we
do not use the adaptive scheme, but instead take advantage of the
coherence between frames to reduce rendering computation, which
allows for more complex material editing operations to be executed
on the GPU.
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Fig. 9. User interface for material editing.

6. EXPERIMENTAL RESULTS

We have implemented our material acquisition and rendering sys-
tem on a PC configured with an Intel Core2Duo 2.13GHZ CPU,
4GB memory, and a Geforce 8800GTX graphics card with 768MB
graphics memory. The GPU-based light diffusion and rendering
algorithm was implemented in the OpenGL shading language.
For the GPU-based light diffusion computation used in model ac-
quisition, we represent all parameters and computation results as
32-bit floating-point values for high precision. For light diffusion
computations on the polygrid, each channel of κ and μ is quan-
tized to 8-bits and stored together in 24-bit textures. We use 16-bit
floating-point values in rendering computations, which provides suf-
ficient precision in appearance.

6.1 Model Acquisition

Figure 10 displays the material samples used in our experiments
and the acquired κ and μ values along the surfaces of the material
volumes. For these samples, the grid resolutions, lighting configu-
rations, and computation times are listed in Table II. We set the grid
resolutions according to sample size and the material variability in
the volume, where higher resolutions are needed to preserve the rich
material variations in detailed volumes. With GPU acceleration, the
reconstruction algorithm gains a fifty-fold increase in speed over a
CPU-based implementation on the same platform. Because of the
significant surface reflection of the marble sample, we obtain an
approximate measure of its reflectance component with the front-
lighting setup and the method in Tong et al. [2005], which records
one image of the sample under uniform lighting. The diffuse surface
reflectance term is obtained by subtracting the multiple scattering
contribution from it.

In theory, the diffuse BSSRDF should be densely sampled to
ensure that the acquired material volume generates accurate sur-
face appearances for arbitrary illumination conditions. However,
because of the redundancy in BSSRDF data, we have found that
models acquired from sparsely sampled images provide good re-
sults in practice. Note that each image here corresponds to a 2D
slice of the 4D BSSRDF.

To examine the relationship between the number of measure-
ments and model quality, we applied our inverse diffusion algo-
rithm on all material samples shown in Figure 10. We subdivide
the face that receives direct lighting into n × n regions that are
each separately illuminated. For different n, we acquired n × n
images under different illumination as input to our algorithm. Nor-
malized errors were then computed as E = ∑

xi ,x j ∈A[R′
d (xi , x j ) −

Rd (xi , x j )]
2/

∑
xi ,x j ∈A[Rd (xi , x j )]

2, where Rd is the diffuse

BSSRDF captured from the original volume, and R′
d is that com-

puted from the acquired material volume. Figure 11 displays the
errors of the material models acquired from four material samples
with different numbers of measurements, n = 1, 2 . . . 8, which in-
dicates that for 16 or more images, the error is comparable to that
reported for the factorized BSSRDF representation in Peers et al.
[2006]. In our current implementation, we use 16 images under dif-
ferent illumination settings for model acquisition, which provides
faithful rendering results exemplified in Figure 12.

Figure 13 illustrates the role of regularization in optimization. The
regularization term adds a smoothness constraint to κ in solving the
nonlinear optimization of the acquisition step, while the coefficient
λ is used to adjust the effects of the regularization term in non-
linear optimization. Note that without a proper weight, the resulting
material model yields an inaccurate fit to the input data. Typically in
practice, λ is experimentally set by the user. In our implementation,
we found that 1.0e−5 works well for all samples shown in the paper.
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Fig. 10. Acquired material samples. Top row: real image of sample. Middle row: reconstructed κ along the surface. Bottom row: reconstructed μ along the

surface. The values of κ and μ are scaled for better viewing.
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Fig. 11. Model quality vs. number of measurements. Errors of BSSRDFs computed from material volumes acquired from real material samples using different

numbers of measurements.

Table II. Acquisition Settings for the Different Materials

Computation

Material Grid Resolution Illumination Time (hrs)

Wax I 130 × 53 × 37 back 2.0

Wax II 140 × 75 × 48 front 4.0

Marble 256 × 256 × 20 back 11.0

Artificial Stone 128 × 128 × 41 back 3.0

Although our approach effectively acquires a detailed appear-
ance model of subsurface scattering, it cannot determine the actual
material properties and their variations in the volume, especially
deep within the volume. This results from object appearance being
relatively insensitive to the material composition far beneath the

surface. Figures 14(a) and (b) illustrate the properties of a material
model acquired from 16 measurements of a synthetic volume. In
Figure 14(c), we compare the the BSSRDFs generated from the ac-
quired material model to the BSSRDFs rendered from the synthetic
volume. The acquired material model generates a BSSRDF that can
faithfully serve as an appearance model. On the other hand, it also
lacks the precision needed in some applications such as solid texture
mapping, where deep volumes may become exposed on the surface.

6.2 Rendering and Editing

Table III lists the polygrid resolution at the finest level, the texture
size, and rendering performance for all the examples shown in the
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Fig. 12. Comparison of acquired models to ground truth. Top row: Illumination settings. Front lighting is applied for WaxII while back lighting is used for

the other material samples. Middle row: Rendering results of volumes acquired from 16 images. Bottom row: Real images of the materials.

(a) (b) (c) (d) (e)

Fig. 13. Effect of the regularization parameter on optimization. Top row: result acquired with an over-weighted regularization term (λ = 1.0e − 4). Middle

row: result acquired with proper regularization term (λ = 1.0e − 5). Bottom row: result acquired with an under-weighted regularization term (λ = 1.0e − 6).

For each row, (a) is one of the captured images used for optimization. (b) is the image computed from the acquired model with the illumination condition of

image (a). In (c), we compare the values along the 1d scanline in (a) and (b), where the red line represents ground truth and the blue line represents computed

values. (d) and (e) show acquired κ and μ along the top surface. The values of κ and μ are scaled for better viewing.
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Fig. 14. Accuracy in material model acquisition. (a) Values of κ for the acquired material model (left) at different depth layers below the front face, and the

ground truth (right). (b) Values of μ for the acquired material model (left) at different depths, and the ground truth (right). (c) Errors of BSSRDFs computed

from acquired material model using different numbers of measurements. The material model shown in (a) and (b) is acquired from 16 measurements.

Table III. Rendering Configuration and Performance

For the rendering times, ti indicates the time for the i th rendering

pass. The final speed is measured both without frame coherence

and with frame coherence (in parentheses).

Polygrid Texture Rendering Time Final Speed

Model Resolution Size (MB) t1/t2/t3 (ms) (fps)

Bunny 253 × 16 × 16 × 16 24.9 3.9/23.2/11.5 25.9 (34.7)

Bust 17 × 32 × 32 × 32 18.9 2.5/19.9/7.0 34.0 (52.7)

Bird 108 × 24 × 24 × 24 39.6 4.0/48.3/13.0 15.3 (24.0)

Hole 36 × 12 × 12 × 12 4.8 1.5/8.9/2.1 80.0 (160.4)

Snail 81 × 12 × 12 × 12 18.9 1.6/14.0/3.1 53.4 (106.7)

paper. The polygrid resolution is the product of the number of cubes
in the polycube and the grid resolution in each cube. The polygrid
resolution is determined by the resolution of the material volume
such that each material voxel corresponds to one grid cell in the
object volume. Our experiments show that the ploygrid model works
well for materials with different scattering properties.

The texture size includes all textures used for light diffusion com-
putation. In this table, the rendering times are broken down into the
three passes, for incident light computation (t1), light diffusion (t2),
and final rendering (t3). For the overall rendering speed, the first
number reports the frame rate without frame coherence (i.e., radi-
ances initialized to zero), while the second number in parentheses
gives the speed with frame coherence. In rendering, we use the am-
bient occlusion to determine visibility for environment lighting, and
the shadow buffer for visibility of local lighting. A three-level poly-
grid with the adaptive scheme is used in the measurements for this
table. In the final rendering step, specular reflections on the surface
are computed with a user-specified Ward model, and single scatter-
ing is ignored. For the model with marble material, the measured
surface reflectance term is also added to the multiple scattering in
this step.

Figure 15 charts the convergence speed of the different render-
ing methods on the hole model. Here, the error of a result L is
computed as

∑
x∈A (L(x) − L0(x))2/

∑
x∈A L0(x)2, where L0 is the

converged result precomputed without hierarchical and adaptive ac-
celeration. A multi-resolution polygrid with three levels is used in
the hierarchical schemes. The polygrid for the hole model contains

36 cubes, and the grid resolution in each cube at the finest level
is 12 × 12 × 12. For the hierarchical method without the adaptive
scheme, we use all grid nodes in the light diffusion computation. In
the adaptive scheme, we manually specify the depth of nodes that
are involved in computing each resolution such that the final error
is less than 0.5%. It can be seen that the hierarchical scheme can
substantially improve light diffusion performance on the polygrid.
With the adaptive scheme, the computation is further accelerated
(a two-fold speedup in this case) to generate a result with an error
below a user-specified threshold.

Figure 16 compares images of a bunny model rendered with
the polygrid diffusion algorithm and the result rendered by photon
mapping. The volumetric material applied to the bunny shown in
Figures 16(a)–(d) is modeled by the user, while the volumetric ma-
terial shown in Figures 16(e) and (f) is edited from captured marble
volume. All results are rendered under directional lighting, and only
multiple scattering is considered. As shown in the figure, visually
faithful results can be generated with our method. The small dis-
crepancy on the bunny ear is caused by the distortion of the polygrid
in that area.

Figures 17 (a) and (b) show rendering results for a bust model
whose volumetric material properties are acquired from a marble
sample, and a hole model generated with acquired wax material.
Complex surface appearances from subsurface scattering and vol-
umetric material variations are well preserved with our volumetric
appearance model.

In Figure 18, a bird model is rendered with a reconstructed wax
material and an artificial stone material. Results are shown with
different viewing and lighting directions. The heterogeneity beneath
the surface is well handled in our modeling and rendering technique.

Rendering results of a bunny with different translucent materials
edited by the user are shown in Figure 19. Both the local scattering
properties of the material and their distributions are modified in
these cases. With the volumetric material model, editing of physical
attributes can be done in an intuitive manner. Additional editing
results are exhibited in Figure 1.

Finally, we display the rendering result of a snail in Figure 20.
The volumetric material properties of the snail body are designed
by an artist using our editing tool. The artist also painted the opaque
snail shell.
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Fig. 15. Convergence speed of the three schemes. The X axis represents convergence speed in terms of 100K’s of nodes that are processed.

Fig. 16. Comparison of the polygrid based diffusion algorithm to photon mapping. (a)(c)(f) Results rendered by the polygrid-based diffusion algorithm.

(b)(d)(g) Results rendered by photon mapping.
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Fig. 17. Rendering results of the bust and the hole models with materials acquired from real samples. (a)(b) The bust model rendered with marble material.

(c)(d) The hole model rendered with wax.

Fig. 18. Rendering results of a bird model with different materials. (a)(b) With wax material. (c)(d) With artificial stone material.

Fig. 19. Rendering results of a bunny model. (a) Constructed from an acquired wax material. (b–d) Edited with our system by a user.

Fig. 20. The rendering result of a snail with local lighting. The translucent material of the snail body was designed using our editing tool, while the snail shell

was modeled and rendered as an opaque surface.
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7. CONCLUSION

In this article, we proposed efficient techniques based on the
diffusion equation for modeling and rendering heterogeneous
translucent materials. A practical scheme is presented for ac-
quiring volumetric appearance models from real material sam-
ples, and for rendering the appearance effects of multiple scat-
tering in real time. With this method, a user can easily edit
translucent materials and their volumetric variations with real-time
feedback.

In rendering, the FDM scheme used in this article can be re-
garded as an approximate solution for arbitrary-shaped object vol-
umes. With this approximation, we obtain realistic rendering results
and real-time performance. For objects with fine geometric detail
or complex topology, however, the presented polygrid construc-
tion scheme may produce large distortions in some regions, which
can lead to rendering artifacts. We intend to address this issue in
future work by examining better methods for mesh and volume
parameterization.

Another problem we plan to investigate is acquisition of the single
scattering effects and phase functions of heterogeneous translucent
materials. In addition, we would like to extend our rendering algo-
rithm to real-time deformation of translucent objects.

APPENDIX

A. Adjoint Method for the Inverse

Diffusion Problem

In the following, we show the deduction of the adjoint method for
M = 1. Generalization to larger values of M is straightforward.

The adjoint function is the Lagrangian multiplier ϕ1(x) in the
following augmented objective function:

f̃1(�μ, �κ; φ1, ϕ1) = f1(μ̄, κ̄) −
∫
V

ϕ1(x) {∇ · [κ(x)∇φ1(x)]

− μ(x)φ1(x)} dV,

where f1(�μ, �κ) = ∫
A

(
Lo,1(x) − L R

o,1(x)
)2

dA + λ
∫

V ‖∇κ‖2 dV .
From the boundary condition of Equation (2) and Equation (3), we
see that L R

o,1(x) = (φ1(x) − q1(x)) /2π , where x ∈ A. The adjoint

equation is the equation for ϕ1(x) such that ∂ f̃1/∂φ1 = 0. By defini-
tion, the change in ∂ f̃ /∂φ1 for a small perturbation δφ1 of φ1 is the
linear component of the difference f̃1(�μ, �κ; φ1, ϕ1) − f̃1(�μ, �κ; φ1 +
δφ1, ϕ1). By Green’s formula and the boundary condition in
Equation (2) for φ1, we have

f̃1(μ̄, κ̄; φ1, ϕ1) =
∫
A

(
Lo,1(x) − L R

o,1(x)
)2

dA + λ

∫
V

‖∇κ‖2 dV

−
∫
V

ϕ1(x) {∇ · [κ(x)∇φ1(x)] − μ(x)φ1(x)} dV

=
∫
A

[
Lo,1(x) − 1

2π
(φ1(x) − q1(x))

]2

dA

+ λ

∫
V

‖∇κ‖2 dV

−
∫
V

φ1(x) {∇ · [κ(x)∇ϕ1(x)] − μ(x)ϕ1(x)} dV

− 1

2C

∫
A

ϕ1(x)q1(x) dA +
∫
A

[
1

2C
ϕ1(x)

+ κ(x)
∂ϕ1(x)

∂n

]
φ1(x)dA.

Therefore, we have

f̃1(μ̄, κ̄, φ1 + δφ1; ϕ1) − f̃1(μ̄, κ̄, φ1; ϕ1)

= − 1

π

∫
A

δφ1

[
Lo,1(x) − 1

2π
(φ1(x) − q1(x))

]
dA

−
∫
V

δφ1(x) {∇ · [κ(x)∇ϕ1(x)] − μ(x)ϕ1(x)} dV

+
∫
A

[
1

2C
ϕ1(x) + κ(x)

∂ϕ1(x)

∂n

]
δφ1(x) dA + O(‖δφ1‖2).

As ∂ f̃1/∂φ1 must be a zero operator, the linear component of the
above perturbation must be zero for all possible δφ1. So the adjoint
equation is

∇ · [κ(x)∇ϕ1(x)] − μ(x)ϕ1(x) = 0, x ∈ V,

ϕ1(x) + 2Cκ(x) ∂ϕ1(x)
∂n = 2C

π

[
Lo,1(x) − 1

2π
(φ1(x) − q1(x))

]
, x ∈ A.

And the gradient of the original function can be solved using the
adjoint function as

d f1
dκ

= ∂ f̃1

∂κ
= ∇ϕ1(x) · ∇φ1(x) − 2λ�κ(x),

d f1

dμ
= ∂ f̃1

∂μ
= ϕ1(x)φ1(x),

x ∈ V

with the boundary condition ∂κ/∂n = 0 for κ and ∂μ/∂n = 0 for
μ.

B. Discrete Partial Derivatives

For Forward Diffusion

To compute the gradient and Laplacian of a funtion f on a node v0

of the polygrid, we have

f (v j ) − f (v0) ≈ ∂ f

∂x
�x j + ∂ f

∂y
�y j + ∂ f

∂z
�z j

+ 1

2
· ∂2 f

∂x2
�x2

j + 1

2
· ∂2 f

∂y2
�y2

j

+ 1

2
· ∂2 f

∂z2
�z2

j + ∂2 f

∂x∂y
�x j�y j

+ ∂2 f

∂y∂z
�y j�z j + ∂2 f

∂z∂x
�z j�x j , (10)

where v j = v0 +(�x j , �y j , �z j ), j = 1, 2, . . . , 6 are the six nodes
connected to v0. For near-regular grids, if the coordinate directions
are roughly along the directions of the grids, we may assume that

for j = 1, 2, |�y j | � |�x j | and |�z j | � |�x j |;
for j = 3, 4, |�x j | � |�y j | and |�z j | � |�y j |;
for j = 5, 6, |�x j | � |�z j | and |�y j | � |�z j |.

(11)

Since ∂2 f
∂x∂y �x j�y j ≈ 0, ∂2 f

∂y∂z �y j�z j ≈ 0, and ∂2 f
∂z∂x �z j�x j ≈ 0,

∀ j , we may discard the last three terms in Equation (10). Then
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Equation (10) can be written in matrix form:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�x1 �x2
1/2 �y1 �y2

1/2 �z1 �z2
1/2

�x2 �x2
2/2 �y2 �y2

2/2 �z2 �z2
2/2

�x3 �x2
3/2 �y3 �y2

3/2 �z3 �z2
3/2

�x4 �x2
4/2 �y4 �y2

4/2 �z4 �z2
4/2

�x5 �x2
5/2 �y5 �y2

5/2 �z5 �z2
5/2

�x6 �x2
6/2 �y6 �y2

6/2 �z6 �z2
6/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f/∂x

∂2 f/∂x2

∂ f/∂y

∂2 f/∂y2

∂ f/∂z

∂2 f/∂z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (v1) − f (v0)

f (v2) − f (v0)

f (v3) − f (v0)

f (v4) − f (v0)

f (v5) − f (v0)

f (v6) − f (v0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f/∂x

∂2 f/∂x2

∂ f/∂y

∂2 f/∂y2

∂ f/∂z

∂2 f/∂z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= W

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f (v1) − f (v0)

f (v2) − f (v0)

f (v3) − f (v0)

f (v4) − f (v0)

f (v5) − f (v0)

f (v6) − f (v0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�x1 �x2
1/2 �y1 �y2

1/2 �z1 �z2
1/2

�x2 �x2
2/2 �y2 �y2

2/2 �z2 �z2
2/2

�x3 �x2
3/2 �y3 �y2

3/2 �z3 �z2
3/2

�x4 �x2
4/2 �y4 �y2

4/2 �z4 �z2
4/2

�x5 �x2
5/2 �y5 �y2

5/2 �z5 �z2
5/2

�x6 �x2
6/2 �y6 �y2

6/2 �z6 �z2
6/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

.

If the chosen coordinate is not along the grid directions, we may
choose a local coordinate frame (x ′, y′, z′), such that the new coor-
dinate directions are roughly along near-regular grid directions at
v0. Due to the rotational invariance of the Laplacian operator

∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2
= ∂2 f

∂x ′2 + ∂2 f

∂y′2 + ∂2 f

∂z′2 ,

we may compute the coefficients of ∂2 f/∂x ′2, ∂2 f/∂y′2, ∂2 f/∂z′2

as linear combinations of f (v j )− f (v0) in the new local coordinate,
and form the coefficient matrix for f (v j ) − f (v0) in the original
coordinate.

In our application, we define f = κφ as in Stam [1995], and
compute the coefficient matrix W at vi = v0 using a linear system
solver. Then w j i is computed as

w j i = W2 j + W4 j + W6 j .

For the relationships in Equation (11) to hold on an arbitrary
object volume, a conformal mapping between the polygrid in the
polycube and the object volume is needed. Although our mapping
may not be exactly conformal, it leads to acceptable solutions.
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