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Abstract. This paper develops a supervised dimensionality reduction method,
Lorentzian Discriminant Projection (LDP), for discriminant analysis and classifi-
cation. Our method represents the structures of sample data by a manifold, which
is furnished with a Lorentzian metric tensor. Different from classic discriminant
analysis techniques, LDP uses distances from points to their within-class neigh-
bors and global geometric centroid to model a new manifold to detect the intrinsic
local and global geometric structures of data set. In this way, both the geometry
of a group of classes and global data structures can be learnt from the Lorentzian
metric tensor. Thus discriminant analysis in the original sample space reduces to
metric learning on a Lorentzian manifold. The experimental results on benchmark
databases demonstrate the effectiveness of our proposed method.

1 Introduction

In recent years, the computer vision and pattern recognition community has witnessed
a growing interest in dimensionality reduction. One of the most successful and well-
studied techniques is the supervised discriminant analysis. We devote this paper to ad-
dressing the discriminant analysis from the perspective of Lorentzian geometry.

1.1 Related Work

Principal Component Analysis (PCA) [1] and Linear Discriminant Analysis (LDA) [2]
are two most popular linear dimensionality reduction techniques. PCA projects the data
points along the directions of maximal variances and aims to preserve the Euclidean
distances between samples. Unlike PCA which is unsupervised, LDA is supervised. It
searches for the projection axes on which the points of different classes are far from
each other and at the same time the data points of the same class are close to each other.
However, these linear models may fail to discover nonlinear data structures.

During the recent years, a number of nonlinear dimensionality reduction algorithms
called manifold learning have been developed to address this issue [14][5][11][6] [7][10].
However, these nonlinear techniques might not be suitable for real world applications
because they yield maps that are defined only on the training data points. To compute
the maps for the new testing points requires extra effort.

Along this direction, there is considerable interest in using linear methods, inspired
by the geometric intuition of manifold learning, to find the nonlinear structure of data
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set. Some popular ones include Locality Preserving Projection (LPP) [16][9], Neighbor-
hood Preserving Embedding (NPE) [15], Marginal Fisher Analysis (MFA) [8], Max-
imum Margin Criterion (MMC) [17], Average Neighborhood Margin Maximization
(ANMM) [18], Semi-Riemannian Discriminant Analysis (SRDA) [4] and Unsupervised
Discriminant Projection (UDP) [19].

1.2 Our Approach

Yang et al . [19] adapted both local and global scatters to unsupervised dimensionality
reduction. They maximized the ratio of the global scatters to the local scatters. Zhao
et al . [4] first applied the semi-Riemannian geometry to classification [4]. Inspired by
prior work, in this paper, we propose a novel method, called Lorentzian Discriminant
Projection (LDP), which focuses on supervised dimensionality reduction. Its goal is to
discover both local class discriminant and global geometric structures of the data set.
We first construct a manifold to model the local class and the global data structures. In
this way, both of the local discriminant and the global geometric structures of the data
set can accurately be characterized by learning a special Lorentzian metric tensor on the
newly built manifold. In fact, the role of the Lorentzian metric learning is equivalent to
the media of transferring geometry from the sample space to the feature space.

The rest of this paper is organized as follows. In Section 2, we provide the Lorentzian
Discriminant Projection algorithm. The experimental results of LDP approach to real-
world face analysis and handwriting digits classification are presented in Section 3.
Finally, we summarize our work and conclude the paper in Section 4.

2 Lorentzian Discriminant Projection

2.1 Fundamentals of Lorentzian Manifold

In differential geometry, a semi-Riemannian manifold is a generalization of a Rieman-
nian manifold. It is furnished with a non-degenerate and symmetric metric tensor called
the semi-Riemannian metric tensor. The metric matrix on the semi-Riemannian mani-
fold is diagonalizable and the diagonal entries are non-zero. We use the metric signature
to denote the number of positive and negative ones. Given a semi-Riemannian manifold
M of dimension n, if the metric has p positive and q negative diagonal entries, then the
metric signature is (p, q), where p + q = n. This concept is extensively used in general
relativity, as a basic geometric tool for modeling the space-time in physics.

Lorentzian manifold is the most important subclass of semi-Riemannian manifold
in which the metric signature is (n−1, 1). The metric matrix on the Lorentzian manifold
Ln

1 is of form

G =
[

Λ̂(n−1)×(n−1) 0
0 −λ̌

]
, (1)

where Λ̂(n−1)×(n−1) is diagonal, and its diagonal entries and λ̌ are positive. Suppose
that r = [r̂T , ř]T is an n-dimensional vector, then a metric tensor g(r, r) with respect
to G is expressible as

g(r, r) = rT Gr = r̂T Λ̂r̂− λ̌(ř)2. (2)
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Because of the nondegeneracy of the Lorentzian metric, vectors can be classified into
space-like (g(r, r) > 0 or r = 0), time-like (g(r, r) < 0) or null (g(r, r) = 0 and
r 6= 0). One may refer to [3] for more details.

2.2 The Motivation of LDP

The theory and algorithm in this paper are based on the perspective that the discrimina-
tion is tightly related to both local class and global data structures. Our motivation of
LDP are twofold: the viewpoint of Lorentzian manifold applied to general relativity and
the success of considering both local and global structures for dimensionality reduction.

The Lorentzian geometry has been successfully applied to Einstein’s general relativ-
ity to model the space-time as a 4-dimensional Lorentzian manifold of signature (3,1).
And as will be shown later, this manifold is also convenient to model the structures of
a group of classes.

On one hand, we use the relationship (e.g., distances) between the sample and its
within-class neighbors to model the local class structure. On the other hand, we charac-
terize the global data structure by the dissimilarities between each point and the global
geometric centorid. By performing discrepancies of within-class quantities and global
quantities, we obtain an ambient space with Lorentzian metrics where coordinates are
characterized by dissimilarities between sample pairs (each point with its within-class
neighbors and the global geometric centorid). Therefore, the discriminant structure of
the data set is initially modeled as a Lorentzian manifold.

Furthermore, we use the positive part Λ̂ to handle the local class structure and the
negative part −λ̌ to model the global data structure. To this end, learning a discrimi-
nant subspace reduces to learning the geometry of a Lorentzian manifold. Thus, super-
vised dimensionality reduction is coupled with Lorentzian metric learning. Moreover,
we present an approach to optimize both the local discriminant and global geometric
structures by learning the Lorentzian metric in the original sample space and applied it
to the discriminant subspace.

2.3 Modeling Features as a Lorentzian Manifold

For supervised dimensionality reduction task, the samples can be represented as a point
set Sx = {x1, ...,xm}, xi ∈ Rn. The class label of xi is denoted by Ci and mi is
the number of points which share the same label with xi. As we have previously de-
scribed, the goal of the proposed algorithm is to transform points from the original high-
dimensional sample space to a low-dimensional discriminant subspace, i.e. Sy ⊂ Rd

where d ¿ n. In this subspace, feature points belonging to the same class should
have higher within-class similarity and more consistent global geometric structure. To
achieve this goal, we introduce a Lorentzian manifold to model the structure of features
in a low dimensional discriminant subspace.

With yi, Syi
= {yi,yi

1, ...,y
i
mi−1} (points share the same class label with yi) and

ȳ (the geometric centroid of Sy , i.e., ȳ = 1
m

m∑
i=1

yi), a new point dyi
is defined as:

dyi = [d(yi,yi
1), ..., d(yi,yi

mi−1), d(yi, ȳ)]T = [d̂T
yi

, d(yi, ȳ)]T , (3)
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where yi
j ∈ Syi and d(yp,yq) is the distance between yp and yq. It is easy to see that

this coordinate representation can contain both local within-class similarity and global
geometric structure. We consider these mi-tuple coordinate representations as points
sampled from a new manifold Lmi

1 furnished with a Lorentzian metric tensor gl. It is
straightforward to see that gl(dyi

,dyi
) can be written as

gl(dyi ,dyi) = dT
yi

Gl
idyi

= tr((YiD)Gl
i(YiD)T ), (4)

where the metric matrix Gl
i is real diagonal and the signature of the metric is (mi−1,1),

D = [emi ,−Imi,mi ]
T (Imi,mi is an identity matrix of size mi ×mi and emi is an all-

one column vector of length mi) and Yi = [yi,yi
1, ...y

i
mi−1, ȳ].

Then the total Lorentzian metric tensor can be given as:

m∑

i=1

gl(dyi ,dyi) = tr(YLYT ), (5)

where L =
m∑

i=1

BiDGl
iD

T BT
i , Y = [y1, ...,ym, ȳ] and Bi is a binary selection matrix

of size m× (mi + 1) which satisfies Yi = YBi [13][12].
If there is a linear isometric transformation between the low dimensional feature y

and the original sample x, i.e.,y → Uy = x, we can have an optimization model:
{

arg min
U

tr(UT XLXT U)

s.t. UT U = Id×d

. (6)

The linear transformation U that minimizes the objective function in (6) can be found
as being composed of the eigenvectors associated with the d smallest eigenvalues of the
following problem:

XLXT u = λu. (7)

It is sufficient to note that the Lorentzian metric tensor forms the geometry of the
feature structure. Thus a question naturally arises: how to learn a special Lorentzian
metric tensor to furnish the newly built manifold. This is discussed in the next subsec-
tion.

2.4 Learning the Lorentzian Manifold

The Lorentzian metric matrices Gl
i are key to the proposed dimensionality reduction

problem. We give a novel method to learn it from the sample set Sx and then apply it to
the feature set Sy . The metric Gl

i consists of two parts: the positive-definite part Λ̂i and
the negative-definite part−λ̌i. In this subsection, we introduce an efficient way to learn
Λ̂i and λ̌i successively. The positive part of the Lorentzian metric tensor in the original
sample space can be given as:

gp
l (d̂xi

, d̂xi
) = d̂T

xi
Λ̂id̂xi

= gT
i D̂xi

gi, (8)

where
gi = [

√
Λ̂i(1, 1), ...,

√
Λ̂i(mi − 1,mi − 1)]T
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and
D̂xi = diag(d(xi,xi

1)
2, ..., d(xi,xi

mi−1)
2).

We may minimize this metric and obtain the following optimization problem:
{

arg min
gi

gT
i D̂xigi,

s.t. eT
mi−1gi = 1.

(9)

It is easy to check that the solution to the above problem is

gi =
(D̂xi

)−1emi−1

eT
mi−1(D̂xi

)−1emi−1

. (10)

Thus the positive-definite part Λ̂i can be obtained as

Λ̂i(p, q) =

{
gi(p)2, if p = q

0, otherwise
. (11)

As introduced in Section 2.1, a null (or light-like) vector r is the vector that van-
ishes the metric tensor: g(r, r) = 0. Inspired by this physical property used in general
relativity, we can make the metric locally unbiased. So the negative definite part λ̌i of
Gl

i can be determined by:
mi−1∑

j=1

Λ̂i(j, j) + λ̌i = 0. (12)

We empirically find that the discriminability will be enhanced if we choose a posi-
tive factor γ ∈ [0, 1] to multiply the negative part i.e., λ̌i → γλ̌i. The value of λ̌ can be
determined by cross validation.

3 Experimental Results

Experiments are conducted on Yale 3, FRGC [20] and USPS 4 databases to test the
performance of LDP against existing algorithms. For these databases, the image set
of each subject is split into different gallery and probe sets, where Gm/Pn means m
images are randomly selected for training and the remaining n images are for testing.
Such a trial is repeated 20 times.

In the face analysis (representation and recognition) problem, we want to use LDP
to learn an optimal discriminant subspace which is spanned by the columns of U in
(6) for face representation. The eigenvectors can be displayed as images, called the
Lorentzianfaces in our approach. Using the facial images in experiment 4 of FRGC
version 2 as the training set, we present the first 10 Lorentzianfaces in Fig 1, together
with Eigenfaces [1], Laplacianfaces [9] and Fisherfaces [2].

We perform the discriminant subspace learning on the expressive features yielded
by PCA which is classic and well-recognized preprocessing. For the PCA-based two
step strategy, the number of principal components is a free parameter. In our experi-
ments, we choose the percentage of energy retained in PCA preprocessing step 99%.

3 Available at http://cvc.yale.edu/projects/yalefaces/yalefaces.html
4 Available at http://www.cs.toronto.edu/ roweis/data.html
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(a) Eigenfaces

(b) Laplacianfaces

(c) Fisherfaces

(d) Lorentzianfaces

Fig. 1. Eigenfaces, Laplacianfaces, Fisherfaces and our proposed Lorentzianfaces.

Fig. 2. Some cropped Yale facial images.

3.1 Experiments on Yale

The Yale face database was constructed at the Yale Center for the Computational Vi-
sion and Control. It contains 165 gray-scale images of 15 subjects under various facial
expressions and lighting conditions such as center-light, with glasses, happy, left-light,
without glasses, normal, right-light, sad, sleepy, surprised, and winking. In our experi-
ment, we cropped each image to a size of 32×32. Figure 2 shows some cropped images
in Yale database.

The average recognition rate of each method and the corresponding dimension are
given in Table 1. The recognition rate curves versus the variation of dimensions are
illustrated in Figure 3. As can be seen, the proposed Lorentzianfaces outperforms other
methods involved in this experiment.
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Table 1. The average recognition results on Yale database (mean ± std %). The optimal dimen-
sion of face subspace are given in the brackets. U and S mean unsupervised and supervised
methods

Method G4/P7 G6/P5 Type
Eigenfaces (PCA) 57.62 ± 3.69 (40) 59.56 ± 5.22 (15) U

Laplacianfaces (LPP) 46.24 ± 5.20 (55) 46.44 ± 6.96 (65) U
Fisherfaces (LDA) 70.38 ± 4.83 (15) 72.72 ± 6.41 (15) S

MMC + PCA 70.05 ± 4.48 (20) 70.50 ± 5.63 (40) S
MFA + PCA 67.10 ± 6.04 (15) 70.06 ± 6.48 (25) S

Lorentzianfaces (LDP) 72.90 ± 5.28 (20) 74.28 ± 6.19 (15) S
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(a) G4/P7 (b) G6/P5

Fig. 3. The recognition rate curves versus the variation of dimensions on Yale database. The left
figure shows the G4/P7 results and the right one shows the G6/P5 results.

3.2 Experiments on FRGC

Experiments are also conducted on a subset of facial data in experiment 4 of FRGC
version 2 [20] that measures the recognition performance from uncontrolled images.
Experiment 4 is the most challenging FRGC experiment which has 8014 single uncon-
trolled still images of 466 subjects in the query set. We choose the first 30 images of
each subject in this set if the number of images is not less than 30. Thus we get 2850
images of 95 subjects. The images are all cropped to a size of 32× 32. Figure 4 shows
facial images of one subject in our experiment.

Table 2 shows the average recognition results on experiment 4 of FRGC version 2.
Figure 5 displays the recognition rate curves versus the feature space dimensions when
performing these methods. One can see that Lorentzianfaces is significantly better than
other methods in comparison.

3.3 Experiments on USPS

The USPS handwriting digital data includes 10 classes from “0” to “9”. Each class has
1100 samples. The first 200 images of each class are chosen for our experiments. We
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Fig. 4. Some cropped FRGC version 2 facial images.

Table 2. The average recognition results on experiment 4 of FRGC version 2 database (mean
± std %). The optimal dimension of face subspace are given in the brackets. U and S mean
unsupervised and supervised methods

Method G3/P27 G5/P25 Type
Eigenfaces (PCA) 48.31 ± 4.32 (120) 58.61 ± 3.47 (120) U

Laplacianfaces (LPP) 46.61 ± 3.54 (120) 57.74 ± 2.08 (120) U
Fisherfaces (LDA) 74.21 ± 5.35 (80) 87.49 ± 1.71 (75) S

MMC + PCA 61.08 ± 7.09 (110) 77.97 ± 6.42 (85) S
MFA + PCA 72.93 ± 5.08 (50) 85.72 ± 3.80 (65) S

Lorentzianfaces (LDP) 80.63 ± 5.19 (60) 89.41 ± 2.24 (50) S
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Fig. 5. The recognition rate curves versus the variation of dimensions on experiment 4 of FRGC
version 2 database. The left figure shows the G3/P27 results and the right one shows the G5/P25
results.
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Fig. 6. Some cropped USPS digital images.

directly apply all algorithms to the normalized data without using PCA as preprocess-
ing. The average classification results are shown in Table 3. The performance of LDP
is again better than other methods under consideration.

Table 3. The average classification results on USPS database (mean ± std %). The optimal di-
mension of feature space are given in the brackets. U and S mean unsupervised and supervised
methods

Method G30/P170 G40/P160 Type
PCA 99.27 ± 0.21 (10) 99.42 ± 0.24 (20) U
LPP 76.29 ± 4.65 (25) 87.60 ± 10.54 (25) U
LDA 80.23 ± 8.18 (5) 88.70 ± 7.96 (25) S
MMC 95.04 ± 1.57 (20) 95.47 ± 0.94 (15) S
MFA 80.81 ± 2.89 (5) 87.63 ± 2.98 (15) S
LDP 99.38 ± 0.18 (20) 99.50 ± 0.21 (15) S

3.4 Discussions

By conducting experiments systematically, we can find that: as in LPP and MFA, the
number of neighbors (e.g., k, k̂ and ǩ) is the most important parameter. The parameter
k in LPP is set to 5 in all experiments. For face recognition, the parameters k̂ and ǩ
in MFA are set to m − 1 ( m is the number of images in the gallery set) and 210.
For handwriting digits classification, we set the parameters k̂ and ǩ to 7 and 40. The
Gaussian kernel exp

(
−‖xi−xj‖2

t

)
is used in LPP. We set the parameter t to 250 in our

experiments.

4 Conclusions

This paper presents a novel discriminant analysis method called Lorentzian Discrim-
inant Projection(LDP). In the first step, we construct a Lorentzian manifold to model
both local and global discriminant and geometric structures of the data set. Then, an
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approach to Lorentzian metric learning is proposed to learn metric tensor from the orig-
inal high-dimensional sample space and apply it to the low-dimensional discriminant
subspace. In this way, both the local class and the global data structures can be well pre-
served in the reduced low-dimensional discriminant subspace. The experimental results
have shown that our proposed LDP is promising.
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