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Abstract. Ill-posed linear equations are pervasive in computer vision.
A popular way to solve an ill-posed problem is regularization. In this
paper, we propose a new criterion for designing the regularizing filter.
This criterion reveals the implicit assumption made by regularizing fil-
ters. Then with the help of the discrete Picard condition, we refine the
exponential filter using our criterion. The effectiveness of our method is
demonstrated on image restoration and interpolation.

1 Introduction

Computer vision involves many ill-posed problems [1], such as image restoration,
edge detection, optical flow, motion estimation, and surface reconstruction. Ac-
cording to [2], a well-posed problem has three properties: existence, uniqueness
and stability of the solution; if any one of these properties does not hold, the
problem is ill-posed.

Regularization is a prevailing method to solve ill-posed problems. Based on
the methods used, there are mainly three approaches to regularization: opti-
mization, filtering and iterative methods. The first method is actually Tikhonov
method [3] and has a Bayesian interpretation; the second one utilizes the spec-
trum of the problem and devotes to tailoring a suitable filter; the third method
settles the problem using an iterative process, and in fact the number of itera-
tions plays the role of regularization. These three methods are closely related,
especially under L2 norm. In this paper we mainly focus on the filtering ap-
proach. Before that we would like to introduce Tikhonov regularization.

Many ill-posed problems come from a first kind Fredholm integral equation [4]∫
K(x, t)f(t)dt = g(x) . (1)

And they can be discretized as linear equations of the form

Ax = b . (2)
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Based on the idea of balancing the residual and some apriori constraint on the
solution, Tikhonov regularization [3] finds the solution by minimizing

J(x) := ∥b − Ax∥2 + α[Ω(x)]2 . (3)

The constraint Ω(x) ensures the stability of the solution, while the regularization
parameter α controls the closeness between the original and the new equation.
Thus two important issues in regularization are choosing proper constraints and
finding the optimal parameters.

Basically speaking, a proper constraint should penalize what we do not want
the solution to exhibit. And there has already been a lot of work on choosing the
constraint Ω(x). For example, ordinary Tikhonov regularization (oTik) takes the
constraint as ∥x∥2, which restricts the size of the solution. For image restoration,
Phillips [5] proposed to use ∥Lx∥2, where L is the Laplace operator. This assumes
small differences in luminance between neighboring pixels. As a variance, it was
shown in [6] that using the total variation can preserve edges better than ∥Lx∥2.
For sparse solution, lasso [7] suggests using ∥x∥1. Although each kind of term has
a meaningful interpretation, an interesting question is that, how can we refine
the constraint that is being used?

To facilitate the analysis, we consider the filtering approach, which makes
use of the spectrum of A. Some exemplar filters include the exponential fil-
ter (Exp) [8], modified Tikhonov regularization (MTR) [9], spatial regulariza-
tion [10], and so on. These methods usually design a filter heuristically: they just
modify the filter to satisfy certain subjective request.

In this work, using backward error analysis, we propose a criterion for de-
signing the regularizing filter. This criterion shows that there is a relationship
between the constraint and the problem itself (e.g., A and b). We further study
the characteristic of a solvable problem, namely the Picard condition [11]; then
we show how the Picard condition helps refine the filter for a specific constraint.

2 Designing the Regularizing Filter

In this section, we first introduce the regularizing filter, then we propose our
criterion. To make use of the criterion, we consider the Picard condition and
show how to refine the exponential filter. For the notation, throughout the paper,
we use Ai as the i-th column of a matrix A and bi as the i-th element of a vector
b. Without special clarification, the norm used is the L2 norm.

2.1 The Regularizing Filter

To solve Ax = b, the least squares method minimizes the residual R(x) = ∥b −
Ax∥2 and the solution is x = (AT A)†AT b, where † is the Moore-Penrose pseudo
inverse. Suppose the singular value decomposition (SVD) is A = USV T , where
U and V are unitary matrices, S is a diagonal matrix with its diagonal elements
si ≥ 0 called the singular values; then the solution can be expressed as

x = V S†UT b =: V S†β =
∑

i
βis

−1
i Vi . (4)
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where β := UT b is called the Fourier coefficients.
However, when the small nonzero singular values of A decay gradually to

zero, this solution can bias greatly from an acceptable one. This is because in
practice, b is often contaminated by noise, thus a very small si tends to amplify
the noise enormously. In this sense, the problem is ill-posed. To solve this ill-
posedness, oTik minimizes J(x) = ∥b − Ax∥2 + λ2∥x∥2, and the solution is

x =
∑

s2
i (s

2
i + λ2)−1βis

−1
i Vi =:

∑
qotik(λ, si)βis

−1
i Vi . (5)

Compared to the least squares solution, this solution involves a low pass filter

qotik(λ, s) = s2(s2 + λ2)−1 , (6)

thus noises in high frequencies are restrained. That is why q(λ, s) is called the
regularizing filter [4]; and these qi = q(λ, si) are called the filter factors.

For a general constraint ∥Lx∥, let y = Lx, we can transform the problem of
minimizing J(x) = ∥b − Ax∥2 + λ2∥Lx∥2 into oTik

min J̃(y) = ∥b − AL†y∥2 + λ2∥y∥2 . (7)

To obtain the filter in this case, we need the generalized SVD of (A,L)

A = UΞX−1 , L = V MX−1 , (8)

where X is invertible, U and V are orthonormal, Ξ and M are diagonal matrices
with the diagonals being ξ and µ, respectively. So AL† = UΞM−1V T =: USV T ,
where S := ΞM−1 is a diagonal matrix with its diagonal elements si := ξiµ

−1
i

called the generalized singular values. According to Eqn.(5), we have the solution
as y =

∑
qotik(λ, si)βis

−1
i Vi; and substitute this into x = L†y, we obtain

x =
∑

qotik(λ, si)βiξ
−1
i Xi . (9)

In the solution above4, qotik(λ, s) is also called the regularizing filter, where si

are the generalized singular values.

2.2 Criterion for Designing the Filter

In practice b is often corrupted by noise η, thus we should not solve Ax = b
directly. To eliminate the noise, we introduce a perturbation term E and solve
(A + E)x = b + η instead. This is motivated by the method of backward error
analysis in numerical analysis. As the true solution satisfies Ax = b, our goal is
to find a proper E that is expected to satisfy Ex = η.

From Eqn.(4), the solution to the exact equation Ax = b is x = V S†β, so we
get η = EV S†β. Suppose the variance matrices of η and β are σ2I and CCT

respectively, we have

σ2I = var(η) = var(EV S†β) = (EV S†C)(EV S†C)T . (10)
4 If L is rank deficient, an extra x0 =

∑
i>rank(L) βiXi should be added to Eqn.(9).
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Table 1. Comparison of several filters.

Methods Filter q Coefficients |β| ∝
oTik [3] s2(s2 + λ2)−1 s2λ−2

Exp [8] 1− exp{−s2λ−2} exp{s2λ−2} − 1

MTR [9] s2(s2σ + λ2σ)−
1
σ s2{(s2σ + λ2σ)

1
σ − s2}−1

This leads to E = σWC†SV T , where W is an arbitrary orthonormal matrix.
Due to the arbitrariness, we may set W = U and obtain

E = σUC†SV T . (11)

With this estimate of E, we are going to solve U(I + σC†)SV T x = b. For a
general β, suppose its elements are independent (thus C is diagonal), then the
solution is

x =
∑ 1

1 + σc−1
i

βi

si
Vi , (12)

where c is the diagonal of C. This solution suggests taking the filter as qi =
(1 + σc−1

i )−1, which results in ci = σqi(1 − qi)−1. Notice that var(β) = CCT ,
we arrive at our criterion for designing regularizing filter

|βi| ≈ σqi(1 − qi)−1 ∝ qi(1 − qi)−1 . (13)

Our criterion suggests that the filter should be designed closely related to
the Fourier coefficients β = UT b. With this criterion, we can also analyze what
a filter models β.

2.3 Using the Picard Condition

According to our criterion |βi| ≈ σqi(1 − qi)−1, a filter q can be designed by
modeling β. However, it is difficult to model a general β. Here we consider this
problem in the viewpoint of the Picard condition, which is essential for solving
an ill-posed problem [11].

The Picard Condition. Suppose the kernel K in Eqn.(1) has a singular
value expansion K(x, t) =

∑
siui(x)vi(t), and βi := ⟨ui, g⟩ are the coefficients.

In order that the problem is solvable, the Picard condition requires that [11]∑∞
i=1(βis

−1
i )2 < ∞. While discretized, the Picard condition desires that the

elements of β decay faster than the corresponding singular values on the average.
In Table 1, we compare some existing filters, most of which assume that

|βi| ∝ s2
i . This ad hoc setting requires that βi decays as fast as s2

i ; while the
Picard condition desires that βi decays faster than si.

Our Filter ‘rExp’. Inspired by the exponential filter, we propose to model

|βi| ≈ σ(exp{sρ
i λ

−ρ} − 1) with ρ > 1 , (14)

qrexp(λ, s) = 1 − exp{−sρλ−ρ} , (15)
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Algorithm 1: Choosing Parameters for rExp
Initialize ρ = 2 and estimate σ1

Loop:2

Find the optimal λ for x =
∑

(1− exp{−sρ
i λ−ρ})βis

−1
i Vi3

Update ρ← mean
∣∣ln{ln(|βi|σ−1 + 1)}/(ln si − ln λ)

∣∣4

End of Loop5

Find the optimal λ for x =
∑

(1− exp{−sρ
i λ−ρ})βis

−1
i Vi6

and denote it as the refined exponential filter (rExp). Here a free parameter ρ is
incorporated so that we can better model β; and rather than setting it as 2 for
convenience, we just require ρ > 1 so that the Picard condition is satisfied. In
the following paragraph, we also provide an algorithm for determining ρ.

Choosing the Parameters. It is a crucial problem to choose a suitable
parameter λ for all regularization schemes. Fortunately there have been sev-
eral robust and popular ways. For example, L-curve [12] and generalized cross-
validation (GCV) [13]. If the noise level is predictable, Morozov discrepancy
principle [14] can also be used. Here we also provide an iterative method to
choose ρ. With an initial ρ = 2, we obtain λ from one of the methods mentioned
above. Then from |βi| ≈ σ(exp{sρ

i λ
−ρ} − 1), we arrive at

ρ ≈ mean
∣∣∣∣ ln{ln(|βi|σ−1 + 1)}

ln si − lnλ

∣∣∣∣ . (16)

This procedure can be performed repeatedly until we get a proper ρ. The algo-
rithm is summarized in Algorithm 1.

3 Experiments

In the experiments, we apply our method to image restoration and image inter-
polation. The test images shown in Figure 1 are the 24 Kodak Images5.

3.1 Image Restoration

A blurred and noisy image can be modeled as g = h∗f+η, where f is the original
image, g is the observed image, h is the blurring kernel, ∗ denotes convolution
and η is the additive noise. Image restoration is to recover the original image by
solving Hf = g. In [5], Phillips proposed to minimize

∥g − Hf∥2 + λ2∥Lf∥2 , (17)

where L is the Laplacian operator. In [6], the authors suggested to minimize
∥g−Hf∥2 +λ2∥f∥TV , where ∥ · ∥TV denotes the total variation. With this kind

5 http://r0k.us/graphics/kodak/
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Fig. 1. The 24 Kodak Images used in our experiments.

of constraint, edges can be preserved. This method was developed as ‘scalar TV’
and further as ‘adaptive TV’ methods [15].

In practice, we often deal with the Toeplitz matrices. A block-circulant-
circulant-block (BCCB) matrix can be diagonalized very efficiently using fast
Fourier transform (FFT). Suppose H and L are BCCB matrices, then we have
H = FΞF ∗, L = FMF ∗, where F is the unitary discrete Fourier transform
matrix. Similar to Eqn.(9), the solution is

x =
∑

q(λ, si)βiξ
−1
i Fi , (18)

where β = F ∗b, namely applying the inverse Fourier transform to b.
In the experiment, the images are first degraded by a 3 × 3 average filter,

and then corrupted by white Gaussian noise with a standard deviation σ = 10.
During the restoration, the blurring kernel h is estimated using the method
in [16]; H and L are constructed as BCCB matrices so that FFT can be used.
We apply rExp to restore the images, followed by a Wiener filter to further
reduce the noise. We compare our method with oTik, Exp [8], Wiener filter,
and total variation methods (Scalar TV and Adaptive TV) [15]. The results are
reported using the peak signal-to-noise ratio (PSNR)

PSNR = 10 · log10{MAX2
I /MSE} , (19)

where MAXI is the maximum possible pixel value for the image (255 for 8-bits
images), and MSE is the mean square error for the original and restored images.

We show the PSNR on the restored images in Figure 2 and detail the average
PSNR of each method in Table 2. Our method provides the highest average
PSNR on the 24 images; and significant improvement is achieved compared with
the exponential filter. We also plot the parameter ρ of our method in Figure 2,
which illustrates the necessity of allowing ρ other than 2. For visual comparison,
we show blowups of the restored images in Figure 3. It is clear that our method
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Table 2. Average PSNR of the 24 restored Kodak images.

Methods oTik Exp Wiener Scalar TV Adaptive TV rExp

PSNR 25.29 26.51 26.83 26.87 27.28 27.75
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Fig. 2. (Left) PSNR of the 24 restored Kodak images. (Right bottom) The parameter
ρ of rExp with respect to iterations on the 5-th Kodak image.

provides restored images visually comparable with Adaptive TV and better than
other methods.

3.2 Image Interpolation

Image interpolation is used to render high-resolution images from low-resolution
images. A low-resolution image can be modeled as g = DHf + η, where f and
g are the lexicographic order of high-resolution images F and low-resolution
images G, respectively. D and H are the matrices that model the decimation
and the blurring processes, respectively.

An interesting interpolation algorithm is proposed in [17]. The main idea is
to solve the problem using the Tikhonov regularization. Considering the huge
sizes of H and D, the authors assume that these matrices are separable:

H = H1 ⊗ H2 , D = D1 ⊗ D2 , (20)

where ⊗ represents the Kronecker product. Thus the model is equivalent to

G = (D2H2)F (D1H1)T + η . (21)

Then with the aid of the Kronecker product and SVD, the computation cost can
be reduced greatly. For example, if the decimation factor is 2, then we have

D1 =


1 0 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 0 1 . . .
...

...
...

...
...

. . .

 , H1 =


v0 v1 . . . v−1

v−1 v0 . . . v−2

...
...

. . .
...

v1 v2 . . . v0

 , (22)
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Fig. 3. The restored images using different methods. From left to right: (Top) Original
image, Degraded image, oTik, Exp; (Bottom) Wiener, Scalar TV, Adaptive TV, rExp.

Fig. 4. The interpolated images using different methods. From left to right: Original
image, Bicubic, oTik, rExp.

where v = (v−k, ..., v−1, v0, v1, ..., vk)T , and h = uvT is the blurring kernel. For a
3×3 mask, it is often assumed that u = v = (a, 1−2a, a)T . Without any apriori
information, we may set a = 0.25.

However, it is important to notice that, under the assumption of separability
and with the selection of u and v above, the singular values of D1H1 range from
|1−2a| to

√
(1 − 2a)2 + 4a2 (see Appendix A). Thus if a is not near 0.5, we can

use iterative methods such as the steepest descent or the conjugate gradient to
solve Eqn.(21). So we propose our method as follows. First we restore the noisy
low-resolution image g using the method we have introduced in Section 3.1, then
we employ the separability and solve the normal equation of Eqn.(21) to obtain
the high-resolution image F .

In the experiment, we first blur F with a 3 × 3 average filter. Then we
subsample the blurred image and add Gaussian noise with σ = 10 to construct
G. We use our method and the method in [17] to compute image F , respectively.
For more comparison, we also resize the image G using bicubic interpolation.
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Table 3. Average PSNR of the 24 interpolated Kodak images.

Methods Bicubic oTik rExp

PSNR 25.04 24.82 25.85
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Fig. 5. PSNR of the 24 interpolated Kodak images.

It is clear that our method outperforms other methods in both PSNR (Table 3
and Figure 5) and visual aspect (Figure 4).We believe that this benefits from
the flexibility of ρ in our method.

4 Conclusions

In this paper, we suggest a criterion for designing the regularizing filter. By in-
corporating the Picard condition, we propose to refine the exponential filter. Our
scheme works effectively for ill-posed problems, which has been demonstrated
on image restoration and image interpolation.
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Appendix

A Spectrum of Decimated Toeplitz Matrices

Property. If A is the odd rows of a circulant Toeplitz matrix H

H =


b a 0 . . . 0 a
a b a . . . 0 0
...

...
...

. . .
...

...
a 0 0 . . . a b

 =: Toep[b, a, 0, ..., 0, a] , (23)

then the singular values σ(A) ⊆ [|b|,
√

b2 + 4a2].

Proof. With a proper permutation matrix P , we have B := AP = [A0 A1], where
A0 = bI, A1 = aJ with J = Toep[1, 0, ..., 0, 1]. Then BBT = b2I+a2JJT . Notice
∥JJT ∥1 ≤ ∥J∥1∥JT ∥1 = 4 and the maximum eigen-value λmax(M) ≤ ∥M∥p for
any p ≥ 1, we get λ(JJT ) ⊆ [0, 4], which leads to λ(BBT ) ⊆ [b2, b2 + 4a2].
Immediately we obtain that the singular values of B (also of A) range between
|b| and

√
b2 + 4a2.


