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Abstract 
This paper proposes to use a bipartite graph to represent compressive sensing (CS). The 

evolution of nodes and edges in the bipartite graph, which is equivalent to the decoding 
process of compressive sensing, is characterized by a set of differential equations. One of 
main contributions in this paper is that we derive the close-form formulation of the evolution 
in statistics, which enable us to more accurately analyze the performance of compressive 
sensing. Based on the formulation, the distortion of random sampling and the rate needed to 
code measurements are analyzed briefly. Finally, numerical experiments verify our formula-
tion of the evolution and the rate-distortion curves of compressive sensing are drawn to be 
compared with entropy coding.   
 
1. Introduction 

The recent compressive sensing theory reveals that a sparse signal can be recovered by a 
small amount of measurements [1][2]. Considering a signal ݔ ൌ ሼݔଵ, ,ଶݔ … , ேሽݔ א Թே  with ݔ ൌ ݕ sparse with respect to transform ߰. Random measurements-ܭ is called as ݔ ,non-zero elements ܭ has only ݑ and ݑ߰ ൌ ሼݕଵ, ,ଶݕ … , ெሽݕ א Թெ are generated by ݕ ൌ Φݔ, Φ א Թெൈே.                                                    (1) ઴ is a random basis. Obviously, it is an ill-posed problem recovering ࢞ from ࢟ because ܯ is 
often much smaller than ܰ. But, according to the compressive sensing theory, if ࢞ is ܭ-sparse 
and the condition (ܭ/ܰ)݃݋݈ܭ2~ܯ is satisfied [3], the recovery can be achieved with proba-
bility close to one by solving the following convex optimization ࢛ෝ ൌ ࢟ Ԣԡ௣, subject to࢛ԡ݊݅݉݃ݎܽ ൌ  .th norm-݌ Ԣ.                                  (2) ԡ·ԡ௣ is the࢛࣒ࢶ

Because ܯ is often much smaller than ܰ, the recovery can be viewed as a sort of compres-
sion. It is natural to arise the question whether random measurements provide an efficient re-
presentation of sparse signal in an information-theoretic sense. Some papers [4]~[9] have ana-
lyzed the performance of compressive sensing from the Shannon’s rate distortion theory. 
Both theoretical and experimental results show that encoding a sparse signal by scale quanti-
zation of random measurements results in a significant penalty [8][9].  

In most of the above work, the optimization problem (2) is solved by ݈1-norm techniques 
[10][11]. Although they work well in practice, their performance is difficult to be analyzed 
quantitively. Thus, a solution to (2) is needed that is more suitable to performance analysis. 
Some studies exhibit that compressive sensing has a link with channel coding that provides 
such solution. If the random transform ࢶ is set as one kind of channel codes, the recovery can 
be done like channel decoding. The work categorized into this line includes Reed-Solomon 
(RS) code [6], Low-Density-Parity-Check (LDPC) code [12], Sudocode [13] and expander 
graph [14][15].  
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This paper attempts to analyze compressive sensing for a binary random sparse source with 
independent and identical distribution. It is the most fundamental problem in information 
theory to evaluate the performance of one coding scheme. To achieve it, we have to get the 
distortion at a given number of measurements and the entropy of those measurements. How-
ever, both of them are very difficult to get in the ݈1-norm optimization. Therefore, we propose 
to use a bipartite graph to represent compressive sensing. The recovery is equal to the evolu-
tion of nodes and edges in the graph. They can be characterized by a set of differential equa-
tions. The most important contribution in this paper is that we derive the close-form forma-
tion of the evolution in statistics. Based on the formulation, we approximately analyze the 
distortion at a given number of measurements and the corresponding rate.   

The rest of this paper is organized as follows. In Section 2, compressive sensing is con-
verted to a bipartite graph. Section 3 derives the close-form formulation of the node and edge 
evolutions. Section 4 analyzes the rate-distortion performance of compressive sensing. In 
Section 5, the numerical results verify our formation and the performance of CS is compared 
with that of entropy coding. Finally, Section 6 concludes this paper.   
 
2. Problem formulation 

In this paper, we only consider ࢞ as a sparse binary source with independent and identical 
distribution ௫ܲ. In other words, the transform ࣒ is not necessary or it is the identity matrix. 
For a binary source, it is reasonable to assume the random matrix ࢶ as binary too, namely, 
the element in ࢶ is one or zero. We set the probability ௫ܲሼݔ௜ ൌ 1ሽ ൌ ௜ݔ௪ and ௫ܲሼ݌ ൌ 0ሽ ൌ݌௕. Because ࢞ is a sparse source, ݌௪ should be much smaller than ݌௕. 
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Figure 1: The bipartite graph generated by compressive sensing and the splitting 
process on the right side. 

The random sampling in (1) to generate measurements constitutes a bipartite graph as de-
picted in Figure 1 (a). The left side is ܰ nodes corresponding to binary elements in ࢞, and the 
right is ܯ nodes to measurements in ࢟. Random sampling ࢶ specifies the edges between left 
and right nodes. According to (1), the value of one measurement ݕ௝ is equal to the sum of bi-
nary elements ݔ௜ with ߶௝௜ equal to one. For simplification, we assume one measurement al-
ways samples ܵ elements in ࢞. Thus, the value of one measurement is from zero to ܵ.  

The degree of a node is defined as the number of edges connected to the node. The recov-
ery from measurements is converted to the evolution of the bipartite graph. The process is 
equivalent to finding a node with degree one on the right side, and removing it, its connected 
left node and all edges connected to the left node. The process is repeated until there are no 
nodes of degree one on the right side. The recovery is successful if all nodes on the left side 
or all edges are removed. 
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The node of degree one on the right side is usually generated by only sampling one ele-
ment in ࢞. However, such sampling is very inefficient. To recover ࢞, more measurements are 
needed if including single sampling. Because of the sparsity of ࢞, even if we sample multiple 
elements in ࢞, many of the measurement values may be zero. Therefore, a splitting process is 
proposed before the graph evolution. It is depicted in Figure 1 (b), where one measurement 
randomly samples two elements in ࢞. If the measurement value is zero or two, every sampled ݔ௜ is known. Thus the corresponding right node is split into two nodes of degree one. After 
this process, the graph will have many right nodes of degree one.  

 
3. Recovery processing 

This section will analyze the bipartite graph evolution and derive the close-form formula-
tion of the evolution on left nodes and right edges.  

3.1 Node evolution on the left side 

The analysis on the left side is done by modeling the evolution of nodes. It is a random 
process along with time ݐ௟. The unit of ݐ௟ is defined as the time needed for removing one node 
on the left side, namely, ∆ݐ௟ ൌ -௟ is the total number of nodes that will be reܧ ௟, whereܧ/1
moved on the left side. According to the graph generated by compressive sensing, the ex-
pected total number of left nodes that are sampled is  ܧ௟ ൌ ܰ(1 െ (1 െ ௟ܧ ,(ௌ)ெ݌ ൑ ௌ݌ (3)                                            .ܰ ൌ ܵ/ܰ is the probability that one element in ࢞ is sampled by one measurement. The rest ܰ െ  that are not sampled by any measurement will be discussed in the next ࢞ ௟ elements inܧ
section.  

In the left side, the number of nodes of degree ݅ at time ݐ௟ is defined as ܮ௜(ݐ௟). Thus, the 
corresponding fraction of nodes of degree ݅ is ݈௜(ݐ௟)  ൌ  ௟. The fraction of left nodesܧ/ (௟ݐ)௜ܮ
remained at time ݐ௟ is ݁௟(ݐ௟) ൌ ∑ ݈௜(ݐ௟)௜ . When ݐ௟ is equal to zero, the initial fraction ߣ௜ of left 
nodes with degree ݅ is  ߣ௜ ൌ ௦௜(1݌ܰ െ ݅ ,௟ܧ/(ܯ݅)௦)ெି௜݌ ൌ 1,2, … ,  (4)                              .ܯ

The maximum degree is equal to ܯ, that is to say, one node is sampled by all measure-
ments.  

When one right node of degree one is randomly selected, the probability that one left node 
of degree ݅ is connected to the right node is ݈௜(ݐ௟)/ ௟݁(ݐ௟). The node is then removed and the 
corresponding fraction of node of degree ݅ decreases. According to the martingale and large 
deviation in probability theory [16], the random process can be formulated by a set of diffe-
rential equations as ݈݀௜(ݐ௟)/݀ݐ௟ ൌ െ݈௜(ݐ௟)/݁௟(ݐ௟), ݅ ൌ 1,2, … ,  (5)                                   .ܯ

For different ݅, ݈݀௜(ݐ௟)/݈௜(ݐ௟) should be equivalent from (5). If we set ݈݀௜(ݐ௟)/݈௜(ݐ௟) for all ݅ 
equal to ݂݀/݂ that ݂ is a function, (5) can be rewritten as ݈݀௜(ݐ௟)/݈௜(ݐ௟) ൌ ݂݀/݂ ൌ െ݀ݐ௟/݁௟(ݐ௟).                                        (6) 

The first equation of (6) can be solved directly. Thus, ݈௜(ݐ௟) can be represented by ݂ as  

                                                         ݈௜(ݐ௟) ൌ ܿ௜݂.                                                              (7) ܿ௜ is a parameter to be determined by boundary conditions given in (4). Because ݁௟(ݐ௟) is the 
sum of all ݈௜(ݐ௟), combining (7) with the second equation of (6), we can solve ݂ as 
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݂ ൌ െݐ௟/ ∑ ܿ௜௜ ൅ ܿ.                                                        (8) ܿ is another parameter to be determined by boundary conditions. Combining (8) and (4) with 
(7), ݈௜(ݐ௟) can be finally described by ݈௜(ݐ௟) ൌ ௜(1ߣ െ  ௟).                                                       (9)ݐ

It is not difficult to explain the close-form formulation given in (9). The fraction of nodes of 
degree ݅ is decreasing linearly along with ݐ௟ because the right node of degree one randomly 
connects to the left node of degree ݅. Furthermore, ݁௟(ݐ௟) is a linear function of ݐ௟ too because 
one left node is removed in each unit time.    

3.2 Edge evolution in the right side 

Different from the analysis in the left side, the analysis in the right side is to model the 
evolution process of edges instead of nodes. The unit of time ݐ௥ is defined as the time to re-
move an edge, namely, ∆ݐ௥ ൌ -is the total number of edges in the graph. Ac ܧ where ,ܧ/1
cording to the graph generation, the total number of edges in the graph is ܧ ൌ  .ܯܵ

The edge of degree is defined as the degree of right node that it connects to. We denote the 
number of edges of degree ݆ at time ݐ௥ as ௝ܴ(ݐ௥). The corresponding fraction of edges of de-
gree ݆ is ݎ௝(ݐ௥)  ൌ ௝ܴ(ݐ௥) /ܧ. The fraction of edges remained at time ݐ௥ is ݁(ݐ௥) ൌ ∑ ௝(௥ݐ)௝ݎ . 
Following up the result in left side, ݁(ݐ௥) should be equal to 1 െ -௥ because one edge is reݐ
moved in each unit time. After the splitting process, the initial fraction ߩ௝ of edges with de-
gree ݆ is  

௝ߩ ൌ ቐ ௪ௌ݌ ൅ ௕ௌ݌ ݆ ൌ 10 ݆ ൌ 2, … , ܵ െ 11 െ ௪ௌ݌ െ ௕ௌ݌ ݆ ൌ ܵ .                                     (10) 

It is non-zero only when ݆ is equal to one or ܵ. When a left node is removed, the expected 
number of edges connected to the left node is ∑ ݈݅௜(ݐ௟)/݁௟(ݐ௟)௜ . Considering ݈௜(ݐ௟) given in 
(9), the expected number of edges removed subsequently is  ∑ ௜௟೔(௧೗)೔௘೗(௧೗) ൌ ∑ ௜ఒ೔೔∑ ఒ೔೔ ൌ ∑ ௜௜ߣ݅ ؔ  (11)                                             .ߙ

Interestingly, ߙ is a constant independent on time and is determined only by the distribution 
of ߣ௜. It is worthy to mention that it will take ݐ∆ߙ௥ to remove the expected number of edges.  

There is one edge of degree one in ߙ edges. We assume that the rest ߙ െ 1 edges are ran-
domly connected to right nodes. The probability that one edge is connected to one right node 
of degree ݆ is ݎ௝(ݐ௥)/݁(ݐ௥). Once this edge is removed, the degree of rest edges ݆ െ 1 in the 
right node becomes ݆ െ 1. The evolution process of edge in the right side can be formulated 
as a set of differential equations too 

ௗ௥ೕ(௧ೝ)ௗ௧ೝ ൌ ۔ۖەۖ
൫௥మ(௧ೝ)ି௥భ(௧ೝ)൯ఈ௘(௧ೝ)(ఈିଵ)ۓ െ ଵఈ , ݆ ൌ 1௝(ఈିଵ)ቀ௥ೕశభ(௧ೝ)ି௥ೕ(௧ೝ)ቁఈ௘(௧ೝ) , ݆ ൌ 2, … , ܵ െ 1െ ௝(ఈିଵ)௥ೄ(௧ೝ)ఈ௘(௧ೝ) , ݆ ൌ ܵ .                            (12) 

When ݆ is less than ܵ, two kinds of edge removing will change ݎ௝(ݐ௥). The first is, if a edge is 
removed in one right node of degree ݆ ൅ 1, the rest edges ݆ of degree ݆ ൅ 1 become the edges 
of degree ݆. The second is, if a edge is removed in one right node of degree ݆, the rest edges ݆ െ 1 of degree ݆ become the edges of degree ݆ െ 1. When ݆ is equal to ܵ and one edge is re-
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moved, the rest edges of degree ܵ become the edges of degree ܵ െ 1. We first try to solve the 
differential equations (12) when ݆ is more than one. They can be written as the matrix form 

൦݀ݎଶ(ݐ௥)݀ݎଷ(ݐ௥)…݀ݎௌ(ݐ௥)൪ ൌ ࡭ ൦ݎଶ(ݐ௥)ݎଷ(ݐ௥)…ݎௌ(ݐ௥)൪ (ఈିଵ)ௗ௧ೝఈ௘(௧ೝ) , where ࡭ ൌ ൦െ2 2 0 … 00 െ3 3 … 0… … … ڰ …0 0 0 … െܵ൪.               (13) 
Taking ࡭ ൌ  on the both side of ࡼ presented in Appendix into account, multiplying ࡼࢫ૚ିࡼ

(13), it can be described as  

ࡼ ൦݀ݎଶ(ݐ௥)݀ݎଷ(ݐ௥)…݀ݎௌ(ݐ௥)൪ ൌ ࡼࢫ ൦ݎଶ(ݐ௥)ݎଷ(ݐ௥)…ݎௌ(ݐ௥)൪ (ఈିଵ)ௗ௧ೝఈ௘(௧ೝ) .                                          (14) 
If ࢘෤ ൌ ሾ̃ݎଶ(ݐ௥), … , ࢘ࡼ ሿ் is defined as(௥ݐ)ௌݎ̃ ൌ ,(௥ݐ)ଶݎሾࡼ … ,  ሿ், then we have(௥ݐ)ௌݎ

 ൦݀̃ݎଶ(ݐ௥)݀̃ݎଶ(ݐ௥)…݀̃ݎௌ(ݐ௥)൪ ൌ ࢫ ൦̃ݎଶ(ݐ௥)̃ݎଶ(ݐ௥)…̃ݎௌ(ݐ௥)൪ (ఈିଵ)ௗ௧ೝఈ௘(௧ೝ) .                                            (15) 
Because of ݁(ݐ௥) ൌ 1 െ (௥ݐ)௝ݎ̃/(௥ݐ)௝ݎ̃݀   ௥ and (15), we haveݐ ൌ െ݆(ߙ െ 1)ߙ/௥ݐ݀(1 െ ,(௥ݐ ݆ ൌ 2, … , ܵ.                         (16) 
Considering the boundary conditions given in (10), the differential equations (16) can be rea-
dily solved                      ̃ݎ௝(ݐ௥) ൌ ෤௝(1ߩ െ ,௥)௝(ఈିଵ)/ఈݐ ݆ ൌ 2, … , ෤࢘ is an upper triangle matrix and ࡼ ௝ at time zero. Becauseݎ̃ ෤௝ is the initial value ofߩ (17)                                  .ܵ ൌ   ෤௝ߩ ,࢘ࡼ
can be is calculated by                                                   ߩ෤௝ ൌ ∑ ௟ௌ௟ୀ௝ߩ௝௟݌ , ݆ ൌ 2, … , ܵ.                                          (18) 
Similarly, because ିࡼଵ is a upper triangle matrix too and ࢘ ൌ ෤࢘૚ିࡼ , the final ݎ௝(ݐ௥) is de-
scribed by ݎ௝(ݐ௥) ൌ ∑ ൫݌௝௞ିଵ൫∑ ௟ௌ௟ୀ௞ߩ௞௟݌ ൯(1 െ ௥)௞(ఈିଵ)/ఈ൯ௌ௞ୀ௝ݐ , ݆ ൌ 2, … ,  ௟ is equal toߩ .ଵ, respectivelyିࡼ and ࡼ ௝௞ିଵ are the elements of row ݆ and column ݇ in݌ ௝௞ and݌ (19)                  .ܵ
zero except for one and ܵ. By defining ߱ ൌ (1 െ ௥)(ఈିଵ)/ఈݐ , we have the final simplified ݎ௝(ݐ௥) as ݎ௝(ݐ௥) ൌ ௌߩ ൬ܵ െ 1ܵ െ ݆൰ ߱௝(1 െ ߱)ௌି௝, ݆ ൌ 2, … ,  is available in (௥ݐ)ଶݎ is difficult to get the close-form formulation from (12) even (௥ݐ)ଵݎ (20)                             .ܵ
(20). Fortunately, because one edge is removed in every unit time, we have ∑ ௥ௌ௝ୀଵݐ݀/(௥ݐ)௝ݎ݀ ൌ െ1, ݆ ൌ 1, … , ܵ.                                       (21) 

Combining (12) and (21), we can get the following equation ఈିଵఈ(ଵି௧ೝ) ∑ ௌ௝ୀଵ(௥ݐ)௝ݎ ൅ ଵఈ ൌ 1, ݆ ൌ 2, … , ܵ.                                    (22) 

Incorporating (20) into (22), the final ݎଵ(ݐ௥) is described as ݎଵ(ݐ௥) ൌ (1 െ (௥ݐ െ ௌ߱(1ߩ െ (1 െ ߱)ௌିଵ).                                 (23) 
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The bipartite graph and differential equations are also applied to analyze the performance 
of erasure correcting codes in [17]. To the authors’ best knowledge, this paper is the first one 
that gives the close-form results as (20) and (23). In [17], the distributions of ߣ௜ and ߩ௝ are 
vital to successfully decode because they have to make the number of right nodes of degree 
one more than zero before ݐ௥ is equal to 1. But in the compressive sensing, although every 
measurement samples same number of elements in ࢞, the right nodes of degree one can be 
guaranteed by the inherent sparseness of ࢞. From (23), ݎଵ(ݐ௥) is decided by ܵ,  ݌௪  and ܯ, 
which becomes much simple. The detail conditions to make ݎଵ(ݐ௥) will be discussed in our 
future paper.   
 
4. Rate-distortion performance 

In the bipartite graph, random edges can be generated by random seeds. Although only de-
grees of measurements are used in the evolution, all values of measurements are needed to 
recover the value of every element in ࢞. Thus, the rate of measurements is calculated by ܴ ൌ െܯ ∑ ௬(݅)log݌ ቀ݌௬(݅)ቁௌ௜ୀ଴ ,                                       (24) 

                                         with  ݌௬(݅) ൌ ቀܵ݅ቁ ௪௜݌ (1 െ ܯ ௬(݅) is the probability of one measurement equal to ݅. For constant݌                                    .௪)ௌି௜݌ ൈ ܵ, the rate ܴ 
will decrease with ܵ increasing. If the distortion is measured by the number of unrecovered 
element in ࢞, the total distortion of compressive sensing can be calculated by ܦ ൌ ଵܦ ൅ ଵܦ ଶ, withܦ ൌ ܰ(1 െ ܵ/ܰ)ெ.                             (25) ܦଵ is the distortion caused by un-sampled elements in ࢞. For given ݌௪ and ܰ, ܦଵ is de-
cided by the total edges ܯ ൈ  ଶ is the distortion caused by elements that are sampled butܦ .ܵ
cannot be recovered in the graph. The fail recovery is caused by two reasons. The first one is 
that  ݎଵ(ݐ௥) is equal to zero before ݐ௥ ൌ 1. From our close-form result (23), when the signal is 
sparser and ܵ is not big, the condition can be readily satisfied. Thus in this paper we assume  ݎଵ(ݐ௥) ൐ 0 when ݐ௥ א ሾ0,1ሿ. The second reason is that there exist fault structures in the graph, 
which cannot provide enough information to recover the left nodes in the structures.  

 
Figure 2: The exemplified sub-graphs that make left node unrecovered.   

After our careful studies on un-recovered left nodes, we have found that the fault structures 
present a common feature as shown in Figure 2, where the squares indicate left nodes and the 
circles right nodes. The number in the square is the degree of left node. The lines in the circle 
are the edges to connect left nodes. The common feature in fault structures is that the struc-
ture always starts from one left node of degree one indicated by “a” in Figure 2 and ends at 
one left node of degree one indicated by “b”. In general, the probability of left node “a” equal 
to left node “b” is very small. Thus, unlike the cycle problem in LDPC, the fault structures in 
our graph are open and line-type.  
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It is not difficult to explain why the left nodes in these structures cannot be recovered. Let 
us take the left-upper case in Figure 2 as an example. In the structure, there are two left nodes 
of degree one and one right node. No matter what other left nodes connected to the right 
node, it is impossible to recover two bits by only one bit. Most of un-recovered left nodes are 
on the structures depicted in Figure 2. Although the nodes “c” can be those of degree more 
than two, the probability is quite small when ܵ is not big. Because of the limitation on pages, 
by only taking three structures in Figure 2 into account, we will approximate ܦଶ as 

ଶܦ  ൌ ଵ݌)ܰ ൅ (ଶ݌ ൅ ଷ݌ܯ)2 ൅ (ଶ݌ܰ ቀௌିଵଵ ቁఈభ(ଵିఈభ)ೄషమ൫ଵି(ଵିఈభ)ೄషభ൯ ൅ /ଵߣ ଵ is equal toߙ ଷ are probability of the three structures and݌ ଶ and݌ ,ଵ݌ ଷ.                  (26)݌ܯ2 ∑ ௜௜ߣ݅ .  
 
5. Numerical results 

The first numerical experiment is designed to verify the close-form formulation of the edge 
evolution in the bipartite graph. The probability ݌௪ is set as 0.05. There are 10000 nodes in 
the left side of the graph and 5000 nodes in the right side. Each measurement samples six left 
nodes. We randomly generate 5 different graphs. The evolutions of all ݎ௝(ݐ௥) are depicted in 
Figure 2, where x coordinate is time and y coordinate is the number of left nodes at different 
degrees. The symbol “A” indicates the analyzed results and “R” the actual evolutions. One 
can observe that the analyzed evolutions have a good match to the actual ones. It is worthy to 
notice that the evolution of ݎଶ(ݐ௥) cannot often be reduced to zero, which results in the distor-
tion ܦଶ.  

The second numerical experiment is designed to verify the formulation of rate and distor-
tion in (24) ~ (26). We use the same graph parameters as those in the first numerical experi-
ment. The experimental curves are depicted in Figure 4, where x coordinate is the bits for 
coding measurements and y coordinate is the number of unrecovered elements. ܵ is six in left 
side and twelve in right side. The rate and distortion vary with different number of measure-
ment. For each number of measurements, we decode 20 different random graphs. The corres-
ponding pairs of rate and distortion are drawn as points in Figure 4. The rate and distortion 
calculated by (24) ~ (26) are drawn as curves. One can observe that the analyzed results have 
a good match with actual ones when ܵ is six. There is a bit mismatch at high rates when ܵ is 
twelve because of our approximation in ܦଶ. 

Finally, we will compare CS and entropy coding in term of rate-distortion performance. In 
entropy coding, some tail elements in ࢞ may be dropped so as to meet the bit budget. It makes 
entropy coding to have the similar distortion behavior as CS. The results of CS are calculated 
from (24) ~ (26). Two different ݌௪ are adopted in this experiment. For each ܵ, we calculate 
rate and distortion at different numbers of measurements. The rate distortion curves are de-
picted in Figure 5, where x coordinate is rate and y coordinate is distortion. One can observe, 
when the distortion is big, CS has the similar performance as entropy coding. The perfor-
mance gap between CS and entropy coding is increasing with rate increasing. One can also 
observe, when ܵ is increased, the performance gap can be reduced. One interesting question is 
arising here if the performance of CS can approach to that of entropy coding when ܵ is larger 
than a threshold. If it likes as the conclusion drawn by [8][9], what is the theoretic perfor-
mance gap between CS and entropy coding? Since we do not derive the accurate formulation 
of ܦଶ in this paper, this question cannot be answered yet.    
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Figure 3: The theoretical and actual evolutions of edges of different degrees. 

 
Figure 4: The actual and analyzed distortion vs. rate curves of ࡿ ൌ ૟ and ࡿ ൌ ૚૛. 
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Figure 5: The rate-distortion curves of CS and entropy coding. 

 
6. Conclusions 

This paper coverts the decoding process of compressive sensing to the evolution of a bipar-
tite graph and derives the close-form formulation of the evolution. Based on the formulation, 
we further analyze the performance of CS approximately and compare it with that of entropy 
coding. In future, we will derive the accurate distortion caused by unrecovered elements, 
which is able to conclude the performances between CS and entropy coding.  
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Appendix 
The matrix ࡭ in (13) can be decomposed to ࡭ ൌ  is a diagonal matrix and ࢫ where ,ࡼࢫ૚ିࡼ

is defined as   

ࢫ ൌ ൦ߠଶ 0 … 00 ଷߠ … 0… … ڰ …0 0 …  ௌ൪.                                                (A-1)ߠ
Since ࡭ and the diagonal matrix ࢫ are similar matrix, ߠଶ, …, ߠௌ should be eigenvalues of ࡭. 
Both sides of ࡭ ൌ ૚ିࡼ࡭ ૚ on the right side and we can getିࡼ are multiplied by ࡼࢫ ଵିࡼ ൌିࡼ૚ࢫ. We set ିࡼ૚ ൌ ௜ࡽ࡭ In terms of sub-matrix multiplication, we have .ࡽ ൌ ݅ ,௜ࡽ௜ߠ ൌ 2, … , ܵ.                                                     (A-2) 
It is easy to prove ߠ௜ ൌ െ݅. The column vector ࢏ࡽ is the eigenvector of the eigenvalue ߠ௜ and 
can be obtained by solving   (࡭൅݅ࡵ)ࡽ௜ ൌ 0.                                                            (A-3) 
Considering ࡭ in (13), (16) can be written in the following way 

࢏ࡽ(ࡵ൅݅࡭) ൌ ێێێۏ
݅ۍ െ 2 2 0 … 0 00 ݅ െ 3 3 … 0 0… … … ڰ … …0 0 0 … െܵ ൅ 1 ൅ ݅ ܵ െ 10 0 0 … 0 െܵ ൅ ۑۑۑے݅

ې
ێێێۏ
ۍ ௌݍ௜(ௌିଵ)ݍ…ଷ௜ݍଶ௜ݍ ۑۑۑے

ې ൌ 0.            (A-4) 
In the matrix of ࡭ ൅   there exists only one non-zero element in the ݅-th row and it locates at ,ࡵ݅
the (݅ ൅ 1)-th column because the diagonal element is equal to zero in the row. Thus, ݍ௝௜ for 
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݆ ൐ ݅ must be equal to zero. In other words, ࡽ is an upper triangle matrix. By further solving 
(A-4),  ࢏ࡽ (or ିࡼ૚) is represented by 

௝௜ିଵ݌ ൌ ௝௜ݍ ൌ ቐ 1 ݆ ൌ ݅(െ1)௜ି௝ ∏ ௞௜ି௞௜ିଵ௞ୀ௝ 1 ൏ ݆ ൑ ݅0 ݆ ൐ ݅ .                               (A-5) 
Similarly, ࡼ can be calculated by 

௜௝݌ ൌ ቐ 1 ݅ ൌ ݆(െ1)௝ି௜ ∏ ௞௜ି௞ିଵ௝ିଵ௞ୀ௜ ݆ ൏ ݅ ൑ ܵ0 ݅ ൏ ݆ .                                    (A-6) 
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