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Radon Representation-Based Feature Descriptor
for Texture Classification

Guangcan Liu, Zhouchen Lin, Senior Member, IEEE, and Yong Yu

Abstract—In this paper, we aim to handle the intraclass variation
resulting from the geometric transformation and the illumination
change for more robust texture classification. To this end, we pro-
pose a novel feature descriptor called Radon representation-based
feature descriptor (RRFD). RRFD converts the original pixel rep-
resented images into Radon-pixel images by using the Radon trans-
form. The new Radon-pixel representation is more informative in
geometry and has a much lower dimension. Subsequently, RRFD
efficiently achieves affine invariance by projecting an image (or
an image patch) from the space of Radon-pixel pairs onto an in-
variant feature space by using a ratiogram, i.e., the histogram of
ratios between the areas of triangle pairs. The illumination invari-
ance is also achieved by defining an illumination invariant distance
metric on the invariant feature space. Comparing to the existing
Radon transform-based texture features, which only achieve ro-
tation and/or scaling invariance, RRFD achieves affine invariance.
The experimental results on CUReT show that RRFD is a powerful
feature descriptor that is suitable for texture classification.

Index Terms—Image classification, image texture analysis.

1. INTRODUCTION

EXTURE analysis is important for the interpretation and
T understanding of real-world visual patterns. It has been
applied to many practical vision systems, such as biomed-
ical imaging, ground classification, segmentation of satellite
imagery, and pattern recognition. The automated analysis of
image textures has been a topic of extensive research in the past
decades. Existing features and techniques for modeling textures
include graylevel co-occurrence matrices [1], Gabor transforms
[2], [3], bidirectional texture function [4], [5], local binary
patterns [6]-[8], random fields [9], [10], autoregressive models
[11], wavelet-based features [12], [13], textons [14]-[17], affine
adaption [18]-[20], fractal dimension [21]-[24], SIFT [20],
[25], and some invariant feature descriptors such as Zernike
moments [26], circular harmonic functions [27], and others
[28]-[31]. Recently, some researchers have considered using
the Radon transform [32] for texture analysis. In [33], the
Radon transform is used to achieve rotation invariance, and
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Fig. 1. Changing viewpoint and illumination can have a dramatic impact on
the appearance of a material. These images are taken from the CUReT database.
Each row is of the same class.

[34] considers rotation and scale invariance. In this work, our
approach is also based on the Radon transform. However, our
approach achieves affine invariance in both geometry transform
and illumination transform, which is much more challenging.

Despite lots of work on this topic, some problems remain
unsolved. First, as shown in Fig. 1, the illumination variation
can have a dramatic impact on the appearance of a material and
the existing methods cannot handle under-illuminated images,
as in the third and the fourth columns of Fig. 1. One evidence
is that previous researchers always discard such unfavorable
images in their experiments [17], [19], [20], [23], [24], [35].
It is, therefore, desirable to overcome the difficulty caused by
illumination variance. Second, eliminating the interclass confu-
sion and the intraclass variation simultaneously is usually diffi-
cult: reducing the interclass confusion may produce more false-
positives, which goes against reducing the intraclass variation,
and vice versa. It is, therefore, crucial to develop texture fea-
tures that are not only discriminative across many classes, but
also invariant to key transformations, mainly including the geo-
metric affine transformation and the illumination change. Third,
many recently developed applications demand more robust and
effective texture features, e.g., the construction of an appear-
ance model in object recognition requires the clustering of local
image patches into visual words [36], which essentially is an
unsupervised texture clustering problem that needs the texture
descriptors to be simple (have few parameters to tune) and ro-
bust (perform well and stably).

In this paper, we propose a novel feature descriptor, called
radon representation-based feature descriptor (RRFD), that can
handle unfavorable change in illumination conditions, such as
underexposure, and also the variance caused by the geometric
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affine transformation. RRFD achieves both the geometric affine
transformation and the illumination change invariance in three
steps. First, RRFD converts original pixel represented images
into Radon-pixel images by using the Radon transform [32].
The new Radon representation is more informative in geometry
and has a much lower dimension. Second, RRFD projects an
image from the space of Radon-pixel pairs onto a feature space
by collecting the histogram of ratios between the areas of tri-
angle pairs,! which we call ratiogram. As the ratio of areas is
invariant up to the affine group, for a given image, RRFD pro-
duces a feature vector that is affine invariant in geometry, which
means that the variations resulting from geometric affine trans-
formations can be reduced. Unlike traditional feature vectors
which are points in R™ (Euclidean space), there is an [-variate?
Gaussian distribution for each dimension of the RRFD vector.
Since all the information, including the color if available, of an
image is kept, the feature vector has high discriminability. Fi-
nally, we define an illumination invariant distance metric on the
feature space such that the affine invariance in illumination is
also achieved. With these pairwise distances given, we compute
a kernel matrix and use kernel consistent learning algorithms
(e.g.,LDA [37] and SVM [38]) to perform texture classification.
Compared to previous approaches, including the Radon trans-
form-based ones [33], [34], [39], RRFD has several advantages.

— It is able to handle the affine transformation in the geom-

etry of texture.

— Itis able to handle unfavorable change in illumination con-

ditions, e.g., underexposure.

— It is easy to use. There are only two parameters in RRFD

and neither of them need careful adjustment.

— It is simple and robust. It yields satisfactory results in our

experiments.

One may have noticed that RRFD handles an image in a
global way. Hence, it cannot detect local features of interest
from the image. RRFD is a general descriptor whose goal is to
produce effective feature vectors for any image patterns given.
When applied to complex images that consist of several different
textures, instead of being applied to the whole image, RRFD
should be used to describe a local image region or window.

The rest of this paper is organized as follows. Section II in-
troduces the details of RRFD, Section III demonstrates the ex-
perimental results and Section IV concludes this paper.

II. RADON REPRESENTATION-BASED FEATURE DESCRIPTOR
Our RRFD is outlined in Fig. 2. In the following, we describe
details of each step.
A. Radon Transform

The 2-D Radon transform (Fig. 3) [32] is the integral trans-
form that computes the integral of a function along straight lines.
Every straight line can be represented as

(X(¢),Y(t)) = t(sina, — cos ) + s(cos a, sin )

where s is the signed distance from the origin to the line and «
is the angle between the normal of the line and the z axis. The

A pair of Radon-pixels correspond to a pair of triangles.

2l = 6 for three-channel color images and I = 2 for grayscale images.
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Fig. 2. Tllustration of the RRFD. Given two texture images, (a) we want to
compute a distance and (d) measure the similarity between them. To this end,
we first convert each image into Radon-pixel images (b) by the Radon trans-
form [32]. As one Radon-pixel actually indicates a line segment in the orig-
inal image and a pair of Radon-pixels correspond to four triangles, there are
two affine invariants associated to a pair of Radon-pixels. We, therefore, define
a fast affine invariant transform on the Radon-pixel image and each image is
then transformed into a vector of an m-dimensional vector space (c). The at-
tributes of the vector are modeled by multivariate Gaussian distributions, i.e.,
= (Ni(p1,Z1), -+ s Non(fom» S )7 . Finally, we define an illumination
invariant distance metric on the vector space to measure the similarity between
texture images.

AY

Fig. 3. Tllustration of the Radon transform.

Radon transform of a function f(X,Y’) on the plane is defined
by

R(f)(a;s) =
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The Radon transform is a special case of image projection op-
erations [32]. It has found wide applications in many areas such
as tomographic reconstruction. It has also been applied to many
computer vision areas, such as image segmentation, structural
extraction by projections, determining the orientation of an ob-
ject, recognition of Arabic characters [40] and 1-D processing,
filtering and restoration of images [41], [42]. Al-Shaykh and
Doherty [39] used the Radon transform for invariant image anal-
ysis. By combing the Radon transform and singular value de-
composition (SVD), they developed an efficient invariant anal-
ysis method. In this work, we have four major reasons to adopt
the Radon transform. First, as in [39], the Radon-pixel image
[Fig. 2(b)] brings a large advantage to achieving global geo-
metric affine invariance. This is because the Radon-pixel image
has more geometric information than the original pixel image.
It can be seen that one Radon-pixel corresponds to a line seg-
ment which needs two pixels in the original image to describe.
Second, a single Radon-pixel contains the information of a line
segment in the original image. This property makes Radon-
pixels more robust to image noise and it also fits our motiva-
tion of using global features to describe textures. Third, the
dimension of Radon-pixel representation is much lower than
that of the original image. For an n-pixel image, the number of
Radon-pixels is about O(y/n). Finally, the Radon transform is
invertible. In principle, the original image can be roughly recov-
ered from its Radon-pixel image. The invertibility is the chief
characteristic that distinguishes the Radon transform from other
transformations such as SIFT. In summary, the Radon transform
converts a pixel represented image into an equivalent, lower
dimensional and more geometrically informative Radon-pixel
image, which is a good basis of defining invariant features.

B. Affine Invariant Feature Transform

To achieve the affine invariance, we want to find a projection
from the image space to a feature space so that the projection is
invariant up to the affine group. We achieve this in three steps:

1) Selecting the Observation Space of an Image: This step
plays the role of feature selection. It is important because an
inappropriate observation space will result in ineffective fea-
tures. For example, if we view an image as a set of single pixels,
then we can only obtain a 1-D affine invariant feature space
and, therefore, can only obtain a single scalar to describe an
image. Under the affine transformation, to ensure the discrim-
inability of features, one needs to consider at least pixel quadru-
ples (four-pixel groups), which causes enormous computation.
However, we just need to consider Radon-pixel pairs in the
Radon-pixel representation, as every Radon pixel corresponds
to all the pixels on the corresponding line segment in the original
image. Let an image I be represented by a Radon-pixel image
{r1,...,71}. The observation space is then a set of Radon-pixel
pairs I, = {(r;,r;)}. Since for an n-pixel image, the number
of Radon-pixels is O(y/n), the dimension of I,., thus is O(n).

2) Generating the Affine Invariant Feature Vector:
Given an image represented by a set of Radon-pixel pairs
I, = {(ri,7;)}, RRFD generates an m-dimensional feature
vector

v = ([(rir)]y oo [rari)) ()

b d
ype | Type ll
Fig. 4. Two types of Radon-pixel pairs. For type I pairs, the corresponding
line segments in the original pixel image have intersection points outside them.
For type II pairs, the intersection points are inside them. As the area is a rela-
tive invariant under the affine transformation group, the quotient of the areas of
any two triangles is invariant. A pair of Radon-pixels, therefore, result in two
invariants.

Fig. 5. Example of the information contained in one RRFD key. (a) The orig-
inal texture image. (b) The image recovered from one RRFD key which is a
collection of Radon-pixels that belong to a cluster. In this experiment, we set
Aa = 30° and Aiv = 0.1.

where [(r;, 7j)]x (k = 1---m) denotes a cluster of Radon-pixel
pairs. To make z affine invariant, we may find the invariants
under the affine transformation and break them into m bins,
each of which determines a cluster. Namely, the feature vector is
formed by collecting a histogram of the affine invariants. In gen-
eral, it is hard and unnecessary to find all invariants in practice.
We just need to find sufficient invariants to determine part of the
feature space. For a Radon-pixel pair (r;, r;) whose ends in the
original pixel image are P;;, P;2, P;1 and P (Fig. 4), respec-
tively, there are two invariants under the affine transformation

_ | PP Py _ |PPPjy|

= _——2— and =
|PP;2Pjo| | P Pia Pj1|

iUl Z"Ug (2)
where |.| denotes the area of a triangle. As the order of two
triangles is unimportant, we assume that 0 < 7v; < dvg <
1. Moreover, as shown in Fig. 4, the intersection type is also
preserved by affine transformation. This can be embodied by the
above two invariants by using oriented area instead, i.e., —1 <
w1 < e < 1. By breaking the interval [—1, 1] into bins
[—1, —14+Ad], [-14+Adv, —14+2A40], ..., [1—-Adv, 1], where
Asv is the bin size, we can have a finite-dimensional vector
by putting the Radon-pixel pairs whose invariants locate in the
same bin into the same cluster. As the bins are constructed by
using the affine invariants, this vector is naturally invariant up
to the affine transformation. The basis of the feature vector is
only dependent on the bin size Asv. So, different images are

projected onto the same feature space. In practice, because it
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Fig. 6. (a) Examples of 10 x 10 histograms of RRFD keys. Each row is from the same texture. Each column is at the same dimension. For visualization, the
original 6-D vectors have been projected to be 2-D by PCA. (b) The distribution of the kurtosis of the vectors sampled from the three databases we used in this
paper. There are 62,568 samples for VisTexture [43] (also known as MIT Texture), 24,024 samples for Brodatz [44] and 162,360 samples for CUReT. It can be
seen that it is suitable to use a Gaussian distribution to model the RRFD keys because the majority of the kurtosis is 0. In these experiments, we set Aa = 30°

and Awwv = 0.1.

is hard to acquire the boundary of a texture, we simply regard
the image rectangle as the boundaries. So, like previous affine
invariant approaches, RRFD only achieves approximate affine
invariance.

3) Describing the Feature Vector: Each dimension of the fea-
ture vector « is a cluster of Radon-pixel pairs [(7;,7;)]x (K =
1,---,m), which we call an RRFD key (Fig. 5). It is inconve-
nient to use such feature vectors for texture classification. So we
need to reformat them such that it is easy to measure the distance
or similarity between feature vectors. For three-channel images
(such as RGB-color images), as a Radon-pixel contains three
scalars, for each Radon-pixel pair we compute a 6-D vector

(k1,...,ke) as follows:3
K :% |R(r;) — R(rj)|, ko= % |G(r:) — G(ry)]
ks =2 1B(r) = B(ry)l. ks = 5 |B(r) + B(ry)]
%_émwn+mn» %=%Umﬂ+BW”

3For grayscale images, an RRFD key is a set of 2-D vectors that can be com-
puted in a similar way.

where R(-), G(+), and B(+) are the red, the green and the blue
intensity values of a Radon-pixel, respectively. We define the
above six quantities because the feature values should be inde-
pendent of the permutation of r; and 7; and these six quanti-
ties are the simplest invariants under permutation. As shown in
Fig. 6, it is suitable to use a multivariate Gaussian to fit the dis-
tribution of the vector (k1, . .., kg) for every RRFD key. There-
fore, the RRFD feature vector of a texture image is represented
by an m-dimensional Gaussian distribution vector, i.e.,

2= (N1(11,51), s Ny (ams Zon)) " 3)

where p; and Y; are the mean and the covariance matrix of a
6-variate Gaussian distribution, respectively.

C. Illumination Invariant Distance Metric

Modeling the illumination change is difficult because it is re-
lated to both the lighting condition and the material reflection
property. However, from a global view of a texture, it is accept-
able to only consider an affine model I — sI + ¢ with two
parameters s (scale) and ¢ (translation) [19], [23]. Fig. 7 shows
an example of applying the affine model to a color texture. It can
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s=2.0

s=0.5

original image

Fig. 7. Color texture images are sensitive to the illumination change. The
second and the third images are obtained by multiplying a scale s to the first
image.

be seen that considering the illumination change is very impor-
tant. As mentioned in [16], previous approaches often handle
this problem using some kinds of normalization. Obviously, the
impact of the scale s can be eliminated by normalizing the in-
tensities of an image to be summed to one. However, such nor-
malization will change the image information and lose many
useful features. In our approach, the illumination invariance is
achieved by designing a special distance metric.

For simplicity, we start with a distance metric without con-
sidering the change of illumination. Given two RRFD vectors x
and z computed as (3), we compute their distance by

d(z,&) = J(N;,N;)
i=1
where J(-,-) is the Jeffrey divergence, ie., the sym-
metric version of the KL divergence: J(N;,N;) =

KL(N;|N;) + KL(N;|N;). With the Gaussian model in
(3), the distance can be computed as

: %i:) O (5757 (s - )

+§ ZTT (B8 +2718) - ml )

where [ is the number of variables in the Gaussian distribution.
This distance is a standard metric as it satisfies positive definite-
ness, symmetry and the triangle inequality.

Now consider that an image I is taken under a different illu-
mination and becomes Iy, ;1 = sI + t. The Gaussian distribu-
tion N;(j;, 3; ), therefore, becomes N;(su; + te, s>Y;), where
e is an [-dimensional vector with all ones. For two observed im-
ages I, 4y and I{S 7 their distance should be d, ;. ' (7, 7). Re-
placing ju;, fii, $i and 3; by sp; + te, 8fi; + te, s2%; and §2%;
in (4), respectively, one can see that d, ; , ;(x, ) only depends
on two variables: Ds = s/$ and At =t — i, ie.

ds,%,t,f(xv f) = dDS,At(xv ‘/IN:)

Although the illumination conditions are unknown and it is
difficult or impossible to estimate the parameters for each
image, we can achieve the illumination invariance by mini-
mizing dps a2, £), i.., we compute an illumination invariant
distance by

diy (2, %) = min dp, ar(, 7) ®)

Ds,

I

Fig. 8. Effectiveness of using the illumination invariant distance. Images Iy
and I, are from two different texture classes, and image I is from the same
class as I>. Without illumination considered, we get d(I, ;) = 9613.62 and
d (I e 2) = 11119.52 and may obtain the wrong classification result. However,
using the illumination invariant distance metric, we get d;, (I, I;) = 7692.05
and d;, (I, I>) = 3926.15, which correctly helps us to judge that I is closer to
I, than I;. The images are from the CUReT database. In this experiment, we
set Ao = 15° and Adv = 0.1.

which means that we compute the distance between two textures
I and I after finding the best match between their illuminations.
To minimize (5) one just needs to minimize a one-variable func-
tion of Ds, i.e.,

div($7j) = Hll)lsn f(DS)

i=1 el (Ei_l + (D5)2i¢_1) €

3

1 Ty —1
+§Z;(Mi27; uz+M12 /u)—ml

as At can be easily found as a function of Ds by letting
9(dps at)/O(At) = 0.4 The final solution can be found
numerically.

Fig. 8 shows the effectiveness of using the illumination in-
variant distance. It can be seen that the invariant distance is ef-
fective in handling large illumination change. One should notice
that the distance computed by (5) satisfies positive definiteness
and symmetry but does not satisfy the triangle inequality. This
is natural because the illumination parameters are unknown and
they are determined dynamically.

III. EXPERIMENTS

CUReT is the most challenging database for texture classi-
fication. It is a large database that contains 61 texture classes.
Nine out of the 61 classes contain 410 images per class and the
remaining 52 classes contain 205 images per class. As shown

4Substituting the expression of At in Ds to dps,a¢(w, &) yields f(Ds).
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TABLE I
RESULTS ON THE CUReT DATABASE. MEANS AND STANDARD DEVIATIONS ARE
COMPUTED OVER 1000 RANDOM SPLITS OF THE TRAINING AND THE TEST SETS

92-images-per-class dataset all images

T RRFD [24] [35] RRFD
84.60+0.83 81.67£0.96 — 64.641+1.36
12 | 92.23+0.46 89.74+0.66 91.60 | 78.23+1.64
23 | 96.82+0.32 94.69+0.45 94.59 | 87.824+0.71
46 | 99.30+0.18 97.50+0.30 97.58 | 94.2040.38

in Fig. 1, there exists both large interclass confusion and intr-
aclass variation. The images of a class are obtained under un-
known viewpoint and illumination (see each row in Fig. 1), and
some different classes look similar in appearance (see the first
two rows in Fig. 1). Although lots of previous algorithms have
been demonstrated on this database and have shown high clas-
sification accuracy, as mentioned in Introduction, they have just
been tested on a 92-images-per-class subset which does not con-
tain the unfavorably illuminated images [17], [19], [20], [23],
[24], [35], making the rest relatively easy to be classified. In
this section, we demonstrate our RRFD on the whole database.
To compare this with previous approaches, we also test RRFD
on the 92-images-per-class database, which is built according to
[17]. We compare RRFD with the approaches proposed in [24],
[35] because Hayman’s approach [35] is the most competitive
according to the survey in [20] and the approach in [24] is a re-
cently developed one.

Classification Algorithm: Although RRFD does not provide
any explicit feature vector in the R™ space, kernel-based clas-
sifiers can still be designed. We first choose a Gaussian kernel
and compute a kernel matrix by

K(z,3) = exp <_M>

202

where o is set to be 55 in our experiments. With this kernel,
we can use a kernel-based LDA algorithm proposed in [45] to
project the original data onto a linearly separable space and
adopt a multiclass SVM [38] (one-against-one) with a linear
kernel to train class models and classify test images.

Classification Results: To assess the classification perfor-
mance, T training images are randomly chosen from each
class while the remaining images are put into the test set.
The configuration of 7' follows that in [17], [24], and [35].
Table I compares the performance of RRFD with the methods
of [24] and [35]. On the 92-images-per-class dataset, RRFD
outperforms both baselines. The advantage of RRFD comes
from two aspects. On the one hand, RRFD adopts a per-pixel
dense descriptor to represent an image, which makes RRFD
more discriminative (for high precision). On the other hand,
RRFD has appropriately handled the change caused by the
geometric affine transformation and the illumination change,
which makes RRFD capable of manipulating large intraclass
variation (for high recall).

As expected, RRFD also achieves promising results when
tested with the entire CUReT database. At 1" = 46, it achieves
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(@) (b) (c)

Fig. 9. “Invisibility” of images is relative. (a) An “invisible” image caused by
underexposure. (b) The image obtained by multiplying a scale s = 2.0 to the
“invisible” image (a). (c) The image obtained by multiplying a scale s = 4.0 to

(@)

a classification rate of 94.20 + 0.38. As mentioned by previous
researchers [17], [19], [20], [23], [24], [35], it is hard to apply
their approaches to the entire CUReT database because there
are a portion of “invisible” images: “... report results for 92
images per class. The remaining images do not have a suffi-
ciently large portion of the texture visible to be cropped from
the background.” [24]. Since previous methods depend on filter
banks and/or interest points detectors, which require textures
being clearly imaged, it is hard for them to handle such “invis-
ible” images as in Fig. 9(a). According to our statistics, about
30% of the images of CUReT are “invisible.” It is, therefore,
hard for them to achieve a 70% classification rate on the entire
CUReT database. In comparison, the results in the last column
of Table I show that RRFD still performs satisfactorily on the en-
tire CUReT database. The main reason is that those “invisible”
images are actually visible to RRFD. First, unlike previous ap-
proaches, which always try to bypass the “useless” information
and target on the features of interest only, RRFD does not dis-
card any information in the texture images. Second, as shown
in Fig. 9, an “invisible” image can be made visible by choosing
appropriate parameters s and ¢ in the affine illumination model
I+ = sI + t. However, RRFD does not try to adjust the illu-
mination explicitly. Rather, it utilizes the illumination invariant
distance metric to compute the distance between two textures. In
this way, Fig. 9(a)—(c) actually does not produce any difference
to RRFD. We have demonstrated the power of the illumination
invariant distance metric in Fig. 8.

Impact of Parameters: RRFD only has two parameters. The
first one is A« required by the discrete Radon transform, which
projects an image in 180° /A« directions.> Another one is the
bin size Azv used for collecting the invariants in (2). There is
no special consideration for Aiv and we set Ajv = 0.1 in all
experiments. Fig. 10 shows the impact of A« on the classifica-
tion rates. We see that the classification accuracy decreases very
slowly with the increase of Aa. As RRFD works much faster
with larger Aa’s (i.e., smaller Radon-pixel image size), in prac-
tice one may set this parameter by balancing the effectiveness
and the efficiency.

Examples of Incorrectly Classified Images: There are about
5.8% images in CUReT are not correctly classified. Part of the
error is due to the high similarity among different classes (e.g.,
the two classes shown in the first two rows of Fig. 1). Another
reason is that RRFD is not good at classifying images that have

5Another parameter As in Radon transform is always set to be 1 pixel and it
need not be specified.
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accuracy

—P— T=6
50} —©-T=12
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—5-T=46
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Fig. 10. Impact of Ac«. Another parameter is set to be Atv = 0.1. The clas-
sification rates are the mean of 1000 random runs. These experiments are done
on the entire CUReT database. T is the number of training images.

Fig. 11. Some examples of the images that are incorrectly classified. These
images all have nontexture backgrounds.

nontexture backgrounds, as shown in Fig. 11. We have pointed
out this at the end of Introduction.

Performance on Some Simple Databases: We test RRFD on
VisTexture [43] and Brodatz [44] (Fig. 12) that have much less
variations than CUReT. The part of VisTexture we use has 15
texture classes, each of which contains 4 ~ 20 images. Bro-
datz has 13 classes with each class containing seven images.
As these two databases are small, we do not perform random
training/testing split, but instead apply RRFD on all images and
observe its accuracy, defined as the percentage of the images
that are correctly classified using their nearest neighbors. RRFD
achieves 85.87% and 93.21% on VisTexture and Brodatz, re-
spectively. These results illustrate that RRFD does not degen-
erate if the database has little or no variation caused by the ge-
ometry and/or the illumination transformations.

IV. CONCLUSION

In this paper, we propose an effective feature descriptor,
RRFD, for texture classification. In contrast to previous
filter-bank-based approaches, RRFD extracts Radon features
that are invariant up to the geometric affine transformation.
The illumination invariance is also achieved by computing
the illumination invariant distance between affine invariant

Fig. 12. Some examples of the images in VisTexture (the top row) and Brodatz
(the bottom row). Each row is of the same class.

RRFD vectors. Another feature of RRFD is that it effectively
makes use of the color information so as to produce more
accurate texture descriptors. Note here that RRFD can also be
applied to grayscale images. In this case, each dimension of the
feature vector is a two-variate Gaussian distribution. Moreover,
RRFD has only two parameters that do not need careful tuning.
Finally, RRFD is computationally efficient. Our experiments
demonstrated on a large scale database, CUReT, show that
RRFD performed well and stably.

Actually, RRFD provides a general feature descriptor, so its
application should not be limited to texture analysis only. The
function of RRFD is to output a feature vector for a given image
pattern, which can be an entire image or a local image window.
We are seeking wider applications of RRFD in parallel to further
improve the current approach.
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