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Abstract

The method of common spatio-spectral patterns (CSSPs) is an extension of com-
mon spatial patterns (CSPs) by utilizing the technique of delay embedding to al-
leviate the adverse effects of noises and artifacts on the electroencephalogram
(EEG) classification. Although the CSSPs method has shown to be more power-
ful than the CSPs method in the EEG classification, this method is only suitable for
two-class EEG classification problems. In this paper, we generalize the two-class
CSSPs method to multi-class cases. To this end, we first develop a novel theory of
multi-class Bayes error estimation and then present the multi-class CSSPs (MC-
SSPs) method based on this Bayes error theoretical framework. By minimizing the
estimated closed-form Bayes error, we obtain the optimal spatio-spectral filters of
MCSSPs. To demonstrate the effectiveness of the proposed method, we conduct
extensive experiments on the BCI competition 2005 data set. The experimental
results show that our method significantly outperforms the previous multi-class
CSPs (MCSPs) methods in the EEG classification.

1 Introduction

The development of non-invasive brain computer interface (BCI) using the electroencephalogram
(EEG) signal has become a very hot research topic in the BCI community [1]. During the last sev-
eral years, a large number of signal processing and machine learning methods have been proposed
for EEG classification [6]. It is challenging to extract the discriminant features from the EEG signal
for EEG classification. This is because in most cases the EEG data are centered at zero and thus
many traditional discriminant feature extraction methods, e.g., Fisher’s linear discriminant analysis
(FLDA) [7], cannot be successfully used. Among the various EEG feature extraction methods, the
common spatial patterns (CSPs) method [2] is one of the most popular. Given two classes of EEG
signal, the basic idea of CSPs is to find some projection directions such that the projections of the
EEG signal onto these directions will maximize the variance of one class and simultaneously mini-
mize the variance of the other class. Although CSPs have achieved great success in EEG classifica-
tion, this method only utilizes the spatial information of the EEG signal. To utilize both the spatial
and the temporal information of the EEG signal for classification, Lemm et al. [3] proposed a new
EEG feature extraction method, called common spatio-spectral patterns (CSSPs), which extended
the CSPs method by concatenating the original EEG data and a time-delayed one to form a longer
vector sample, and then performed EEG feature extraction, which is similar to the CSPs method,
from these padded samples. The experiments in [3] showed that the CSSPs method outperforms the
CSPs method.

A multi-class extension of the two-class CSPs method (MCSPs) was proposed by Dornhege et al.
[4] who adopted a joint approximate diagonalization (JAD) technique to find the optimal spatial
filters. Grosse-Wentrup and Buss [5] recently pointed out that the MCSPs method has two major
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drawbacks. The first drawback is that this method lacks solid theoretical foundation with respect to
its classification error. The second one is that the selection of the optimal spatial filters of MCSPs
is based on heuristics. To overcome these drawbacks, they proposed a method based on mutual
information to select the optimal spatial filters from the original MCSPs result. Nevertheless, it
should be noted that both the MCSPs methods are based on the JAD technique, where a closed-form
solution is unavailable, making the theoretical analysis difficult.

In this paper, we generalize the two-class CSSPs method to multi-class cases, hereafter called the
MCSSPs method. However, we do not adopt the same JAD technique used in the MCSPs method
to derive our MCSSPs method. Instead, we derive our MCSSPs method directly based on the Bayes
error estimation, and thus provide a solid theoretic foundation. To this end, we first develop a novel
theory of multi-class Bayes error estimation, which has a closed-form solution to find the optimal
discriminant vectors. Based on this new theoretic framework, we propose our MCSSPs method for
EEG feature extraction and recognition.

2 Brief Review of CSPs and CSSPs

Let Xt
i = {xt

i,j ∈ IRd|j = 1, · · · ,mi,t} (t = 1, · · · , ni; i = 1, · · · , c) denote the EEG data set from
thetth trial of theith class, whered, c, ni, andmi,t denote the number of channels (i.e., recording
electrodes), the number of classes, the number of trials of theith class, and the number of samples
(i.e., recording points) in thetth trial of the ith class, respectively. Assume that the EEG data
conditioned on each class follows a Gaussian distribution with a zero mean, i.e.,pi(x) = N (0,Σi)
(i = 1, · · · , c)1. Then the main task of EEG feature extraction is to find a linear transformation
W ∈ IRd×k (k < d), such that for finite training data using the projected vectorsyt

i,j = WT xt
i,j to

classify the EEG signal may lead to better classification accuracy than usingxt
i,j .

2.1 The CSPs Method

For the two-class EEG classification problem, the basic idea of CSPs is to find a transformation
matrixW that simultaneously diagonalizes both class covariance matricesΣ1 andΣ2 [2], i.e.,

WT ΣiW = Λi, (i = 1, 2), (1)

whereΛi = diag{λi,1, · · · , λi,d} (i = 1, 2) are diagonal matrices. The spatial filters can be chosen
as the columns ofW associated with the maximal or minimal ratio ofλ1,j

λ2,j
(j = 1, · · · , d). Parra et

al. [6] proved that the CSPs method can be formulated as the following optimization problem:

ω = arg max
ω

max
{

ωT Σ1ω

ωT Σ2ω
,
ωT Σ2ω

ωT Σ1ω

}
, (2)

and this optimization problem boils down to solving the following generalized eigenvalue decom-
position problem:

Σ1ω = λΣ2ω. (3)

Let ω1, · · · , ωd andλ1, · · · , λd be the eigenvectors and the corresponding eigenvalues of equation
(3), then the spatial filtersωi1 , · · · , ωik

can be chosen from the eigenvectorsω1, · · · , ωd associated
with the largest and the smallest eigenvalues.

ThenW = [ωi1 , · · · , ωik
] and the projection ofXt

i with W can be expressed as:

Yt
i = WT Xt

i. (4)

2.2 The CSSPs Method

The CSSPs method is an extension of CSPs by concatenating the original EEG data and a time-
delayed one to form a longer vector sample, and then performing EEG feature extraction, which
is similar to the CSPs method, from these padded samples. More specifically, letδτ denote the
time-delay operator with the delayed timeτ , i.e.,

δτ (xt
i,j) = xt

i,j−τ . (5)

1This model is often assumed in the literature, e.g., [5].
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Then, equation (4) can be re-written as the following:

Ŷt
i = WT

(0)X
t
i + WT

(τ)δ
τ (Xt

i), (6)

whereW(0) andW(τ) are the transformation matrices on the EEG dataXt andδτ (Xt), respec-
tively.

To express the above equation in a similar form as CSPs, we define

X̂t
i =

(
Xt

i
δτ (Xt

i)

)
. (7)

In this way, solving the CSSPs problem boils down to solving a similar generalized eigenvalue
problem as defined in equation (3), if we use the new class covariance matricesΣ̂1 and Σ̂2 to
replace the original class covariance matricesΣ1 andΣ2, where

Σ̂i =
Σ̃i

trace(Σ̃i)
, and Σ̃i =

∑
t

X̂t
i(X̂

t
i)

T . (8)

3 MCSSPs Based on Multi-class Bayes Error Estimation

In this section, we extend the CSSPs method to the multi-class case. To begin with, we develop a
novel theory of multi-class Bayes error estimation. Then we present our MCSSPs method based on
this Bayes error framework.

3.1 Multi-class Bayes Error Estimation

It is well known that the Bayes error regarding classesi andj can be expressed as [7]:

ε =
∫

min(Pipi(x), Pjpj(x))dx, (9)

wherePi andpi(x) are the apriori probability and the probability density function of theith class,
respectively. Letεij =

∫ √
PiPjpi(x)pj(x)dx. By applying the following inequality:

min(a, b) ≤
√

ab, ∀a, b ≥ 0, (10)

and the assumptionpi(x) = N (0,Σi), we obtain the following upper bound of the Bayes error:

ε ≤ εij =
√

PiPj exp

(
−1

2
ln

|Σ̄ij |√|Σi||Σj |

)
=

√
PiPj

(
|Σ̄ij |√|Σi||Σj |

)− 1
2

, (11)

whereΣ̄ij = 1
2 (Σi + Σj). The expression inexp(·) is the simplified Bhattacharyya distance [7]. If

we project the samples to 1D by a vectorω, then the upper boundεij becomes:

εij =
√

PiPj

(
ωT Σ̄ijω√

(ωT Σiω)(ωT Σjω)

)− 1
2

. (12)

Defineu = ωT Σ̄ijω andv = ωT ∆Σijω, where∆Σij = 1
2 (Σi −Σj). Thenεij can be written as

εij =
√

PiPj

(
u√

u2 − v2

)− 1
2

=
√

PiPj

(
1−

( v

u

)2
) 1

4

≤
√

PiPj

(
1− 1

4

( v

u

)2
)

. (13)

For thec classes problem, the upper bound of the Bayes error in the reduced feature space can be
estimated asε ≤ ∑c−1

i=1

∑c
j=i+1 εij [8]. Then, from equation (13), we obtain that

ε ≤
c−1∑

i=1

c∑

j=i+1

εij ≤
c−1∑

i=1

c∑

j=i+1

√
PiPj

(
1− 1

4

(
ωT ∆Σijω

ωT Σ̄ijω

)2
)

=
c−1∑

i=1

c∑

j=i+1

√
PiPj − 1

8

c∑

i=1

c∑

j=1

√
PiPj

(
ωT (∆Σij)ω

ωT Σ̄ijω

)2

. (14)
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Recursively applying the following inequality
(

a
b

)2 +
(

c
d

)2 ≥
(

a+c
b+d

)2

, ∀a, c ≥ 0; b, d > 0 to the

error bound in equation (14), we have

ε ≤
c−1∑

i=1

c∑

j=i+1

√
PiPj − 1

8

(∑c
i=1

∑c
j=1(PiPj)

5
4 |ωT ∆Σijω|∑c

i=1

∑c
j=1 PiPjωT Σ̄ijω

)2

. (15)

Let Σ̄ =
∑c

i=1 PiΣi be the global covariance matrix. Then we have
c∑

i=1

c∑

j=1

PiPjΣ̄ij =
1
2

c∑

i=1

c∑

j=1

PiPj(Σi + Σj) = Σ̄. (16)

Combining equations (15) and (16), we have

ε ≤
c−1∑

i=1

c∑

j=i+1

√
PiPj − 1

8

(∑c
i=1

∑c
j=1(PiPj)

5
4 |ωT ∆Σijω|

ωT Σ̄ω

)2

. (17)

Assume that the prior probabilities of the classes are the same, i.e.,Pi = Pj = P , which holds for
most EEG experiments. Then equation (17) becomes

ε ≤
c−1∑

i=1

c∑

j=i+1

P − 1
8

(
P

5
2

∑c
i=1

∑c
j=1 |ωT (Σi −Σj)ω|
2ωT Σ̄ω

)2

. (18)

On the other hand, from̄Σ =
∑c

i=1 PiΣi =
∑c

i=1 PΣi, we obtain that

P
c∑

i=1

|ωT (Σi −Σj)ω| ≥
∣∣∣∣∣∣

c∑

j=1

PωT (Σi −Σj)ω

∣∣∣∣∣∣
= |ωT (Σi − Σ̄)ω|. (19)

Combining equations (19) and (18), we obtain that

ε ≤
c−1∑

i=1

c∑

j=i+1

P − 1
8

(
P

3
2

∑c
i=1 |ωT (Σi − Σ̄)ω|

2ωT Σ̄ω

)2

. (20)

3.2 MCSSPs Based on Multi-class Bayes Error Estimation

Let Σ̂i (k = 1, · · · , c) denote the new class covariance matrices computed via equation (8). Then
to minimize the Bayes error, we should minimize its upper bound, which boils down to maximizing
the following discriminant criterion

J(ω) =
∑c

i=1 |ωT (Σ̂i − ˆ̄Σ)ω|
ωT ˆ̄Σω

. (21)

where ˆ̄Σ is the global covariance matrix. Based on this criterion, we define thek optimal spatial
filters of MCSSPs as follows:

ω1 = arg max
ω

∑c
i=1 |ωT (Σ̂i − ˆ̄Σ)ω|

ωT ˆ̄Σω
,

· · ·

ωk = arg max
ωT ˆ̄Σωj = 0,

j = 1, · · · , k − 1

∑c
i=1 |ωT (Σ̂i − ˆ̄Σ)ω|

ωT ˆ̄Σω
. (22)

Let ˆ̂Σi = ˆ̄Σ
− 1

2
Σ̂i

ˆ̄Σ
− 1

2
(i = 1, · · · , c) andα = ˆ̄Σ

1
2
ω. Then solving the optimization problem of

equation (22) is equivalent to solving the following optimization problem

α1 = arg max
α

∑c
i=1 |αT ( ˆ̂Σi − I)α|

αT α
,

· · ·

αk = arg max
αT Uk−1 = 0

∑c
i=1 |αT ( ˆ̂Σi − I)α|

αT α
, (23)
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whereUk−1 = [α1, · · · , αk−1] andI is the identity matrix. Suppose thatsi ∈ {+1,−1} denotes

the positive or negative sign ofαT ( ˆ̂Σi − I)α. Then

|αT (Σ̂i − I)α| = αT si(Σ̂i − I)α. (24)

So equation (23) can be expressed as

α1 = arg max
α

αT
∑c

i=1 si(
ˆ̂Σi − I)α

αT α
,

· · ·

αk = arg max
αT Uk−1 = 0

αT
∑c

i=1 si(
ˆ̂Σi − I)α

αT α
. (25)

Let T(s) =
∑c

i=1 si(
ˆ̂Σi− I), wheres = [s1, s2, · · · , sc]T andsi ∈ {+1,−1}. Then the first vector

α1 defined in equation (25) is the principal eigenvector associated with the largest eigenvalue of the
matrixT(s). Suppose that we have obtained the firstk vectorsα1, · · · , αk. To solve the(k + 1)-th
vectorαk+1, we introduce Theorems 1 and 2 below. The similar proofs of both theorems can be
found in [9].
Theorem 1.LetQkRk be the QR decomposition ofUk. Thenαk+1 defined in (25) is the principal
eigenvector corresponding to the largest eigenvalue of the following matrix

(Id −QkQT
k )T(s)(Id −QkQT

k ).

Theorem 2. Suppose thatQkRk is the QR decomposition ofUk. Let Uk+1 = (Uk αk+1),
q = αk+1 −Qk(QT

k αk+1), andQk+1 =
(
Qk

q
‖q‖

)
. Then

Qk+1

(
Rk QT

k αk+1

0 ‖q‖
)

is the QR decomposition ofUk+1.

The above two theorems are crucial to design our fast algorithm for solving MCSSPs: Theorem 1
makes it possible to use the power method to solve MCSSPs, while Theorem 2 makes it possible to
updateQk+1 from Qk by adding a single column. Moreover, it is notable that

Id −QkQT
k =

k∏

i=1

(Id − qiqT
i ) = (Id −Qk−1QT

k−1)(Id − qkqT
k ), (26)

whereqi is the i-th column ofQk. Equation (26) makes it possible to update the matrix(Id −
QkQT

k )T(s)(Id−QkQT
k ) from (Id−Qk−1QT

k−1)T(s)(Id−Qk−1QT
k−1) by the rank-one update

technique.

Let S = {s|s ∈ {+1,−1}c} denote the parameter vector set, whose cardinality is2c. Then we have
that

max
‖α‖=1

c∑

i=1

|αT ( ˆ̂Σi − I)α| = max
s∈S

max
‖α‖=1

αT T(s)α. (27)

If c is not too large, a full search onS similar to that proposed in [9] is affordable. We present the
pseudo-code of our MCSSPs method using the full search onS in Algorithm 1. However, ifc is a
bit large, we may adopt a similar approach as proposed in [10], which is based on a greedy search,
to find the suboptimal solution. The pseudo-code based on the greedy search is given in Algorithm
2.

4 EEG Feature Extraction Based on the MCSSPs

LetXt
i be the EEG sample points from thetth trial under theith condition (i.e., theith class). Letωj

be thejth optimal spatial filter of the MCSSPs method. Construct the new dataX̂t
i =

(
Xt

i
δτ (Xt

i)

)
,

and let

p̂t
i,j = ωT

j X̂t
i (28)
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Algorithm 1: The MCSSPs Algorithm Based on the Full Search Strategy

Input:
• Input data matrixX and the class label vectorl.

Initialization:

1. Compute the average covariance matricesΣ̂i (i = 1, · · · , c) and ˆ̄Σ;

2. Perform SVD of ˆ̄Σ: ˆ̄Σ = UΛUT , computeˆ̄Σ
− 1

2 = UΛ− 1
2 UT and ˆ̄Σ

−1
= UΛ−1UT ;

3. Computeˆ̂Σi = ˆ̄Σ
− 1

2
Σ̂i

ˆ̄Σ
− 1

2
and∆ ˆ̂Σi = ˆ̂Σi − I (i = 1, · · · , c);

4. Enumerate all the elements ofS and denote them byS = {s1, s2, · · · , s2c};
For i = 1, 2, · · · , k, Do

1. For j=1 to2c

• ComputeT(si);
• Solve the principal eigenvector ofT(si)α(j) = λ(j)α(j) via the power iteration

method;

2. Select the eigenvectorα with the largest eigenvaluemaxj=1,···,2c{λ(j)};
3. If i = 1, thenqi ← α, qi ← qi/‖qi‖, andQ1 ← qi;

elseqi ← α−Qi−1(QT
i−1α), qi ← qi/‖qi‖, andQi ← (Qi−1 qi);

4. Compute∆ ˆ̂Σp ← ∆ ˆ̂Σp−(∆ ˆ̂Σpqi)qT
i −qi(qT

i ∆ ˆ̂Σp)+qi(qT
i ∆ ˆ̂Σpqi)qT

i (p = 1, · · · , c);

Output: ωi = ˆ̄Σ
− 1

2
αi, i = 1, · · · , k.

Algorithm 2: The MCSSPs Algorithm Based on the Greedy Search Strategy

Input:
• Input data matrixX and the class label vectorl.

Initialization:

1. Compute the average covariance matricesΣ̂i (i = 1, · · · , c) and ˆ̄Σ;

2. Perform SVD of ˆ̄Σ: ˆ̄Σ = UΛUT , computeˆ̄Σ
− 1

2 = UΛ− 1
2 UT and ˆ̄Σ

−1
= UΛ−1UT ;

3. Computeˆ̂Σi = ˆ̄Σ
− 1

2
Σ̂i

ˆ̄Σ
− 1

2
and∆ ˆ̂Σi = ˆ̂Σi − I (i = 1, · · · , c);

For i = 1, 2, · · · , k, Do

1. Sets ← (1, · · · , 1)T , s1 ← −s, and computeT(s);
2. Solve the principal eigenvector ofT(s)α = λα associated with the largest absolute eigen-

value|λ| via the power iteration method. Setλ0 ← |λ|;
While s 6= s1, Do

(a) Sets1 ← s;
(b) For j = 1, 2, · · · , c, Do

• Setsj ← −sj , wheresj denotes thejth element ofs. ComputeT(s);
• Solve the principal eigenvector ofT(s)α = λα associated with the largest abso-

lute eigenvalue|λ| via the power iteration method, and setλ1 ← |λ|;
• If λ1 ≤ λ0, thensj ← −sj , elseλ0 ← λ1;

(c) ComputeT(s) and solve the principal eigenvectorαi of T(s)αi = λαi associated
with the largest absolute eigenvalue|λ| via the power iteration method;

3. If i = 1, thenqi ← αi, qi ← qi/‖qi‖, andQ1 ← qi;
elseqi ← αi −Qi−1(QT

i−1αi), qi ← qi/‖qi‖, andQi ← (Qi−1 qi);

4. Compute∆ ˆ̂Σp ← ∆ ˆ̂Σp−(∆ ˆ̂Σpqi)qT
i −qi(qT

i ∆ ˆ̂Σp)+qi(qT
i ∆ ˆ̂Σpqi)qT

i (p = 1, · · · , c);

Output: ωi = ˆ̄Σ
− 1

2
αi, i = 1, · · · , k.
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be the projections of the EEG datâXt onto the projection vectorωj . Then the covariance of the
elements in the projectionŝpt

i,j can be expressed as

vt
i,j = var(ωT

j X̂t
i) = ωT

j Σ̂t
iωj . (29)

whereΣ̂t
i denotes the covariance matrix of the EEG data in thetth trial of theith class.

For all thek spatio-spectral filtersω1, · · · , ωk, we obtain thek featuresvt
i,j (j = 1, · · · , k) from the

tth trial of EEG data. Now letvt
i = [vt

i,1, · · · , vt
i,k]T be the feature vector associated with thetth

trial of the ith class. Similar to the method used in [2], the following log-transformation form is
used as the final feature vector of the EEG signal:

f t
i = log

(
vt

i∑
k vt

i,k

)
, (30)

where the log function is applied to each element of the vector independently. The log-
transformation serves to approximate the normal distribution of the data [2].

For the given unknown EEG dataZ, we use the same procedures to extract the corresponding fea-

tures, i.e., we first construct the new dataẐ =
(

Z
δτ (Z)

)
, and then adopt the above method to

extract the corresponding discriminant feature vectorfz, where

fz = log

(
vz

∑
k vz

k

)
, vz = [vz

1 , · · · , vz
k]T , andvz

j = ωT
j Σ̂zωj , (31)

in which Σ̂z denotes the covariance matrix ofẐ.

After obtaining the discriminant feature vectorsf t
i (i = 1, · · · , c; t = 1, 2 · · · , ni) andfz, we can

classify the unknown EEG data into one of thec classes by using a classifier, e.g., the K-nearest
neighbor (K-NN) classifier [7].

5 Experiments

To test the performance of our MCSSPs method, we use the real world EEG data set to conduct
experiments. The data set used here is from “BCI competition 2005” - data set IIIa [11]. This data set
consists of recordings from three subjects (k3b, k6b, and l1b), which performed four different motor
imagery tasks (left/right hand, one foot, or tongue) according to a cue. During the experiments, the
EEG signal is recorded in 60 channels, using the left mastoid as reference and the right mastoid as
ground. The EEG was sampled at 250 Hz and was filtered between 1 and 50 Hz with the notch filter
on. Each trial lasted for 7 s, with the motor imagery performed during the last 4 s of each trial. For
subjects k6b and l1b, a total of 60 trials per condition were recorded. For subject k3b, a total of 90
trials per condition were recorded. Similar to the method in [5], we discard the four trials of subject
k6b with missing data. For each trial of the EEG raw data, we only use part of the sample points,
i.e., from No.1001 to No.1750, as the experiment data since they carry most of the information in
the EEG signal. Consequently, each trial contains 750 data points. We adopt the two-fold cross
validation strategy to perform the experiment, i.e., for all the trials of each condition per subject, we
divide them into two groups. Each group is used as training data and testing data once. We conduct
five rounds of experiments in total, with different divisions of the training and testing data sets, to
obtain ten recognition rates, which are averaged as the final recognition rate. For comparison, we
also conduct the same experiment using both MCSPs methods proposed by [4] and [5], respectively.
To better identify the effect of using different EEG filters, a simple classifier, K-NN classifier with
the Euclidean distance and 7 nearest neighbors, is used for final classification.

Table 1 shows the average classification rates (%) versus the standard deviations (%) of the three
methods2, while figure 1 shows the average recognition rates of our MCSSPs method with different
choices of the delayed timeτ . From table 1, we can see that the MCSSPs method achieves much
better classification performance than the MCSPs methods.

2The results using the MCSPs method proposed in [5] are inferior to those reported in [5] because we did
not pre-filter the EEG signals with a Butterworth filter and did not use the logistic regression classifiers for
classification either, as we are more interested in comparing the effect of different EEG filters.
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Table 1: Comparison of the classification rates (%) versus standard deviations (%) between MCSPs
and MCSSPs.

Subject MCSPs [4] MCSPs [5] MCSSPs/Bayes
k3b 46.17 (6.15) 84.89 (2.74) 85.83 (2.23)
k6b 33.54 (4.27) 50.09 (2.59) 56.28 (3.87)
l1b 35.17 (3.92) 62.08 (3.99) 68.58 (6.16)
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Figure 1: The classification rates (%) of our MCSSPs method with different choices ofτ .

6 Conclusions

In this paper, we extended the two-class CSSPs method to the multi-class cases via the Bayes error
estimation. We first proposed a novel theory on multi-class Bayes error estimation, which has a
closed-form solution to find the optimal discriminant vectors for feature extraction. Then we applied
the multi-class Bayes error estimation theory to generalize the two-class CSSPs method to multi-
class cases. The experiments on the data set IIIa from BCI competition 2005 have shown that
our MCSSPs method is superior to the MCSPS methods. With more elaborate treatments, e.g.,
preprocessing the EEG signal and adopting a more advanced classifier, even higher classification
rates are possible. These will be reported in our forthcoming papers.
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