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Multi-output regression aims at learning a mapping from an input feature space to a multivariate output
space. Previous algorithms define the loss functions using a fixed global coordinate of the output space,
which is equivalent to assuming that the output space is a whole Euclidean space with a dimension equal
to the number of the outputs. So the underlying structure of the output space is completely ignored.
In this paper, we consider the output space as a Riemannian submanifold to incorporate its geometric
structure into the regression process. To this end, we propose a novel mechanism, called locally linear
transformation (LLT), to define the loss functions on the output manifold. In this way, currently existing
regression algorithms can be improved. In particular, we propose an algorithm under the support vector
regression framework. Our experimental results on synthetic and real-life data are satisfactory.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, structured prediction [1,2] has gained renewed atten-
tion. This technique is important in a variety of applications, such as
conjoint analysis in market research and object recognition in com-
puter vision. As the outputs are structured objects (e.g., sequences,
trees and vectors) rather than independent scalars, it is important to
discover the possible structure underlying the outputs. Multi-output
regression [3–5], which aims at predicting an output vector y ∈ Rn

given an input feature vector x ∈ Rm, can be considered as a contin-
uous structured prediction problem, where the outputs form a con-
tinuous and infinite space with specific structures.1 There has been
sparse research in multi-output regression. The main literature we
are aware of is [3–5]. Previous research all formulates the problem
as learning a mapping from Rm to Rn:

f : Rm → Rn.

∗ Corresponding author. Tel.: +861058963089; fax: +861088099511.
E-mail addresses: roth@sjtu.edu.cn (G. Liu), zhoulin@microsoft.com (Z. Lin),

yyu@apex.sjtu.edu.cn (Y. Yu).
1 It is worth noting that most currently existing structured prediction algorithms

such as [2] only deal with discrete and finite output set. For the approaches that
model the output space as a finite discrete set, a disadvantage is that it will be very
time-consuming if the cardinality (total number of different output objects) of the
output set is large. For example, in our multi-label classification experiments, there
are 2L possible outputs when there are L labels. Whereas, it is efficient to solve the
problem by the approach proposed in this work.
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This is equivalent to assuming that the output can fill the whole
Euclidean space Rn. However, as the outputs are correlated, they
should form an output manifold with an inherent dimension smaller
than the number of the outputs. For example, the outputs of f (x) =
(sin(x), cos(x)) form a one-dimensional manifold (the unit circle) in
R2. So a more reasonable formulation of the multi-output regression
problem is to learn a mapping from an input manifold to an output
manifold

f : Mx → My,

where Mx and My are the Riemannian submanifolds of Rm and Rn,
respectively. To handle such a problem, both the structures of Mx

andMy should be considered. There has been a lot of literature (e.g.,
[6]) on the exploration ofMx. In this work, we aim at making use of
the possible structure underlying My so as to improve the current
regression schemes. Although it could be regarded that the methods
in [4,5] also model the output manifold in some sense, to the best
of our knowledge, there has no previous work that addresses the
problem from a viewpoint of geometry.

Given a training set consisting of K input–output pairs
{(x1, y1), . . . , (xK , yK )}, where xi ∈ Mx ⊆ Rm and yi ∈ My ⊆
Rn, yi = [y1i, . . . , yni]

t , we want to learn a multivariate function
f (x) = [f1(x), . . . , fn(x)]

t that maps the inputs to the outputs. Here [·]t
denotes the transpose of a matrix or a vector. Following the stan-
dard regression framework, we may estimate the mapping function
by minimizing

R(f ) + C
K∑
i=1

L(f (xi), yi), (1)
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Fig. 1. The loss should be related to the local shape of the output manifold. In this
example, the Euclidean distances between the two predictions (f (xi) and f̃ (xi)) and
the target output (yi) are the same. However, their losses should be different as
f̃ (xi) is much closer to the target manifold than f (xi), hence a better prediction.

where L is some loss function that measures the discrepancy be-
tween the predicted output f (xi) and the target output yi, R is a
function for regularization, and C is a parameter that balances the
strength between the loss and the penalty of regularization. Previ-
ous multi-output regression algorithms [3,4] naively define the loss
function as the sum of the loss w.r.t. each output variable (hence
named “Na�̈ve” mechanism herefrom). In [3], the loss term is de-
fined asL(f (xi), yi)=‖f (xi)−yi‖�2

=∑n
j=1 (fj(xi)−yji)

2. And [4] adopts
L(f (xi), yi) = ∑n

j=1 |fj(xi) − yji|�, where | · |� denotes the �-insensitive
loss function.2 So their loss functions can be viewed as mappings
from Rn × Rn to R+:

L : Rn × Rn → R+,

where R+ denotes the set of nonnegative real numbers. These na�̈ve
mechanisms essentially ignore the local shape of the outputmanifold
My. To show that the loss should not be defined without referring to
the shape of My, we illustrate in Fig. 1. Given two predictions f (xi)
and f̃ (xi) of a target output yi, their losses should be different even
the Euclidean distances between the two predictions and the target
output are the same: f̃ (xi) should be viewed a better prediction of yi
than f (xi) as it is closer to the output manifold.

To take into account of the local shape of the output manifold,
we should define the loss L as a mapping from Rn ×My to R+:

L : Rn ×My → R+.

Inspired by the moving frame method in differential geometry
[7], which uses tangent and normal vectors of a manifold as the local
coordinates, we propose using local SVD (singular value decomposi-
tion) [8] to indicate the local orientation and shape of the manifold,
and define the loss function at an output yi in its local coordinates.
This is equal to defining the loss after applying a linear transfor-
mation at yi. The transformation is linear and local, hence entitled
locally linear transformation (LLT). LLT has some appealing statis-
tic and geometric properties. We can prove that the coordinates we
choose for LLT is the optimal choice in the sense of the sum of the
standard deviations of the outputs. It is convenient to adopt LLT in
currently existing regression frameworks. In particular, we propose
a multi-output regression algorithm based on the well-established
support vector regression (SVR) [9] framework. Our experiments
demonstrated on synthetic data and multi-label classification tasks
obtain promising results.

2 The method in [4] uses an estimate of cross-covariance among the outputs
to incorporate the relationship among the outputs. So it also seems to capture the
manifold structure in a global way. However, it is not easy to capture the manifold
structure globally, as there seldom exists a global structure in nonlinear manifolds.
Our approach models the manifold structure locally and our experiments will show
that our approach works much better than [4].

The remainder of this paper is organized as follows. Section 2 in-
troduces LLT. Section 3 presents a multi-output regression that real-
izes LLT under the SVR framework. Section 4 shows the experimental
results. And Section 5 concludes this paper.

2. LLT: locally linear transformation

2.1. Choosing coordinate systems

As clarified in Introduction, the loss should be defined by choos-
ing a coordinate system, either implicitly or explicitly. Suppose the
orthonormal bases of the chosen Cartesian coordinate system at yi
are

�(yi) = {�j(yi)|j = 1, . . . ,n}.

Then the loss at yi should be defined as the function of the following
quantities:

{[�j(yi)]
t(f (xi) − yi)|j = 1, . . . ,n}.

It is easy to see that in [3,4], the chosen coordinate system is

�j(yi) = ej, j = 1, . . . ,n,

where ej is a vector whose j-th element is 1 and the rest elements
are all 0. However, as argued in Introduction, it is not a good choice.
A better choice should change with the local shape of the output
manifold at yi. Inspired by the moving frame method in differential
geometry, a coordinate system consisting of tangent and normal vec-
tors is a good choice because it can characterize the local orientation
and shape of the output manifold.

However, the choice of tangent and normal vectors is not unique.
We have to choose an “optimal” one. As yi is actually a random point
in Rn if it is not associated with the inputs, we want the variance
measured in the new coordinate system be minimized such that the
prediction can be made the most accurate. To this end, we use the
sum of standard deviations of the output ỹi in the new coordinate
� = {�j|j = 1, . . . ,n}:

SStd(�) =
n∑

j=1

�(ỹji),

where ỹji = �t
j yi and �(·) is the standard deviation of a random vari-

able. A smaller SStd(�) implies that the coordinate system � is bet-
ter for prediction. This doctrine has been proven in the traditional
single-output regression [10]. In the case of multi-output regression,
the doctrine is still reasonable although it is hard to rigorously prove
it. Our experiments will verify its effectiveness.

Let �i be the covariance matrix of the probability density Pi
around yi, and �(yi) = {�j(yi)|j = 1, . . . ,n} be the set of orthonormal
eigenvectors of �i, then we can prove that:

Theorem 1 (Optimality of local principal directions). The coordinate
system �(yi) has the minimum sum of standard deviation among all
possible orthonormal coordinate systems at yi, i.e.,

SStd(�(yi)) ≥ SStd(�(yi)), ∀�(yi). (2)

And if the eigenvalues of �i are all simple, the equality holds only when
�(yi) = �(yi).

The proof can be found in Appendix. This theorem implies that the
principal directions of �i form the optimal local coordinate system.

Another advantage of using the local principal directions is
that the “new” component variables {ỹ1i, . . . , ỹni} become unrelated
to each other, and further be independent of each other if Pi is
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Gaussian (locally Gaussian assumption) [11]. This property is very
useful because in this case it is reasonable to compute the loss as
the sum of loss in each component variable.

2.2. Computing �p-based loss functions on the output manifold

The �p-based loss functions are frequently used in machine learn-
ing community. So we also follow this tradition. However, our loss
function will be defined in the local coordinates of the output man-
ifold. For a point yi with its local shape characterized by the coordi-
nate system �(yi), we define the loss in the following way:

L(f (xi), yi) = ‖f (xi) − yi‖�(yi);�p =
⎛
⎝

n∑
j=1

|[�j(yi)]
t(f (xi) − yi)|p

⎞
⎠

1/p

,

where ‖ · ‖�;�p denotes the �p norm in the coordinate �. The

�-insensitive loss can be defined similarly by replacing | · |p with | · |p�
in the above equation (see Fig. 2).

To make the prediction mapping f favor fitting the shape of the
output manifold My, we require that the loss L(f (xi), yi) becomes
small when the predicted points move towards normal or tangent
ofMy. To achieve this, p must be less than 2. So it is not encouraged
to apply �p (p ≥ 2) regression methods to the output manifolds.
Moreover, one may expect using a local distance metric Ai (e.g., Ai =
�−1

i ) tomodel the structures at yi:L(f (xi), yi)=(f (xi)−yi)
tAi(f (xi)−yi).

However, for an output space with a manifold structure, �i is usually
singular, making such definition meaningless.

3. LLT-SVR: LLT-based support vector regression

LLT is a general approach for defining the loss function of re-
gression schemes. It can be combined with different regression al-
gorithms. As an example, we present how to implement LLT under
SVR. Given K training examples {(x1, y1), . . . , (xK , yK)}, yi ∈ My ⊆ Rn

we want to learn a map f (x) = [f1(x), . . . , fn(x)]
t by solving the op-

timization problem as in Eq. (1). For simplicity, we begin with the
case that {fi(x)}ni=1 are linear functions, i.e., fi(x) = wt

i x + bi. Provided
with the coordinate systems {�(yi)={�1(yi), . . . ,�n(yi)}}Ki=1 at each yi,
similar to SVR, we solve the following convex optimization problem:

min
{wj ,bj}nj=1

1
2

n∑
j=1

wt
jwj + C

K∑
i=1

|f (xi) − yi|�(yi);�,

where |f (xi) − yi|�(yi);� = ∑n
j=1 |[�j(yi)]

t(f (xi) − yi)|�. As �j(yi)� ej, the
above optimization problem cannot be decomposed into n indepen-
dent subproblems. So it should be solved jointly. Let W=[w1, . . . ,wn]
and b = [b1, . . . , bn]

t , the above problem can be rewritten as

min
W ,b

1
2

‖W‖2F + C
n∑

j=1

K∑
i=1

(�∗
ij + �ij)

s.t. �j(yi)
tyi − (W�j(yi))

txi − �j(yi)
tb ≤ � + �ij,

(W�j(yi))
txi + �j(yi)

tb − �j(yi)
tyi ≤ � + �∗

ij,

�ij ≥ 0, �∗
ij ≥ 0, i = 1, . . . ,K, j = 1, . . . ,n.

where ‖ · ‖F is the Frobenius norm. To facilitate the implementation,
we reformulate the above optimization problem into a vector form.
Let w be an N-dimensional vector that refers to the vectorization

of W formed by stacking the columns of W into a single column
vector, where N = n · K, and
{�̃1, . . . , �̃N} = {�1(y1), . . . ,�n(y1),�1(y2), . . . ,

�n(y2), . . . ,�1(yK), . . . ,�n(yK)},

{ỹ1, . . . , ỹN} = {�t
1(y1)y1, . . . ,�

t
n(y1)y1, . . . ,�

t
1(yK)yK , . . . ,�

t
n(yK )yK},

{x̃1, . . . , x̃N} = {x1, . . . , x1, . . . , xK , . . . , xK},

{�̃1, . . . , �̃N} = {�11, . . . ,�1n, . . . ,�K1, . . . ,�Kn},

{�̃∗
1, . . . , �̃

∗
N} = {�∗

11, . . . ,�
∗
1n, . . . ,�

∗
K1 . . . ,�∗

Kn}.

Note that (W�j(yi))
txi =wt(�j(yi)⊗ xi), where ⊗ is the Kronecker

product. Thus the optimization problem above can be converted into

min
w,b

1
2
wtw + C

N∑
i=1

(�̃
∗
i + �̃i)

s.t. ỹi − wt(�̃i ⊗ x̃i) − �̃t
i b ≤ � + �̃i,

wt(�̃i ⊗ x̃i) + �̃t
i b − ỹi ≤ � + �̃

∗
i ,

�̃i ≥ 0, �̃
∗
i ≥ 0, i = 1, . . . ,N. (3)

This is a strictly convex optimization problem. Similar to SVR [9], we
obtain its dual problem as the following:

min
{�i ,�∗

i }Ni=1

1
2

N∑
i,j=1

(�i − �∗
i )(�j − �j∗)(�̃t

i �̃j)(x̃
t
i x̃j)

+
N∑
i=1

�i(� − ỹi) +
N∑
i=1

�∗
i (� + ỹi)

s.t. 0 ≤ �i,�∗
i ≤ C, i = 1, . . . ,N,

N∑
i=1

(�i − �∗
i )�̃i = 0, (4)

This is a standard Quadratical Programming problem and can be
efficiently solved. Here, the definition of support vectors is slightly
different from SVR. A sample xi is called a support vector if and
only if

	i =
∑
x̃k=xi

(�k − �∗
k)�̃k �0,

where {�̃k}x̃k=xi corresponds to the coordinate system �(yi) at yi. So
there can be at most K support vectors. Suppose now we have a new
input vector x, then the corresponding prediction ŷ= [f̂1(x), . . . , f̂n(x)]

t

is computed by

f̂i(x) =
N∑
j=1

(�j − �∗
j )(e

t
i �̃j)(x̃j

tx) + eti b

=
K∑
j=1

(eti	j)(x
t
j x) + eti b. (5)

It can be seen that LLT-SVR is a natural extension of the single-
output SVR. The coefficient vectors {	i}Ki=1 take the role of the coeffi-
cients in SVR. When the number of outputs is one, i.e., n=1, LLT-SVR
reduces to SVR. To handle the nonlinear case, it just needs to replace
the terms like xti xj (and x̃ti x̃j) with values of a predefined kernel func-
tion [9,12]. Algorithm 1 gives the detailed procedure of LLT-SVR.
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Fig. 2. An illustration of computing �-insensitive loss function on manifolds. (a) Na�̈ve, (b) LLT.

Algorithm 1. LLT-SVR: locally linear transformation based support
vector regression.

Inputs: {(xi, yi)}Ki=1 a collection of training points, xi ∈ Mx ⊆
Rm and yi ∈ My ⊆ Rn.
Parameters: 
, the number of nearest neighbors for fitting the
local shape of output manifold; C; �; and other parameters re-
quired by SVR.
Procedure:
• Identify neighbors. For each output point yi, i=1, . . . ,K, identify the
indices of its 
-nearest neighbors in Euclidean distance. Let {Ni}Ki=1
denote the collection of such neighborhoods. For each neighborhood
Ni, form an n × 
 matrix Mi whose columns are the re-centered
points yj − ȳi, j ∈ Ni, where ȳi = (

∑
j∈Ni

yj)/|Ni|.
• Obtain local coordinate systems. Perform singular value decompo-
sition (SVD) of Mi: Mi = Ui�iVt

i . The columns of the n× n matrix Ui
give the coordinate system �(yi) at the point yi.
• Train and predict. Train the regression model by solving the convex
quadratic programming problem defined in Eq. (4). Then use Eq. (5)
to compute predictions for new inputs.

Given a dataset with n training examples and K outputs, LLT-SVR
needs to solve a quadratic programming problem with a scale n · K.
So the computation complexity is O(n3 · K3), which is higher than
the O(n3 · K) of Na�̈ve approach. This is expensive and we plan to
develop more efficient algorithms by following the notions of online
learning algorithms for SVM.

4. Experiments

4.1. Recovering the output manifolds

To testify the effectiveness of LLT, we define two regression tasks,
which are to recover the Twin Peaks manifold and Swiss Roll man-
ifold from their same-dimensional embedding computed by using
LLE [13]. Or be more precisely, the three-dimensional embedded
vectors are used as inputs, and the original three-dimensional vec-
tors are considered as outputs. In this case, as shown in Figs. 3(a)
and 4(a), the intrinsic dimension of the output manifold is smaller
than the number of outputs. Note that here the embedded vectors
computed by LLE are different from the original vectors even though
their dimensions are the same. So the mapping defined here is not
identity.

In the Twin Peaks recovering experiment, we randomly select
100 samples without noise added. In the Swiss Roll recovering ex-
periment, we randomly select 100 samples and add Gaussian white

Fig. 3. A specific example of recovering the Twin Peaks manifold from its three-
-dimensional embedding. (a) The true manifold. (b) The distribution of training
samples. (c) The manifold estimated by Na�̈ve-SVR. (d) The manifold estimated by
LLT-SVR.

Fig. 4. A specific example of recovering Swill Roll from its three-dimensional em-
bedding. (a) The true manifold. (b) The distribution of training samples. (c) The
manifold estimated by Na�̈ve-SVR. (d) The manifold estimated by LLT-SVR.

noise (�=0.1) to them to train the regression models. For the Na�̈ve
approach, the Cartesian coordinate system of the ambient Euclidean
space is used to define the loss function at each output training
point. For LLT, the coordinate system at an output training point is
estimated from its six nearest neighbors (i.e., 
 = 6 in Algorithm 1).
Both methods have the same setting on the rest parameters: the
kernel function for SVR is chosen as Gaussian with a standard devia-
tion being the average distance from each sample to its fifth nearest
neighbor, � = 0.1, and C = 10.

To see the effectiveness of LLT, we repeat the above random trials
10 times and compare LLT-SVR with the Na�̈ve-SVR in each trial. The
�2-error (or root of squared error) and �1-error (or absolute error)
of 1900 test samples are considered to evaluate the performance of
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Table 1
Evaluation results on Swiss Roll and Twin Peaks.

# of random trial Swiss Roll Twin Peaks

�2-error �1-error �2-error �1-error

Na�̈ve LLT Na�̈ve LLT Na�̈ve LLT Na�̈ve LLT

#1 0.802 0.7937 0.584 0.583 0.150 0.146 0.461 0.447
#2 0.675 0.666 0.543 0.535 0.157 0.163 0.472 0.476
#3 4.307 0.595 1.414 0.507 0.874 0.153 1.118 0.457
#4 2.720 0.613 1.141 0.519 0.160 0.157 0.483 0.468
#5 0.589 0.577 0.512 0.507 0.173 0.172 0.494 0.482
#6 0.559 0.547 0.497 0.498 0.163 0.162 0.477 0.471
#7 0.563 0.593 0.506 0.514 0.158 0.157 0.477 0.465
#8 0.581 0.569 0.504 0.495 0.153 0.148 0.468 0.458
#9 0.668 0.674 0.536 0.530 0.810 0.147 1.091 0.452
#10 0.673 0.658 0.557 0.551 0.142 0.147 0.451 0.450

Average 1.213 0.629 0.680 0.524 0.293 0.155 0.598 0.463
Std. 1.272 0.071 0.324 0.026 0.290 0.009 0.268 0.012

The performance under 100 random trail is considered (we only show the details of 10 trail). In these experiments, the Na�̈ve-SVR and LLT-SVR have the same parameter
setting except the definition of the loss function. The results with bold texts correspond to the cases that Na�̈ve-SVR fail to recover the output manifold.

Table 2
Comparing LLT-SVR to Na�̈ve-SVR and five multi-output regression methods quoted from [5].

Methods LLR MNW MLLR DNW DLLR Na�̈ve-SVR LLT-SVR

Average 3.4082 2.8516 2.5800 3.1935 3.4123 2.2480 1.7513
Std. 1.3926 0.8167 0.8202 0.8996 1.3622 1.3614 0.7375

different approaches:

�2-error = 1
|T|

|T|∑
i=1

‖yi − f (xi)‖�2
,

�1-error = 1
|T|

|T|∑
i=1

‖yi − f (xi)‖�1
,

where T = {(xi, yi)}|T|
i=1 is a test set. Provided with these limited (100

samples) training examples, as shown in Table 1, LLT-SVR consis-
tently outperforms the Na�̈ve-SVR. One interesting phenomenon is
that the Na�̈ve-SVR sometimes (see the bold results in Table 1) fails
to recover the output manifold. Figs. 3 and 4 show such two exam-
ples. The reason is that the training samples may not be very uniform
on the manifold although we expect to select uniformly distributed
training samples by random sampling. This phenomenon illustrates
that LLT can help regression approaches to handle the problem of
biased sampling of training data. Another thing that is worth not-
ing is that the evaluation metric �1-error is chosen in “favor” of
Na�̈ve-SVR, as its loss function is defined with the same choice of
coordinate system as Na�̈ve-SVR. However, one can see that LLT-SVR
performs better on the test data even though the evaluation metric
is not the loss function that it uses during the training phase. This
is natural because smaller training error may not produce smaller
test error.

4.2. Robustness to correlated noises

The necessity of considering the correlation among different out-
puts is also supported by the regression model [5]:

y = f (x) + �(x),

where �(x) is random noise such that the covariance matrix Cov(�(x))
is not necessarily diagonal (i.e., correlated noises). To investigate the
effectiveness of LLT in such cases, we consider a synthetic dataset

that has been used by [5]. The data are generated according to the
following regression functions:

f1(x) = 0.25[1.5(1 − x1) + e2x1−1 sin(3�(x1 − 0.6)2)

+ e3(x2−0.5) sin(4�(x2 − 0.9)2)],

f2(x) = sin(2�x1) + 4(x2 − 0.5)2

and the isotropic covariance matrix is defined in [5]. One hundred
fixed samples are generated with the inputs being drawn from a
uniform distribution on the square [0, 1]× [0, 1]. Then we randomly
select 36 samples for training and the rest for testing. For Na�̈ve-SVR
and LLT-SVR, we simply choose the linear kernel and set �=0.1, C=1
and 
 = 6 by 2-fold cross-validation. Table 2 shows the average for
the 100 trail of the sum of the squared error obtained by LLT-SVR
and its six competitors. It can be seen that on this dataset LLT-SVR
works much better than its competitors.

4.3. Multi-label classification

Multi-label learning refers to problems where an instance can be
assigned to multiple classes. This phenomenon is very common in
practice. In text or music categorization, documents may belong to
multiple genres, such as government and health, or rock and blues.
Architecture may belong to multiple genres as well. In medical di-
agnosis, a disease may belong to multiple categories, and genes may
have multiple functions. Multi-label learning differs from multi-class
learning where every instance can only be assigned to one class even
though the number of classes is more than two. Multi-label clas-
sification essentially needs to know the exact prediction functions
{fi(x)}ni=1 because x may be assigned to multiple classes. So we aim
at learning the predication functions such that the class labels for a
new input x are provided by

H(x) =
⋃

{i : fi(x)>0}.

Such a problem is adequate to be solved by regression. Given K
training examples {xi}Ki=1 and their corresponding labels, we create
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Table 3
Statistics of the datasets used in the experiments.

Datasets # train # test # class # distinct labels Dimension of inputs Label density

Yeast 1500 917 14 198 103 0.302
Scene 1211 1196 6 15 294 0.179

Table 4
Results on yeast and scene.

Yeast Scene

Best in [15] SVR Best in [15] SVR

Na�̈ve [4] LLT Na�̈ve [4] LLT

Accuracy 0.5300 0.5082 0.4421 0.5605 0.7040 0.6537 0.6065 0.7344

In these experiments, the Na�̈ve approach and LLT have the same parameter setting except the definition of the loss function. Although the approach of [4] also adopts the
Na�̈ve mechanism to define the loss function, it is different from the standard Na�̈ve SVR as it uses a special kernel.
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Fig. 5. (a) The influences of the parameter 
 on yeast and scene. (b) The influences of the number of training samples on Swiss Roll (note there that we use the linear kernel
to eliminate the influences of the kernel parameters). We plot the average error of 100 random trail.

K outputs {yi}Ki=1 with yi = [y1i, . . . , yni]
t , where yji = 1 if xi belongs

to the j-th class and yji = −1 otherwise. With such training data, we
can estimate the predication functions {fi(x)}ni=1 using Algorithm 1.

We conduct experiments with two datasets, yeast and scene,
from two different application domains: bioinformatics and seman-
tic scene analysis, respectively. These datasets can be downloaded
from the page of LibSVM [14]. Table 3 provides some information
about these two datasets. We define Accuracy to evaluate the per-
formance of different methods:

Accuracy = 1
|T|

|T|∑
i=1

|Hi ∩ Zi|
|Hi ∪ Zi|

,

where T denotes a test dataset, and Hi and Zi are the predicted and
the ground truth labels of the data sample xi, respectively. Besides
the Na�̈ve approach and LLT, we also consider the multi-output SVR
algorithm proposed in [4] (see Introduction). For comparison, we
also include the best results in a survey of multi-label classification
[15]. Table 4 presents the evaluation results. It can be seen that the
performance of LLT is promising.

One may have noticed that the outputs in these examples are dis-
crete and they do not form a smooth manifold. Actually, the working
of LLT does not depend on the assumption that the outputs form
a smooth manifold. Due to Theorem 1, LLT can reduce the sum of

standard deviation of the output variables, which can help improve
prediction accuracy.

4.4. The influences of the parameters

There are several parameters in LLT-SVR. The distortion controller
� and the parameters of kernel function have the same properties as
those of Na�̈ve-SVR. They are set to be the same in our experiments.
The parameter C is to balance the strengths of the loss and the
regularization. There are n·K loss terms and K regularization terms in
the optimization problem defined by Eq. (3). The ratio between them
is the same as that in Na�̈ve-SVR, which has n loss terms and one
regularization term. So the parameter C is also set to be the same as
that in Na�̈ve-SVR. In our experiments, we first tune the parameters of
Na�̈ve-SVR and then assign them to LLT-SVR directly. The parameter

 depends on the smoothness of the manifold. Fig. 5(a) shows its
influences. Generally, it cannot be too smaller as sufficient training
samples are required to estimate the principal directions. And it is
also not appropriate to use very large 
 because this would make the
locally linear assumption less accurate. According to our experience,
the parameter 
 should be around 7. Fig. 5(b) plots the �1 error as
a function of the number of training samples. It can be seen that
LLT-SVR does not break down even if there are very few training
samples provided, in the case of which SVD should perform badly.
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This is because LLT-SVR will reduce to Na�̈ve-SVR when SVD fails to
capture the principal directions of the output manifold.

5. Conclusion

In this paper, we propose a novel method, called locally linear
transformation, to define loss functions for multi-output regression.
LLT well models the underlying structure of the output manifold
by using the orthonormal eigenvectors of the covariance matrix of
local output samples as the local coordinate system. The loss func-
tions are then defined in such local coordinate systems. And we
prove that such local coordinate systems are the optimal choice that
can produce the most stable prediction, if the stability is measured
by the sum of standard deviation of the output vector in the cho-
sen coordinate systems. Our experiments validate the effectiveness
of LLT.

Appendix

Proof. Note that the chosen coordinate systems {�1(yi), . . . ,�n(yi)}
are the eigenvectors of �i. Let �1, . . . ,�n be the corresponding eigen-
values, which are non-negative. It can be computed that

SStd(�(yi)) =
n∑

j=1

�(�t
j (yi)yi) =

n∑
j=1

√
�t
j (yi)�i�j(yi)

=
n∑

j=1

√
�j.

For any orthonormal coordinate system {�1(yi), . . . ,�n(yi)}, as
{�1(yi), . . . ,�n(yi)} span Rn, there exists an orthogonal matrix
A = [aij]n×n such that

�j(yi) =
n∑

k=1

akj�k(yi), ∀j = 1, . . . ,n.

Then it can be calculated that

SStd(�(yi)) =
n∑

j=1

√
�t
j (yi)�i�j(yi)

=
n∑

j=1

√√√√
n∑

k1,k2=1

ak1jak2j�
t
k1
(yi)�i�k2 (yi)

=
n∑

j=1

√√√√
n∑

k=1

(akj)
2�k.

Since
√
x (x ≥ 0) is a concave function, by Jensen's inequality we

have that
√√√√

n∑
j=1

�jxj ≥
n∑

j=1

�j
√
xj if

n∑
j=1

�j = 1,

�j ≥ 0, xj ≥ 0, j = 1, . . . ,n.

If xj's are distinct, the above equality holds only when {�j}nj=1 =
{1, 0, . . . , 0}. Note that

∑n
k=1 (akj)

2 = ∑n
j=1 (akj)

2 = 1. Hence the above
inequality applies:

SStd(�(yi)) ≥
n∑

j=1

n∑
k=1

(akj)
2
√

�k =
n∑

k=1

√
�k = SStd(�(yi)).

And it is easy to see that if �j's are distinct, the quality holds only
when �(yi) = �(yi). �
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