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FAST CONVEX OPTIMIZATION ALGORITHMS FOR EXACT 
RECOVERY OF A CORRUPTED LOW-RANK MATRIX

ZHOUCHEN LIN*, ARVIND GANESH*, JOHN WRIGHT*,
LEQIN WU§, MINMING CHEN^, AND YI MA+*

A bstract. This paper studies algorithms for solving the problem of recovering a low-rank matrix 
with a fraction of its entries arbitrarily corrupted. This problem cam be viewed as a robust version 
of classical PCA, and arises in a number of application domains, including image processing, web 
data ranking, and bioinformatic data analysis. It was recently shown that under surprisingly broad 
conditions, it cam be exactly solved via a convex programming surrogate that combines nuclear norm 
minimization and ¿1-norm minimization. This paper develops and compares two complementary 
approaches for solving this convex program. The first is an accelerated proximail gradient algorithm 
directly applied to the primal; while the second is a gradient algorithm applied to the dual prob
lem. Both are several orders of magnitude faster than the previous state-of-the-art algorithm for 
this problem, which was baised on iterative thresholding. Simulations demonstrate the performance 
improvement that can be obtained via these two algorithms, and clarify their relative merits.

K ey words. Principal Component Analysis, Convex optimization, Nuclear norm minimization, 
Duality, Proximal gradient algorithms.

AM S subject classifications. 15A03, 15A60, 90C25

1. Introduction. Principal Component Analysis (PCA) is a popular tool for 
high-dimensional data analysis, with applications ranging across a wide variety of 
scientific and engineering fields. It relies on the basic assumption that the given 
high-dimensional data lie near a much lower-dimensional linear subspace. Correctly 
estimating this subspace is crucial for reducing the dimension of the data and fa
cilitating tasks such as processing, analyzing, compressing, or visualizing the data 
[12, 7],

More formally, suppose that the given data are arranged as the columns of a 
large matrix D £ Mmxn. Classical PCA assumes that this data matrix was generated 
by perturbing a matrix A 6 KmXn whose columns lie on a subspace of dimension 
r <C min(m, n). In other words, D — A + E, where A is a rank-r matrix and E  is a 
matrix whose entries are i.i.d. Gaussian random variables. In this setting, PCA seeks 
an optimal estimate of A, via the following constrained optimization:

min||E||f’, subject to rank(A) < r, D = A + E, (1.1)A ,E

where || - ||jp is the Frobenius norm. It is well-known that this problem can be efficiently 
solved by simply computing the Singular Value Decomposition (SVD) of D. The 
optimal estimate of the low-rank matrix A is simply the projection of the columns of 
D onto the subspace spanned by the r principal left singular vectors of D [12].

Although PCA offers the optimal estimate of the subspace when the data are 
corrupted by small Gaussian noise, it breaks down under large corruption, even if 
that corruption affects only a few of the observations. For example, even with just a
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2 Z. LIN ET AL.

single entry corrupted, the estimated A obtained by classical PCA can be arbitrarily 
far from the true A. This undesirable behavior has motivated the study of the problem 
of recovering a low-rank matrix A from a corrupted data matrix D =  A +  E, where 
some entries of E  may be of arbitrarily large magnitude.

Recently, [21] showed that under surprisingly broad conditions, one can exactly 
recover the low-rank matrix A from D = A +  E  with gross but sparse errors E  by 
solving the following convex optimization problem:

min||A||* +  A subject to D — A 4- E. (1.2)A ,E

Here, || • ||* represents the nuclear norm of a matrix (the sum of its singular values),
| • |i denotes the sum of the absolute values of matrix entries, and A is a positive 
weighting parameter. In [21], this optimization is dubbed Robust PCA (RPCA), 
because it enables one to correctly recover underlying low-rank structure in the data, 
even in the presence of gross errors or outlying observations. This optimization can 
be easily recast as a semidefinite program and solved by an off-the-shelf interior point 
solver (e . g [10]), see also [6]. However, although interior point methods offer superior 
convergence rates, the complexity of computing the step direction is 0(ra6). So they 
do not scale well with the size of the matrix. On a typical PC, generic interior 
point solvers are currently limited to matrices of dimension m  «  100. Modern data 
processing applications demand solutions to much larger scale problems. For instance, 
applications in image and video processing often involve matrices of dimension m =
103 to 104; applications in web search and bioinformatics can involve matrices of 
dimension m  =  106 and beyond.

In recent years, the search for more scalable algorithms for high-dimensional con
vex optimization problems has prompted a return to first-order methods. One striking 
example of this is the current popularity of iterative thresholding algorithms for l 1- 
norm minimization problems arising in compressed sensing [22,1, 23, 4]. Similar itera
tive thresholding techniques [3] can be applied to the problem of recovering a low-rank 
matrix from an incomplete (but clean) subset of its entries [17, 5]. This optimization is 
closely related to the RPCA problem (1.2), and the algorithm and convergence proof 
extend quite naturally to RPCA [21]. However, the iterative thresholding scheme pro
posed in [21] exhibits extremely slow convergence: solving one instance requires about
104 iterations, each of which has the same cost as one singular value decomposition. 
Hence, even for matrix sizes as small as 800 x 800, the algorithm requires more than 
8 hours on a typical PC.

In this paper, our goal is to develop faster and more scalable algorithms, by 
further studying the convex optimization problem (1.2) associated with Robust PCA. 
In Section 2, we propose a first-order accelerated proximal gradient algorithm for this 
problem. The proposed algorithm is a direct application of the FISTA framework 
introduced by [1], coupled with a fast continuation technique.1

Section 3 develops an entirely new algorithm to solve problem (1.2) via its dual. 
This algorithm efficiently solves the dual problem and subsequently computes the 
solution to the primal. Given that in the literature most first-order methods for 
solving this type of optimization problems are now based on proximal gradient, this 
new dual algorithm certainly offers some new perspectives and ideas, at least to the 
specific problem at hand. In fact, unlike the proximal gradient approach, the new

1 Similar techniques have been applied to the matrix completion problem by [19].
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dual algorithm does not depend on computing full SVD and hence in theory could be 
more scalable.

We believe that the two algorithms presented in Sections 2 and 3 represent the 
fastest algorithms known today for Robust PCA. We compare both algorithms in Sec
tion 4 with extensive simulations on randomly generated matrices. Finally in Section 
5, we discuss future directions of research that could further boost the performance 
of the proposed algorithms.

2. The Accelerated Proximal Gradient Approach. The Robust PCA op
timization (1.2) is a special case of a more general family of optimization problems of 
the form

min g(X), subject to A{X)  =  b, (2.1)
X

where H is a real Hilbert space equipped with a norm || • ||, g is a continuous convex 
function, A is a linear map, and b is an observation. It is often computationally 
expedient to relax the equality constraint in (2.1) and instead solve

nun F(X)  =  ng(X)  (2.2)At/x

where f (X )  = \\\A(X)  -  6||2 penalizes violations of the equality constraint and (x > 0 
is a relaxation parameter. As [x approaches 0, any solution to (2.2) approaches the 
solution set of (2.1). The penalty function /(•) is convex and smooth, with Lipschitz 
continuous gradient: ||V /(Xi) — V /(A 2)|| < Lf\\Xi — X 2 W, where V / is the Frechet 
derivative of / ,  identifiable as an element in H. The Lipschitz constant Lj  is simply 
the square of the operator norm of the linear map A. Because of this Lipschitz prop
erty, (2.2) is amenable to efficient optimization by a family of optimization algorithms 
known as proximal gradient algorithms [20, 1].

2.1. General Formulation. Instead of directly minimizing F(X),  proximal 
gradient algorithms minimize a sequence of separable quadratic approximations to 
F(X),  denoted as Q(X,Y),  formed at specially chosen points Y:

Q (X ,Y ) = }(Y) + ( V f ( Y ) , X -  Y) + t f \ \ X -  Y f  +  M (X).  (2.3)

It is easy to show that for any Y, Q(X,Y)  upper bounds F(X).  Moreover, if we 
define G = Y  — ^-V /(F ), then

argmin Q(X, Y) = argmin j ^ ( X )  + ^  \\X -  G||2 j . (2.4)

To solve (2.2), one may repeatedly set Xk+\ =  argmin^ Q(X, Yk), with 1* chosen 
based on 1 0, •' • , X^. The convergence behavior of this iteration depends strongly on 
the points Yk at which the approximations Q(X,Yk) are formed. The natural choice 
Yk = Xk (proposed, e.g., by [8]) can be interpreted as a gradient algorithm, and 
results in a convergence rate no worse than 0(k~1) [1]. However, in the smooth case 
g(X) = 0, [15] showed that instead setting Yk = X k+ tk~t1~1 (Xk—Xk-i)  for a sequence 
(tk) satisfying t2k+1 —tk+i < t\ can improve the convergence rate to 0(k~2). Recently, 
[1] extended this scheme to the nonsmooth setting {g(X) ^  0), again demonstrating a 
convergence rate of 0(k~2). Both variants can be considered special cases of a general 
proximal gradient algorithm, stated more precisely as Algorithm 1.
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Algorithm  1 (General Proxim al Gradient Algorithm)
1: while not converged do
2: Yk̂  X k + ( -  X*_i).
3: Gk *~Yk -  -£j V f(Y k).

4: X k+i <- arg minx { ^ (X ) -I- ^  \\X -G *ll2}-

5: tk+l~ i+' / f * +\ k ^ k + l .
6: end while

2.2. Robust P C  A by Accelerated Proximal G radient. The main motiva
tion for forming the separable quadratic approximation in Algorithm 1 is that in many 
cases of interest, the minimizer X k+i has a simple, or even closed-form expression. 
For example, when H is an Euclidean space and g(-) is the l x norm, X k+i is given by 
soft-thresholding the entries of Gk• More formally, for x 6 R and e > 0, let

{
x — e, if x > e,
x + e, if x < —s, (2.5)

0, otherwise,

and extend this operator to vectors and matrices by applying it elementwise. Then 
in this notation, Xk+i = <Ŝ _ [(?*;]. This property has been widely exploited in the
compressed sensing literature [22, 1, 23, 4].

If instead, H is the space of same-sized matrices endowed with the Frobenius norm 
II • ||f  (we keep this assumption in the sequel) and g(-) is the matrix nuclear norm, 
then Xk+i can still be efficiently computed, now by soft-thresholding the singular 
values. If Gk = UEVT is the SVD of Gk, then

X k+l = U S ^ ( Y ) V T. (2.6)

Based on this property, [3] introduced an iterative thresholding algorithm for matrix 
completion. Recently, [19] demonstrated significant improvements by combining the 
judicious choice of Yk suggested by [15, 1] with continuation techniques.

The Robust PCA problem (1.2) combines aspects of both of these lines of work. 
Here, our iterates Xk are ordered pairs (Ak,Ek) G Mmxn x RmXn, and g(Xk) = 
||A*||. + A|i?fc|i. The relaxation (2.2) is then

min F(X) = / i M . + K A I ^  +  llID  —¿  —£11?.. (2.7)A ,E  Z

Here, again, the iterate Xk+\ has a simple expression. Write Gk =  (G ^,G f) G 
RmXn x MmXn, and let USVT be the singular value decomposition of G£. Then 
(noticing that for this problem the Lipschitz constant Lj — 2)

Ak+1 = US*[S\VT and S ^ G f] -  (2.8)

In [21], this property was exploited to give an iterative thresholding algorithm for 
RPCA. However, the iterative thresholding algorithm proposed there requires a very 
large number of iterations to converge, and hence has only limited applicability.

Here, we will see that a very similar iterative thresholding scheme, summarized 
as Algorithm 2, can achieve dramatically better performance, in some cases cutting



FAST CONVEX OPTIMIZATION ALGORITHMS FOR ROBUST PCA 5

the number of iterations by a factor of almost 100. Two key factors enable this 
performance gain. The first is formulating the problem within the proximal gradient 
framework and using the smoothed computation of Yk suggested by [15,1]. The second 
is the use of continuation techniques: rather than applying the proximal gradient 
algorithm directly to (2.7), we vary p, starting from a large initial value po and 
decreasing it geometrically with each iteration until it reaches the floor p. We observe 
that this greatly reduces the number of iterations and therefore, the number of SVD 
computations. Since pk converges to p > 0, the proof of convergence of Algorithm 2 
is very similar to the one provided for FISTA in [1]. We summarize the main result 
below:

Theorem 2.1. Let F(X)  =  F(A, E) =  p ||A||* + p  A |£ |i + \  \\D -  A -  E\\2F. 
Then, for all k > ko =  ,■ -SVt , we have

losU)

F(Xk) - F ( X ' ) < 4 \\xko~ x * r F
Ck - k o  + l )2 ’

(2.9)

where C\ — log j  and X* is any solution to (2.7).
2|i —X* II

Thus, for any e > 0, when k > ko + ——^ ——, we can guarantee that F(Xk) < 
F(X*) +  e.

Algorithm 2 (Robust PCA via Accelerated Proximal Gradient) 
Input: Observation matrix D G ]Rmxn, A.

l: Aq, A -1 «— 0; Eo, E - i  <— 0; to, £_i *— 1; p *— 6po.
2: while not converged do
3: Y A ^ A k + (Ak -  Ak^ ) ,  YkE * - E k + i tg = i  (Ek -  £»_,).
4: G£ <-YkA - \  (YkA + YkE -  D).
5: (U,S, V) <- svd(Gk ), Ak+1 =  U Sa.¡S]FT.
6: Gk <— Y E -  ^ (YA + Y E - D ) .  2
T: £*+1= S iS4[Gf].

8, tk+1 4- 1+V ^ ,
9: Hk+1 < -  max.(rjpk lp).

10: k < - k  + 1.
11: end while
Output: A <— Ak, E *— Ek.

2.3. Implementation Issues.
Stopping Criterion. The stopping criterion for Algorithm 2 is identical to the one 

proposed in [19]. We define

Si+1 =  2 ( YkA-  Ak+1) + (Ak+1 + -  YkA -  , (2.10)
Sjf+i = 2 (YkE -  Ek+1) +  (At+1 + Ek+l -  YkA -  Y e ) . (2.11)

We terminate the iteration when ||iSfc+i || is less than some pre-defined tolerance, where 
Sk+1 =  (5^+1,5 f+1) and ||^ + i ||2 = + | | ^ +1||^. The interpretation here
is that ll-Sfe+ill is an upper bound to the distance between the origin and the set of 
subgradients of the cost function in (2.7) at (Ak+i,E k+i).
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Effect of Line Search Techniques. The worst-case iteration complexity predicted 
by Theorem 2.1 is no better than that for the case when the sequence fXk is constant 
(= p) for all k. However, in practice, we observe that implementing the continuation 
technique outlined in step 9 of Algorithm 2 greatly reduces the number of iterations. 
[19] also proposes a linesearch-like procedure to further accelerate their matrix com
pletion algorithm. Our experiments suggest that for RPCA, this does not always 
reduce the overall computation time, since the line-search often increases the number 
of SVD computations per iteration.

Details of the Continuation. The sequence (Ak,Ek) generated by Algorithm 2 
gets arbitrarily close to the optimal solution set of (2.7). In addition, the smaller the 
p, the closer is our solution to the optimal solution set of (1.2). We find empirically 
that a choice of ¡xq =  0.99 ||D||2 and 6 < 10-5 is sufficient for most practical purposes, 
where || • ||2 is the spectral norm.

Empirically, we find that convergence is typically very slow for 77 6 (0,0.5). The 
reason for this is that once pk — P, for very small p, the thresholding operator (•) 
is close to the identity operator. Thus, subsequent iterations converge very slowly to 
the optimal solution. From experiments, we find that 77 =  0.9 is a good choice.

Computing the SVD. The key computational bottleneck of Algorithm 2 is the 
SVD required by every iteration. However, due to the singular value thresholding step 
at every iteration, we observe that a full SVD computation is not always necessary, 
especially in the first few iterations when pk is quite large. The algorithm can be 
potentially sped up by computing a partial SVD, instead of the full SVD, using 
publicly available packages like PRO PACK [14]. Our current implementation does 
not adopt partial SVD because the rank of Ak during the iteration of Algorithm 
2 does not always increase monotonically, making it difficult to predict how many 
singular values need to be computed.

3. The Dual Approach. Although the dependence of the accelerated proximal 
gradient algorithm on the full SVD can be relieved by exploring a workable prediction 
strategy and then using the partial SVD, our numerical tests show that the partial 
SVD by PROPACK [14] may still be slower than the full SVD, when the number of 
singular values/vectors to compute exceeds some relatively small threshold, say 0.15771. 
It is therefore interesting to develop algorithms that could be truly independent of 
computing the SVD.

3.1. Robust PCA via the Dual. We observe that the dual norm of the nu
clear norm is the spectral norm || • ¡2, which only depends on the largest singular 
value/vectors and in principle can be computed without the SVD. This observation 
leads us to consider the dual problem of (1.2),

max (D ,Y ), subject to J(Y) < 1, (31)

where

(A,B) = tT(ATB), J (y ) =  max ( ||r | |2,A -1|K U ), (3.2)

and j • |oo is the maximum absolute value of the matrix entries. Problem (3.1) actually 
finds the dual D* of D with respect to the matrix norm ||X ||j =  J(X).

Constrained Steepest Ascent. Notice that since J(Y)  is positive and homogeneous 
and the objective function is linear, the optimal solution must lie on the manifold
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S  =  {Y\J(Y)  =  1}. We can therefore replace the inequality constraint with an equal
ity constraint, leading to an optimization problem on a nonlinear and non-smooth 
manifold, which can be solved by steepest ascent.2

More formally, let Yk denote our estimate of Y  at iteration k. The steepest ascent 
direction Wk at Yk can be obtained by projecting the gradient D of the objective 
function (3.1) onto the tangent cone of S.3 Then we may do line search along direction 
Wk by solving

6k = arg max 
<S>0

Yk + S-Wk \
J (Yk + ö-Wk ) / ’

and updating the estimate of Y  as

Yk + Sk-Wk
k+1 J(Y k + Sk -Wk)'

(3.3)

(3.4)

where the scaling by 1 /  J  (Yk + 8 ■ Wk) ensures that the iterate Yk+\ lies on the mani
fold S. This yields an algorithm that provably terminates at the optimum of the dual 
problem:

T h eo r em  3.1. If the maximizing 8k in (3.3) is equal to zero at some point Yk, 
then Yk is the optimal solution to the dual problem (3.1).

Proof. See Appendix A.2. □
The key step to solve the dual problem is to find the steepest ascent direction 

Wk. To this end, we have:
P r o p o sit io n  3.2. If two cones C\ and C2 are polar cones to each other and 

and 7T2 are the projection operators onto C\ and C2 , respectively, then for all point P

7r1(P) + n2(P) = P. (3.5)

Proof. See Appendix A.l. □
Based on this proposition, we may first find the projection Dk of D onto the 

normal cone N(Yk) of 5  and obtain the steepest ascent direction Wk as Wk =  D-Dk-  
Projection onto the Normal Cone. Thus, to solve the dual problem by steepest 

ascent, the remaining problem is to compute the projection Dk of D onto the nor
mal cone N(Yk). By [18] Corollary 23.7.1, the normal cone is determined by the 
subgradient of J:

N{Yk) =  {aX : a > 0, X  G dJ{Yk)} . (3.6)

Because J(Y)  is the maximum of two convex functions, we have [2]:

f aiinih. ifaimi|2>A-iini0O,
dj (Yk) = { a f A - ' i n u ,  i f a n n i |2 < A -1i n u ,  (3.7)

{ coiaimiMCA-'inU)}, ifS ||n ||2 = A-1|yfcu .

where “co” denotes the convex hull. Thus, in the first case we must compute the 
projection 7r2 (D) of D onto the cone generated by d|| ■ j|2 at Yk. In the

2Note that the proximal gradient algorithm (Algorithm 1) cannot be directly applied to the dual 
problem because the sub-problem to solve is identical to the dual problem.

3The tangent cone and the normal cone in the following should be defined for the convex set 
S =  {V |J(V ) < 1}. However, for simplicity we do not make such distinction.
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second case, we must compute the projection onto the cone NoofYk) generated by the 
subgradient of | • I«, at Yk- These projections are both straightforward and efficient to 
compute; readers unfamiliar with their details may consult Appendix A.3. Note that 
computing % 2 (D) only requires the principal singular space that is associated to the 
largest singular value of Yk, which is known to be 1.

In the third, and most complicated, case, N(Yk) =  N2(Yk) 4- N00(Yk). The 
projection of D onto N(Yk) can be accomplished by alternating between projection 
onto N2(Yk) and projection onto N00(Yk). We initialize Eq *— 0 and i <— 0 and then 
repeatedly set

Ai+1 <— n2(D — E{),
Ei+1 <— noo{D — Ai+i), (3.8)

i *— ¿ +  1.

The above alternating projection algorithm is guaranteed to yield Dk thanks to the 
following theorem:

Theorem 3.3. The sequence Ai 4- Ei converges to the projection of D onto 
N(Yk).

Proof. See Appendix A.4. 0
Note that the alternating projection algorithm (3.8) is valid for projecting onto the 
sum of general cones.

Back to the Primal Problem. Theorems 3.1 and 3.3 give a solution Y  to the dual 
problem (3.1). With the solution Y  in hand, the two remaining KKT conditions for 
the primal problem (1.2) are

Yed\\A\U  and \~ 'Y  £ d\E\x. (3.9)

It is easy to see, either from the definition of these two subgradients or from more 
general duality considerations in Theorem A.2 of Appendix A.5, that if ||T||2 < 1, 
then the primal problem has a degenerate solution A =  0 and E = D. Similarly, 
if A-1 \Y |oo < 1, the solution is A =  D and E  — 0. In the remaining case when 
ll^lb =  A"1 ITU =  1, we have

Theorem 3.4. Let Y  be the solution to the dual problem (3.1), and suppose 
that ||Yj|2 =  A-1 |Yjoo =  1. Then any pair of accumulation points A, E  generated by 
projecting D onto N(Y) via the alternating projection algorithm (3.8) solve the primal 
problem (1.2).

Proof. By Theorem 3.1, the steepest ascent terminates at a point Y  at which 
D G N(Y).  Theorem 3.3 showed that every pair of accumulation points satisfies 
A 4- E  =  D, and hence satisfies the equality constraint for the primal problem (1.2). 
Observe that

A € N2(Y) and E  € N ^ Y )

implies

Y  G <9||i||* and A~lY  G d\E\x (3.10)

by Theorem A.2, (3.6), and ||y||2 = A-1 l^loo =  1. So (A ,E ) is a solution to problem
(1.2). □

Thus, in the course of solving the dual problem, we also obtain the solution to the 
primal problem. The complete optimization procedure is summarized as Algorithm 3 
below.
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Algorithm 3 (Robust PCA via the Dual)
Input: Observation matrix D 6 Rmxn, A.

6
7
8 
9

10
11
12
13
14
15
16 
17:

Y0 = sgn(D)/J(sgn(D)); k <- 0. 
while not converged do 

Compute the projection Dk of D onto N(Yk): 
if ||Y*||2 > A-1 |Yfc|oo then

Dk <H- 7r2(D), A «- D, E  <- 0.
else if‘ A-1 |Yfc|oo > ||Yfc||2 then

Dk < 7roo (D), A *- 0, E  <— D,
else

A «-■ 0, E  «- 0.
while not converged do 

A <— 7r2(D -  E), E  *- Too(D -  A). 
end while 
Dk *— A +  E. 

end if
Do line search to determine a step size 5k-
Yu, 1 <— Yk+6k(p-Dk) an(j ju u j_ 1
r k+l J(Yk+6k{D-Dk)) ana K K +  i-

end while
Output: (A,E).

3.2. Implementation Issues.
Evaluating J. When computing </(•), the computation of the 2-norm accounts 

for most of the time. As «/(•) will be evaluated many times, computing the 2-norm 
efficiently is necessary. Although the power method [9] is often advocated in the 
literature, it suffers from slow convergence when the gap between the largest and 
the second largest singular values is small, which usually happens in practice. So we 
choose to use PROPACK [14] to output the largest singular value. It turns out to 
be consistently faster than the power method. Note that PROPACK can be easily 
specialized for computing the largest singular value only.

Determining Equality of the Two Norms. When finding the steepest ascent di
rection, we have to decide whether ||Y*||2 is equal to A-1 |l* |00. This is fulfilled by 
checking whether the discrepancy between them exceeds 10-4 .

Computing the Principal Singular Spaces. Currently, we compute the principal 
singular spaces associated with the largest singular value 1 of Yk by letting PROPACK 
output a predicted number of leading singular vectors. The prediction is possible be
cause we have observed that the dimension of the principal singular spaces associated 
with the largest singular value 1 of Yk is always increasing 4. However, we have to em
phasize that computing the principal singular spaces associated to the known largest 
singular value should be an easier problem than the partial SVD that computes the 
principal singular space associated to unknown and possibly different leading singular 
values. We are currently exploring better methods to replace PROPACK.

4Although currently we do not prove this, an intuitive explanation is possible: the manifold S 
has a lot of “ridges” and “corners” and the objective function is linear; so it is very likely that the 
solution is at some “ridges” or “comers”; each line search moves Yk to a better estimate, which should 
be at “ridges” or “comers” of higher singularity; the singularity is measurable by the complexity of 
the normal cone, which is directly related to the dimension of the principal singular space.
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Line Search. It is well known that gradient ascent/descent produces zigzagged 
solution trajectories [16]. Therefore, it is unnecessary to do exact line search as 
suggested by (3.3). So we adopt the gradient method recommended in [16] (page 304), 
which is based on Armijo’s rule. Moreover, it is also unnecessary to compute the exact 
steepest ascent direction. So we also perform inexact projection onto the normal cone: 
when projecting onto iV'ooQ'fc), I (**)<* | is deems to be |Y*|oo if |(Tfc)*j| > 0.95|Yfc|oo; 
when projecting onto A^Yfc), the singular values no less than 0.99 are deemed to be 
1. Our experiments show that such inexact treatments indeed speed up convergence.

Stopping Criteria. We terminate the steepest ascent iteration when \\D — Dk\\F < 
2 x 10~5||.D||F and the alternating projection when ||Ai — 4̂j—i < 10_8||I?||f  and 
||Ei - JBi_1||F < 1 0 -8||L>||F .

4. Simulations. In this section, using numerical simulations, we compare the 
two proposed algorithms with the iterative thresholding algorithm proposed in [21], 
and also highlight the differences between the proximal gradient approach and the 
dual approach.

Simulation Conditions. We use randomly generated square matrices for our sim
ulations. We denote the true solution by the ordered pair (A0, Eq) € RmXm x Rmxm. 
We generate the rank-r matrix Ao as a product UVT, where U and V  are indepen
dent m x r matrices whose elements are i.i.d. Gaussian random variables with zero 
mean and unit variance.5 We generate Eo as a sparse matrix whose support is chosen 
uniformly at random, and whose non-zero entries are i.i.d. uniformly in the interval 
[—500,500].6 The matrix D =  Aq +  Eq is the input to the algorithm, and (A, E) 
denotes the output. We choose a fixed weighting parameter A =  ra-1/2 for a given 
problem.

We set t =  10,000 and step size 8k — 0.5, 'ik, for the iterative thresholding 
algorithm (see [21] for details). All the simulations are conducted and timed on the 
same Mac Pro computer with a 2.8 GHz processor, eight cores, and 10 GB of memory. 
A brief comparison of the three algorithms is presented in Table 4.1. We also present 
in Table 4.2 the comparison between the proposed proximal gradient algorithm and 
the dual method on their ability to scale up with larger sized matrices.

Observations and Comparisons. It is clear from Table 4.1 that for dimension up 
to m =  800, the proposed proximal gradient approach (Algorithm 2) and the dual 
approach (Algorithm 3) are at least 50 times faster7 than the iterative thresholding 
scheme proposed in [21], and achieve comparable accuracy in terms of relative error in 
the estimate of the low-rank matrix A. Though all three algorithms involve computing 
a SVD per iteration8, we observe that the proposed algorithms take much fewer 
iterations (than the iterative thresholding method) to converge to the optimal solution.

Between the two algorithms proposed in this paper, we observe that as the di
mension of the problem increases, the dual approach scales better than the proximal 
gradient approach. This difference is mainly due to the fact that the proximal gradi
ent algorithm does one full SVD computation per iteration, as against a partial SVD 
done by the dual method. On the other hand, the number of iterations taken by the 
proximal gradient algorithm to optimality is less vulnerable to changes in dimension

5It can be shown that Ao is distributed according to the random orthogonal model of rank r, as 
defined in [5].

6This is identical to the distribution used in [21].
7We observe that the iterative thresholding algorithm [21] can occasionally converge slightly 

faster, but still about 10-20 times slower than the proposed algorithms.
8 The dual approach only needs a partial SVD computation.
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m 11 -̂4° Ik
___11̂0 F___ rank(A) Iloilo no. of iterations time (s)

rank(Ao) =  0.05m, ||i?o||o =  0.05m2
Accelerated Proximal Gradient (Algorithm 2)

100 2.6 x 10~5 5 508 127 3.1
200 1.9 x 10“ 5 10 2,014 127 16.3
400 1.4 x 10"5 20 8,035 126 108
800 9.8 x 10"e 40 32,070 126 744

Dual Method (Algorithm 3)
100 2.9 x 10~4 5 507 247 7.7
200 4.4 x 10"4 10 2,001 170 20.6
400 1.0 x 10~4 20 7,999 209 92.2
800 7.9 x 10~5 40 31,976 268 677

Iterative Thresholding [21]
100 2.7 x 10"4 5 511 10,000 136
200 2.3 x 10"5 10 2,024 2,814 228
400 1.5 x 10"è 20 8,016 10,000 6,310
800 9.9 x 10"6 40 32,095 10,000 48,700

rank(Ao) =  0.05m, ||-Eb||o = 0.1m2
Accelerated Proximal Gradient (Algorithm 2)

100 3.4 x IO“5 5 1,021 129 3.1
200 2.2 x 10"& 10 4,023 129 16.8
400 1.6 x 10~ö 20 16,122 129 111
800 1.1 x 10~5 40 64,226 129 766

Dual Method (Algorithm 3)
100 1.2 x 10~a 5 1,024 339 13.6
200 3.1 x IO"4 10 4,009 264 32.3
400 1.7 x 10“4 20 16,014 263 131
800 1.2 x 10“4 40 63,964 385 1,170

Iterative Thresholding [21]
100 6.2 x 10~5 5 1,041 5,346 76.4
200 3.2 x 10~5 10 4,018 8,668 727
400 2.8 x 10~5 24 16,120 10,000 6,720
800 1.4 x 10~6 74 64,560 10,000 51,900

Table 4.1
Comparison o f the Three Algorithm s. We present typical running times for randomly 

generated matrices. Corresponding to each triplet {m, rank(Ao), ||Eo||o}, the RPCA problem was 
solved for the same data matrix D using three different algorithms. The proposed algorithms are 
about 50-100 times faster than the iterative thresholding algorithm proposed in [21J.

and to the setting of the problem (almost always around 128 iterations), which might 
be attributed to its 0(k~2) convergence rate. We also see in Table 4.1 that the aver
age number of iterations taken by the dual approach is significantly increased when 
||2?o||o is doubled.

We corroborate the above observations with some more examples, and simultane-
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m rank(Ao)
m llMo

TO2
|| A—Ao||f 

IIAqIIf no. of iterations time (s)
APG Dual APG Dual APG Dual

i,ooo 0.05 0.05 8.6 x 10"fe 1.0 x 10~4 126 316 1,600 1,740
1,000 0.05 0.1 9.9 x 10“b 9.3 x 10"a 129 312 1,640 2,440
1,000 0.1 0.1 7.6 x 10“e 1.1 x 10~4 132 573 1,590 7,590
1,500 0.05 0.05 7.1 x 10"e 6.9 x 10“5 126 284 5,750 4,270
1,500 0.05 0.1 8.1 x 10“6 8.1 x 10"5 129 374 5,900 6,920
1,500 0.1 0.1 6.2 x 10“e 8.7 x 10~5 132 556 5,720 21,600
2,000 0.05 0.05 6.2 x 10~e 4.6 x 10~5 126 336 14,300 10,000
2,000 0.05 0.1 7.0 x 10~e 1.2 x 10"4 129 495 14,700 15,100
2,000 0.1 0.1 5.4 x 10~e 7.4 x 10“5 132 622 14,300 51,100

Table 4.2
Scalability o f the A PG  and the Dual M ethods. For all the instances, the matrix A is 

correctly estimated with relatively high accuracy, and the rank is correctly recovered. Notice how 
stable the number of iterations is for APG by comparing with those in Table 4-1.

ously verify the scalability of the algorithms with matrices of higher dimensions. We 
see from Table 4.2 that both the proposed algorithms can efficiently handle matrices 
of over a million entries in less than 5 hours. However, the two algorithms scale dif
ferently. The dual algorithm scales well with the size of the problem but takes more 
iterations to converge to the optimal solution when the error matrix Eq becomes less 
sparse. The proximal gradient algorithm, on the other hand, is slower than the dual 
method when Eq is very sparse, but takes about the same number of iterations when 
the error sparsity is varied or the dimension is increased.

5. Discussions. In this paper, we have proposed two first-order algorithms for 
solving the Robust PCA problem (1.2), one for the primal and the other for the dual. 
The proposed algorithms and techniques can be easily modified for solving the slightly 
simpler matrix completion problem [17, 5]. Both algorithms are significantly faster 
than the previous state-of-the-art algorithms based on iterative thresholding [21]. For 
matrices with the range of dimensions (m < 104) that can be handled by a single PC, 
the performance of the two algorithms are more or less comparable.

Nevertheless, the dual method is potentially more scalable than the proximal 
gradient method as in principle it does not require a full SVD computation at each 
iteration. In addition, although the proximal gradient algorithm cannot be applied 
to the dual method in its current form, it is possible that the proximal gradient 
technique and the continuation technique, in other forms, can be applied to speed up 
the dual method too. Furthermore, from our experience with the proximal gradient 
algorithm, one can significantly cut down the number of iterations by some other 
choices of the sequence ¿t*,, although there is currently a lack of rigorous justification 
for such choices. It is also important to understand why the number of iterations of 
the proximal gradient algorithm is so stable with respect to the change of dimension 
and problem settings. It might be possible to develop a much better hybrid algorithm 
by harnessing these good properties of both the primal and the dual solutions.

The proposed algorithms are already sufficient to solve robust PCA problems 
that arise in image processing and computer vision, which typically involve matri
ces of sizes up to a few thousand, in a reasonable amount of time. However, both 
algorithms may be unsuitable for direct use in data mining applications (like web
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search and ranking), involving much larger matrices (say m  > 105). Problems of such 
large scale demand better hardware and possibly an efficient distributed algorithm 
to solve (1.2). For hardware improvements, we could resort to a more powerful ma
chine with multiple cores and GPUs or even cluster of many machines. There has 
also been significant progress recently in developing parallelized algorithms for SVD 
computations [24, 13, 11]. For the proximal gradient method, the thresholding steps 
in each iteration are inherently parallel. For the dual method, the computation of the 
principal singular spaces is much more readily parallelizable than the partial SVD. 
For example, we may run PROPACK (or any other algorithms devoted to computing 
the leading singular spaces) with different random initial vectors simultaneously, each 
thread outputting a fraction of the singular vectors, and then choose an orthonormal 
basis among the collection of all output singular vectors. In comparison, parallel par
tial SVD is less studied and running multiple threads of partial SVDs simultaneously 
is not as effective. It remains to see which algorithm is more suitable for parallel or 
distributed implementation for solving large-scale Robust PCA problems.

Appendix A. Proofs and Details for the Dual Method.
In this appendix, we provide additional mathematical details supporting the ar

guments in Section 3. Section A.l proves Proposition 3.2 on the decomposition onto 
mutually polar cones. Section A.2 proves Theorem 3.1 on the convergence of the 
steepest ascent algorithm. Section A.3 describes how to compute the projection onto 
the normal cones 1V2 and Nqq used in Algorithm 3. Section A.4 proves the correctness 
of the iteration used in Algorithm 3 to project onto iV2 + A ^. Finally, Section A.5 
proves a result on norm duality that we used in moving from the dual solution Y  to 
the primal solution A, E.

A .l. Decomposition onto Polar Cones. Here we prove Proposition 3.2.
Proof. It suffices to prove that

(P _ (P _ ^ 2(P)))Cl_ ( P _ 7r2(P))) =  (7r2(P),Cl- (P -7 r2(P))> < 0, Vd e Ci. (A.2)

This proves (A.l). On the other hand, from C\ and C2 being polar to each other, we 
have

P - 7 r 2(P)=7Ti(P)

P  — 7t2(P) G Ci, and (A.l)

(A.4)

(A.3)

(tt2(P),Ci ) < 0, Vci € Ci. 

Summing (A.4) and (A.5) gives (A.2). □

(A.5)
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A.2. Convergence of Steepest Ascent. Before proving Theorem 3.1, we need 
a lemma.

J(Yk + S ( D - D k) ) - J ( Y k)
=  0Lem m a  A . l .  lim<sio o

Proof. It is well established in convex analysis that [2]: 

J(Yk + 6 ( D - D k) ) - J ( Y k)lim
<510

= max (P, D — Dk).
P€dJ(Yky  '

(A.6)

So we only have to prove that

max (P, D -  Dk) =  0. (A.7)
P€dJ(n)'

Since Dk is the projection of D onto N(Yk), it follows that for all P  € N(Yk), 
(P — Dk,D — Dk) < 0. By choosing P  =  aDk (a > 0), we see that

(Dk, D - D k) = 0, (A.8)
( P , D - D k) <  0, V P  € N(Yk). (A.9)

By (3.6), dJ(Yk) C N(Yk), and so

max (P, D — Dk) < max (P, D — Dk) < 0.
PGdJ(Yk) ' ~  PeN(Ykÿ

This together with (A.8) gives (A.7). □
Now we are ready to prove Theorem 3.1. 
Proof. By Proposition 3.2, we may write

n ( f )  =
Yk + S ( D - D k) 

J (Yk + S ( D - D k)Y

Notice that the optimal step 5k =  0 if and only if

(A.10)

(A. 11)

(D,Yk( S ) - Y k) <  0, V i> 0 .  (A.12)

By plugging the expression of Yk(5) into (A.12) and observing that J(Yk) =  1, it is 
easy to show that (A.12) occurs if and only if

(D,D - D k) <  (g, Yk), V <5 > 0, (A.13)

Let 5 J, 0 and applying Lemma A.l shows that (D, D -  Dk) < 0. This together with 
(A.8) gives ||D -  Dk\\2F <  0, and so D — Dk, which implies D e  N(Yk). □

A.3. Formulae for Projection onto th e  Normal Cone.
A.3.1. Projecting onto N2 . It is known that

d\\Ykh  =  co{m/T|||u||2 =  IMI2 = 1, uTYkv =  amax(yfc)}. (A.14)

Suppose Vi, i — 1 ,. . . ,  d, is the basis of the principal right singular space of Yk (i.e., 
the set of left singular vectors associated to the largest singular value crmax^)) and 
U{ =  YkVi/amax(Yk) is the corresponding basis of principal left singular space. Then 
any generator uvT of 5||Yfc||2 can be written as

andu =
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So by (3.6), the normal cone N2(Yk) is

N2(Yk) = zo{UdaaTV j\a  G Rd}, (A.15)

where Ud =  [iti, • • • ,ud), Vd =  [ui, • • • , vd] and a =  [ai, • • • ,ad]T. Notice that aaT 
can represent any rank-1 positive semi-definite (PSD) matrix. So we have

N2(Yk) =  {UdX V j \X  is a PSD matrix}. (A.16)

To calculate the projection Dk of D onto N2 (Yk), we need to solve the following 
optimization problem

min \\D — UdXVj'\\F, subject to X  >z 0. (A.17)

It is equivalent to solve

min ||D — X||i?, subject to X  y  0, (A.18)

where D =  UjDVd. Notice that

2||D -  X f F =  ||D -  X ||J  + ||DT -  X f F

DT + D7  x
2

+ 2 Dt  -  D
2 F 2

So we have an equivalent problem:

min \\D' — X\\f , subject to X  y  0,

(A.19)

(A.20)

where D' = |  (DT +  D) is a symmetric matrix. Let D' = QAQT be its eigenvalue 
decomposition, where A = diag(At), i = 1, • • • ,d. Then the solution to (A.20) (and 
hence (A.18)) is X  = Q[A]+QT, and the projection of D onto N(Yk) is Dk = UdX V j . 
Since D' is of size d x d, its eigenvalue decomposition is of low cost.

A .3.2. Projecting onto N ^ .  Denote Eij as the m x n matrix which has only 
one nonzero entry 1 at (i, j). Then the subgradient of A_1|y’/C|00 is

a tA - 'm u )  =  co({£y |(yt )y = i n u M - % i ( n ) y  =  - m u » .  (A.21)

So the normal cone is:

AToo(n) =
<o, i f ( n )v  = -in ioo , 
>o , if (Yk)ij =  m u  
=  o, if m u  < m u .

Then the projection of D onto N(Yk) is

(Dfc)ij — <
max(Dij,0),
min(Dij,0),
0 ,

if (Yk)ij =  m u ,  
if (n )y  =  -in ioo  
otherwise.

(A.22)

(A.23)
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A.4. Convergence of Projection onto the Normal Cone. In this section 
we prove Theorem 3.3.

Proof. We will prove that the sequence {D[ = A{+Ei} has only one accumulation 
point Dk.

By the definition of projections, we have that

( D - A i -  E i-u A ' -  Ai) <  0, VA' G N2(Vk),
(D - A i  -  Ei, E' -  Ei) < 0, VE' G N ^ Y k ) .  { )

Then we have

=  || H -  Ai -  E i-ifr  +  |M( -  Ai-ifp ~ 2 (D - A t -  Et-i,At-t -  At)
> HD - A i -  +  P i  -  X i-iIlL

I IZ J -A -S i- lI lF
=  ||D  - A t -  E tf ,  +  K  -  Et-t 11?. -  2 

> ||I? - A t -£¡11?. + | | £ i - f i _ 1||J..

Hence,

\\D -  At-t-  £ U IIf  > ||D -At-E&% + || -  ¿¡-,11?. +  | |4  -  (A.25)

So {||D — Ai — -Ei IIf } is a decreasing sequence. As it is also lower bounded by 0, it 
has a limit. Moreover,

.lim || Ai -  Ai_i||F = lim ||E{ -  ^ _ i ||f  =  0. (A.26)

Let D =  lim D'k . be an accumulation point of {£)'}. Without loss of generality, 

we may assume that lim Aki =  A and lim Ek, =  E. By letting i = kj in (A.24)
j —+oo 2 j-+  oo 2 J

and j  —* oo and observing (A.26), we have that

( d  - D , A ' - A ) <  0, VA' € N2(Yk), 

¡ D - D , E '  - E } <  0, VE' G N0O(Yk).

As 0 G N2(Yk) and 0 G N<x(Yk), we have

( d  -  D ,- A \  < 0, V A ' e N 2(Yk), 

\D  -  D, - E j  < °, VE' G NoofYk).

Adding the above to (A.27) appropriately results in

( d - D , A ' - £ > \  < 0 , V A 'E N 2(Yk), 

( d  - D , E ' - D ) <  0, VE' G NooiYk).

(A.27)

(A.28)

(A.29)

This implies that D =  Dk by the uniqueness of projection. This completes the proof.
0



FAST CONVEX OPTIMIZATION ALGORITHMS FOR ROBUST PCA 17

A.5. Relationship between Primal and Dual Norms. We used the follow
ing general result on norm duality to move from a solution to the dual problem back 
to a solution to the primal problem:

Theorem A.2. In a real Hilbert space H, if x ^  0 and y G <9||x||, then ||y||* =  1 
and x G ||x||d||y||*, where |j • ||* is the dual norm of || • ||.

Proof. As y G S||x||, we have

IMI — INI > (y, w -  x ) , V w G H . (A.30)

Choosing w =  0 ,2x, we can deduce that

N I “ <y,*)<INIII»ir. (A.3i)

So ||y||* > 1. On the other hand, we have

||iu -  x|| > ||iu|| -  ||x][ > (y,iu — x ) , V w G H. (A.32)

So

y, ii~~ ~jT ) < 1, ViuGW.ku — x\

Therefore ||y||* < 1. Then we conclude that ||y||* =  1.
Next, by the definition of dual norm and (A.31) we have

- , w - y  ) =
x w \  (x, y)

INI’< nr -1
=  H r -  \\y\

This implies 77-77 G 3j|y||*, establishing the result.
2;

11*11

v  w e r t ,

a

(A.33)
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