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Abstract. We present a simple new criterion for classification, based on principles from lossy data compression.
The criterion assigns a test sample to the class that uses the minimum number of additional bits to
code the test sample, subject to an allowable distortion. We demonstrate the asymptotic optimality
of this criterion for Gaussian distributions and analyze its relationships to classical classifiers. The
theoretical results clarify the connections between our approach and popular classifiers such as
maximum a posteriori (MAP), regularized discriminant analysis (RDA), k-nearest neighbor (k-NN),
and support vector machine (SVM), as well as unsupervised methods based on lossy coding. Our
formulation induces several good effects on the resulting classifier. First, minimizing the lossy coding
length induces a regularization effect which stabilizes the (implicit) density estimate in a small sample
setting. Second, compression provides a uniform means of handling classes of varying dimension.
The new criterion and its kernel and local versions perform competitively on synthetic examples,
as well as on real imagery data such as handwritten digits and face images. On these problems,
the performance of our simple classifier approaches the best reported results, without using domain-
specific information. All MATLAB code and classification results are publicly available for peer
evaluation at http://perception.csl.uiuc.edu/coding/home.htm.
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1. Introduction. One quintessential problem in statistical learning [15, 32] is to construct
a classifier from labeled training data (xi, yi)

iid∼ pX,Y (x, y). Here, xi ∈ R
n is the observation,

and yi ∈ {1, . . . ,K} its associated class label. The goal is to construct a classifier g : R
n →

{1, . . . ,K} which minimizes the expected risk (or probability of error):

(1.1) g∗ = arg min E[Ig(X)�=Y ],

where the expectation is taken with respect to pX,Y . When the conditional class distributions
pX|Y (x|y) and the class priors pY (y) are known, the maximum a posteriori (MAP) assignment

(1.2) ŷ(x) = arg max
y∈{1,...,K}

pX|Y (x|y) pY (y)

gives the optimal classifier.
∗Received by the editors November 5, 2007; accepted for publication (in revised form) December 18, 2008;

published electronically April 9, 2009. This work was partially supported by NSF CAREER IIS-0347456, NSF CRS-
EHS-0509151, NSF CCF-TF-0514955, and ONR YIP N00014-05-1-0633. A preliminary version of this work appeared
in the Proceedings of the Neural Information Processing Systems (NIPS) Conference 2007.

http://www.siam.org/journals/siims/2-2/70731.html
†Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801

(jnwright@uiuc.edu, yima@uiuc.edu).
‡Microsoft Research in Asia, Beijing, 100190, China (v-yatao@microsoft.com, zhoulin@microsoft.com, hshum@

microsoft.com).

367

D
ow

nl
oa

de
d 

02
/1

7/
14

 to
 1

62
.1

05
.2

04
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://perception.csl.uiuc.edu/coding/home.htm
http://www.siam.org/journals/siims/2-2/70731.html
mailto:jnwright@uiuc.edu
mailto:yima@uiuc.edu
mailto:v-yatao@microsoft.com
mailto:zhoulin@microsoft.com
mailto:hshum@microsoft.com
mailto:hshum@microsoft.com


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

368 J. WRIGHT, Y. MA, Y. TAO, Z. LIN, AND H.-Y. SHUM

1.1. Issues with learning the distributions from training samples. In the typical classifi-
cation setting, the distributions pX|Y (x|y) and pY (y) need to be learned in advance from a set
of training data whose class labels are given. Conventional approaches to model estimation
(implicitly) assume that the distributions are nonsingular and the samples are sufficiently
dense. However, these assumptions fail in many classification problems that are vital for ap-
plications in computer vision [20, 21, 33, 17]. For instance, in the case of face recognition,
the set of images of a person’s face taken from different angles and under different lighting
conditions often lie in a low-dimensional subspace or submanifold of the ambient space [16].
As a result, the associated distributions are singular or nearly singular. Moreover, due to the
high dimensionality of imagery data, the set of training images is typically sparse.

Inferring the generating probability distribution pX,Y from a sparse set of samples is an
inherently ill-conditioned problem [32]. Furthermore, in the case of singular distributions, the
classical likelihood function (1.2) does not have a well-defined maximum [32]. Thus, to infer
the distribution from the training data or to use it to classify new observations, the distribution
or its likelihood function needs to be properly “regularized.” Typically, this is accomplished
either explicitly via smoothness constraints, or implicitly via parametric assumptions on the
distribution [5]. However, even if the distributions are assumed to be generic Gaussians, ex-
plicit regularization is still necessary to achieve good small-sample performance [11]. This
effect is particularly insidious in the high-dimensional data spaces common in computer vi-
sion, pattern recognition, and bioinformatics. For example, naive covariance estimators are
inconsistent when the number of samples is proportional to the dimension of the space [4], as
are estimators of subspace structure such as principal components [18].

In many real problems in computer vision, the distributions associated with different
classes of data have different intrinsic complexity, lying on subspaces or manifolds of different
dimension. For instance, when detecting a face in an image, features associated with the face
often have a low-dimensional structure which is “embedded” as a submanifold in a cloud of es-
sentially random features from the background. Model selection criteria such as the minimum
description length (MDL) [28, 22] serve as important modifications to MAP for estimating a
model across classes of different complexity. MDL selects the model that minimizes the overall
coding length of the given (training) data, hence the name “minimum description length” or
“minimum coding length” [1]. However, notice that MDL does not specify how the model
complexity should be properly accounted for when classifying new test data among models
that have different dimensions.1

1.2. Minimum coding length principle for classification. Once the distributions pX|Y
and pY are estimated from the training data, the classifier is usually obtained by substituting
the estimated distributions p̂X|Y and p̂Y into the MAP classifier (1.2). Notice that the MAP
classifier (1.2) is equivalent to

(1.3) ŷ(x) = arg min
y∈{1,...,K}

− ln pX|Y (x|y) − ln pY (y).

This gives the MAP classifier another interpretation. The optimal classifier should minimize
Shannon’s optimal (lossless) coding length of the test data x with respect to the distribution of

1Whereas model estimation involves inferring a model from the training data, classification involves inferring
a decision about a new test sample given the models.D
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the true class, together with the class assignment: The first term is the number of bits needed
to code x with respect to the distribution of class y, and the second term is the number of
bits needed to code the label y for x. In this paper, we essentially follow this minimum coding
length principle for classification.

However, as we contend in the previous subsection, the (potentially singular) distributions
pX|Y (x|y) and pY (y) can be very difficult to learn from a few samples in a high-dimensional
space. It therefore makes more sense to look for other good surrogates for implementing
the above minimum coding length principle. Our idea is to measure how efficiently a new
observation can be encoded by each class of the training data subject to an allowable distortion,
and to assign the new observation to the class that requires the minimum number of additional
bits. We dub this the minimum incremental coding length (MICL) criterion for classification,
as a counterpart of the MDL principle for model estimation and as a surrogate for the minimum
coding length principle for classification.

We will see that the proposed criterion naturally addresses the issues of regularization and
model complexity. Regularization is introduced through the use of lossy coding, i.e., coding
the test data x up to an allowable distortion. This contrasts with Shannon’s optimal coding
length which requires the precise knowledge of the true distributions, and thus places our
approach more along the lines of lossy MDL [25]. We will further see that the lossy coding
length naturally accounts for model complexity by directly measuring the difference in the
volume (hence dimension) of the training data with and without the new observation.

1.3. Contributions of this paper. The main contribution of this paper is to introduce
a new approach to classification based on lossy data compression. We thoroughly analyze
its performance in the Gaussian case, and demonstrate its optimality. We then extend it
to arbitrary data distributions via local and kernel implementations. The theoretical results
clarify the relationship between this new approach and popular classifiers such as MAP, reg-
ularized discriminant analysis (RDA) [11], k-nearest neighbor (k-NN) [10, 27], and support
vector machine (SVM) [32, 8], and also provide a new interpretation to (unsupervised) clus-
tering methods based on lossy coding [23]. The proposed MICL classifier, though very simple,
performs competitively compared to conventional classifiers, under a wide range of condi-
tions. Extensive simulations and experiments on real imagery data show that MICL often
approaches the best reported results from more sophisticated classifiers or systems, without
using any domain-specific information.

1.4. Organization of this paper. This paper is organized as follows: In section 2, we
introduce the general MICL criterion and discuss how it can be applied to unimodal or Gaus-
sian distributions. Section 3 contains the main theoretical results of the paper, analyzing the
large-sample behavior of MICL. Section 4 discusses local and kernel implementations that are
valid for arbitrary data distributions. Finally, in section 5 we perform numerous simulations
and experiments to verify the properties of the algorithm and demonstrate its performance
on real imagery data. Additional mathematical and implementation details are given in the
appendices.

We delay a more thorough discussion of the relationship between MICL and existing
classifiers until after we have formally introduced our approach. We will discuss its relationship
to, and advantages over, a number of popular techniques in machine learning, including otherD

ow
nl

oa
de

d 
02

/1
7/

14
 to

 1
62

.1
05

.2
04

.9
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

370 J. WRIGHT, Y. MA, Y. TAO, Z. LIN, AND H.-Y. SHUM

MDL/MAP variants (section 2.5), RDA (section 2.5), k-NN (section 4.2), and SVM (section
4.1). For a more complete review of the vast literature on supervised learning, we refer the
reader to [15, 32, 6].

2. Basic ideas and algorithm.

2.1. Minimum incremental coding length. We formulate the problem of classification
from the perspective of lossy data coding and compression [9]. A lossy coding scheme maps
vectors X = (x1, . . . ,xm) ∈ R

n×m to a sequence of binary bits, from which the original
vectors can be recovered up to an allowable distortion E[‖x̂ − x‖2] ≤ ε2. The length of
the bit sequence is then a function: Lε(X ) : R

n×m → Z+. Given a lossy coding scheme
and its associated coding length function Lε(·), we can encode each class of training data
Xj

.= {xi : yi = j} using Lε(Xj) bits. The entire training dataset can be represented by a
two-part code using

(2.1) Length
(X ,Y) =

K∑
j=1

Lε(Xj) − |Xj| log2 pY (j) (bits).

Here, the second term is the number of bits needed to (losslessly) code the class labels yi using
the optimal scheme for the empirical distribution of y.

Now, suppose we are given a new (test) sample x ∈ R
n, whose associated class label is

y(x) = j. If we code x jointly with the training data Xj of the jth class, the number of
additional bits needed to code the pair (x, y) is

(2.2) δLε(x, j) = Lε(Xj ∪ {x}) − Lε(Xj) + L(j).

Here, the first two terms measure the excess bits needed to code (x,Xj) up to distortion ε2,
while the last term L(j) is the cost of losslessly coding the label y(x) = j. One may view
these as “finite-sample lossy” surrogates for the Shannon coding lengths in the ideal classifier
(1.3). This interpretation naturally leads to the following classification criterion.

Criterion 1 (minimum incremental coding length). Assign x to the class which minimizes the
number of additional bits needed to code (x, ŷ), subject to the distortion ε:

(2.3) ŷ(x) .= argmin
j=1,...,K

δLε(x, j).

The above criterion (2.3) can be taken as a general principle for classification, in the sense
that it can be applied using any lossy coding scheme and its associated coding length function.
Nevertheless, in order for the classification to be effective, the coding scheme should be such
that the associated coding length is the shortest possible for the given data. For example,
if the data distribution is known a priori, the optimal coding length is given by its rate-
distortion [9]; or if we consider the data as a discrete set of points, the coding length should
be approximately2 minimal among all possible coding schemes subject to the given distortion.

2Approximation is necessary even if the given data are binary numbers instead of real-valued vectors, since
the universal minimum coding length, or Kolmogorov complexity, of the data is noncomputable [9].D
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In either case, however, for classification purposes we require only that Lε correspond in
principle to some coding scheme; we do not need to explicitly encode the data.3

2.2. Lossy coding length of Gaussian data. We will first consider a coding length func-
tion Lε, derived in [23], that is approximately (asymptotically) optimal for Gaussian dis-
tributions. The implicit use of a coding scheme which is optimal for Gaussian sources is
equivalent to assuming that the conditional class distributions pX|Y are unimodal and can be
well approximated by Gaussians. We will rigorously analyze the performance of the MICL
in this (admittedly restrictive) scenario and demonstrate its relationships with classical clas-
sifiers such as MAP and RDA. In section 4 we will show how, using the same Lε function,
MICL can be extended to arbitrary, multimodal distributions via an effective local Gaussian
approximation.

For a multivariate Gaussian source N (0,Σ), the average number of bits needed to code a
vector subject to a distortion ε2 is approximately

(2.4) Rε(Σ) .=
1
2

log2 det
(
I +

n

ε2
Σ
)

(bits/vector).

This approximation can be motivated from the perspective of sphere packing as the ratio of
the volume of an equiprobability ellipsoid defined by Σ to that of an n-dimensional ε-ball. It
can also be viewed as an upper bound for Gaussian rate-distortion that is valid for all ε [9].4

Given the data X = (x1, . . . ,xm) with sample mean μ̂ = 1
m

∑
i xi, we can represent their

deviations about the mean up to expected distortion ε2 using on average Rε(Σ̂) bits, where
Σ̂(X ) = 1

m−1

∑
i(xi − μ̂)(xi − μ̂)T is the sample covariance. The number of bits required

to encode the m differences x1 − μ̂, . . . ,xm − μ̂ is therefore mRε(Σ̂). However, the optimal
encoder/decoder pair requires prior knowledge of Σ̂, i.e., its principal axes. These principal
axes can be specified using an additional nRε(Σ̂) bits. Finally, the expected number of bits
required to encode the sample mean μ̂ can be bounded by n

2 log2

(
1 + μ̂T μ̂

ε2

)
. This bound was

derived in [23] starting from the assumption that, on average, the number of bits required
to encode t ∈ R up to distortion ε2 is 1

2 log2(1 + t2/ε2). Since this is again an upper bound
to the (scalar) Gaussian rate-distortion, the bound on the number of bits needed to encode
the mean is tightest when μ̂ is Gaussian, but remains valid for general μ̂. Combining these
quantities, the total number of bits required to encode X becomes

(2.5) Lε(X ) .=
m+ n

2
log2 det

(
I +

n

ε2
Σ̂(X )

)
+
n

2
log2

(
1 +

μ̂T μ̂

ε2

)
.

3Constructing optimal coding schemes that achieve the lower bound given by the rate-distortion is a difficult
problem even in the Gaussian case (see, e.g., [14]).

4Strictly speaking, the rate-distortion function for an N (0, Σ) source is R = 1
2

log2 det( n
ε2 Σ) when ε2

n

is smaller than the smallest eigenvalue of Σ. The above approximation is tightest when the distortion ε is

relatively small. When ε2

n
is larger than some of the eigenvalues of Σ, the rate-distortion function becomes

more complicated [9]. Nevertheless, the approximate formula R = 1
2

log2 det(I + n
ε2 Σ) can be viewed as the

rate-distortion of a “regularized” source that works for all ε > 0. More details on this approximation can be
found in [23].D
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The first term, therefore, gives the number of bits needed to code the distribution of the
vectors xi about their mean, μ̂, while the second gives the number of bits needed to code the
mean.

In addition to approximating well the optimal coding length for Gaussian data, one can
show that this function bounds the expected number of bits needed to code finitely many
samples lying on a linear subspace. The proof, given in [23], suggests a coding scheme in
which the principal axes of the distribution and the coordinates with respect to those axes
are encoded separately, so that the resulting distortion is less than ε2.

2.3. Coding of the class label. Since the label Y is discrete, it can be coded losslessly.
The form of the final term L(j) in (2.2) depends on one’s prior assumptions about the nature
of the test data. If the test class labels Y are known to have the marginal distribution
P [Y = j] = πj, then the optimal coding lengths are (within one bit)

(2.6) L(j) = − log2 πj .

If the testing data are also independent and identically distributed (iid) samples from the
same distribution pX,Y as the training data, then we may estimate π̂j = |Xj |

m . Conversely,
if we have no prior knowledge regarding the distribution of the class labels, it may be more
appropriate to set πj ≡ 1

K , in which case the excess coding length depends only on the number
of additional bits needed to encode x. Similar to the MAP classifier (1.2), the choice of πj

effectively gives a prior on class labels.

2.4. The overall algorithm. Given the coding length function (2.5) for the observations
and the coding length (2.6) for the class label, we summarize the MICL criterion (2.3) as
Algorithm 1 below.

Algorithm 1 (the MICL classifier).
1: Input: a set of m training samples partitioned into K classes X1,X2, . . . ,XK and a test

sample x.
2: Compute prior distribution of class labels πj = |Xj |/m.
3: Compute incremental coding length of x for each class:

δLε(x, j) = Lε(Xj ∪ {x}) − Lε(Xj) − log2 πj,

where

Lε(X ) .=
m+ n

2
log2 det

(
I +

n

ε2
Σ̂(X )

)
+
n

2
log2

(
1 +

μ̂T μ̂

ε2

)
.

4: Let ŷ(x) = arg minj=1,...,K δLε(x, j).
5: Output: ŷ(x).

2.5. Relationship to existing classifiers. Although MICL and MDL [28] both operate
by minimizing a coding-theoretic objective, MICL differs significantly from traditional MDLD
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approaches to classification such as those examined in [13]. Those methods choose an optimal
decision boundary from an allowable set by minimizing the following coding length:

(2.7) g∗ = arg min
g∈G

L(g) + log2

(
m∑

i Ig(xi)�=yi

)
,

where L(g) is the number of bits needed to code the classifying boundary g within a certain
class G, and the second term5 counts the cost of coding training samples misclassified by
g. This approach has been proven inconsistent in [13]. In contrast, MICL uses coding length
directly as a measure of how well the training data represent the new sample. The inconsistency
result of [13] does not apply in this modified context. In fact, MICL has more in common with
the classical maximum likelihood (ML)/MAP decision criteria, since maximizing the likelihood
also minimizes the number of bits needed to code the sample according to Shannon’s optimal
lossless coding scheme. However, the use of lossy coding distinguishes MICL from these
approaches. In the next section we will see that the MICL criterion leads to a family of
classifiers, parameterized by the distortion ε, that generalize the conventional MAP classifier
(1.2).

In the Gaussian case, we will see that lossy coding leads to a regularization effect similar
to Friedman’s RDA [11], which replaces the sample covariance Σ̂ with a regularized version6

Σ̂ + αI in the likelihood function. The main motivation for RDA is improved small-sample
performance, and MICL exhibits similar gains in finite sample performance with respect to
MAP. We will, however, see a significant difference between MICL and RDA in how they
handle classes of varying intrinsic dimension.

The fully Bayesian approach to model estimation, in which posterior distributions over
model parameters are estimated, also claims finite-sample gains over ML/MAP [24, 26]. How-
ever, when the number of samples is smaller than the number of free parameters in the model
(as for high-dimensional data), the result becomes strongly dependent on the choice of prior.7

MICL does not require the number of samples to be larger than the ambient dimension and
in fact sees its greatest advantage when the sample size is small. As we will see, MICL is
asymptotically equivalent to the Bayesian approach, since it too converges to ML/MAP.

3. Analysis of MICL with Lε for Gaussian data. We begin this section with a motivating
example. Figure 1 shows the performance of the MICL classifier on two toy problems in R

2.
In both cases, the MICL criterion classifies observations in sparsely sampled regions based
on the covariance structure of the data. In the left-hand example, the criterion interpolates
the data structure near the origin where the samples are sparse. In the right-hand example,
the criterion extrapolates the horizontal line to the other side of the plane. On the other
hand, k-NN and SVM do not extrapolate the linear structure of the data (see Figure 4 for

5This is the logarithm of the number of subsets of size mmiss out of a set of m elements, where mmiss is
the number of misclassifications.

6Throughout this paper, we consider only the version of RDA which regularizes the covariance by a multiple
of the identity. Regularizing by the pooled data covariance as in [11] is less appropriate if we wish to consider
groups with significantly different and anisotropic covariances.

7In the Gaussian case, when the number of samples is smaller than the dimension of the space, the Jeffreys
prior no longer suffices, and stronger assumptions on the parameters of the distribution are required to regularize
the problem.D
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Figure 1. MICL harnesses the covariance structure of the data to interpolate (left) and extrapolate (right)
in regions where the training samples are sparse.

a comparison). The reader may notice, however, that the MICL decision boundaries are
very similar to what MAP/quadratic discriminant analysis (QDA) would give. This raises
an important question: What is the precise relationship between MICL and MAP, and under
what circumstances is MICL superior?

3.1. Asymptotic behavior and relationship to MAP. In this section, we analyze the
asymptotic behavior of the MICL criterion (2.3) using coding length function (2.5) as the
number of training samples, m, goes to infinity. We will see that, asymptotically, classification
based on the incremental coding length is equivalent to a regularized version of MAP (or ML),
subject to a reward on the dimension of the classes. The precise correspondence is given by
the following theorem, whose proof we delay to Appendix A.

Theorem 3.1 (asymptotic MICL). Let the training samples {(xi, yi)}m
i=1

iid∼ pX,Y (x, y), with8

μj
.= E[X|Y = j], Σj

.= Cov(X|Y = j). Then as m → ∞, the MICL criterion coincides
(asymptotically, with probability 1) with the decision rule

(3.1) ŷ(x) = argmax
j=1,...,K

LG

(
x
∣∣μj , Σj +

ε2

n
I

)
+ lnπj +

1
2
Dε(Σj),

where LG(·|μ,Σ) is the log-likelihood function for an N (μ,Σ) distribution9, and Dε(Σj)
.=

tr
(
Σj(Σj + ε2

n I)
−1
)

is the effective dimension of the jth model, relative to the distortion ε2.
This result shows that, asymptotically, MICL generates a family of MAP-like classifiers

parameterized by the distortion ε2. Notice that if all of the distributions are nonsingu-
lar (i.e., their covariance matrices Σj are nonsingular), then limε→0

(
Σj + ε2

n I
)

= Σj , and
limε→0Dε(Σj) = n, a constant across the various classes. Thus, for nonsingular data, (the
closure of) the family of asymptotic decision boundaries induced by MICL contains the con-
ventional MAP classifier (1.2) at ε = 0. Any reasonable rule for choosing the distortion ε2

given a finite number, m, of samples should therefore ensure that ε→ 0 as m → ∞. As long

8We assume that the first and second moments of the conditional distributions exist.
9Notice that although the form of the criterion involves a Gaussian log-likelihood, the result holds for

arbitrary second-order pX,Y and makes no Gaussian assumption. However, applying the MICL with coding
length (2.5) directly to complicated multimodal distributions will often result in poor classification performance
and is therefore not advisable. Section 4 discusses how MICL can be modified to handle arbitrary data
distributions.D
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as ε(m) does not decrease too quickly, the limiting behavior in (3.1) dominates, and ŷ(x) con-
verges to the asymptotically optimal MAP criterion. By examining the residuals in the proof
of Theorem 3.1 (especially the O(m−1) term in (A.8)), one can show that if ε(m) = ω(m−1/4),
ŷ(x) → arg maxj LG(x|μj,Σj) + lnπj .

Simulations (e.g., Figure 1) suggest that the limiting behavior does provide useful informa-
tion about the performance of the classifier on finite training data. Yet Theorem 3.1 is strictly
valid only as m → ∞, giving no indication as to whether one should expect to observe such
behavior in practical scenarios. The following result, proven in Appendix B, shows that the
MICL discriminant functions, δLε(x, j), converge quickly to their limiting form, δL∞

ε (x, j).
Theorem 3.2 (MICL convergence rate). As the number of samples, m→ ∞, the MICL cri-

terion (2.3) converges to its asymptotic form, (3.1), at a rate of m− 1
2 . More specifically10, with

probability at least 1 − α,
∣∣δLε(x, j) − δL∞

ε (x, j)
∣∣ ≤ c(α) ·m− 1

2 for some constant c(α) > 0.
From the proof of the theorem, one may further notice that the constant c becomes smaller

when the covariance tends to singular, which suggests that the convergence speed is higher
when the distributions are nearly singular.

3.2. Improvements over MAP. In the above, we have established that asymptotically,
the MICL criterion (3.1) is equivalent to the MAP criterion. Nevertheless, in the cases of finite
samples or singular distributions, the MICL criterion makes several important modifications
to the MAP criterion, which may significantly improve its performance.

3.2.1. Regularization and finite-sample behavior. Notice that the first two terms of the
asymptotic MICL criterion (3.1) have the form of a MAP criterion, based on an N (μj ,Σj+ ε2

n I)
distribution, with prior πj. This is in some sense equivalent to softening or regularizing the
distribution by ε2

n along each dimension and has two important effects. First, it renders the
associated MAP decision rule well defined, even when the true data distribution might be
(almost) singular. Even for nonsingular distributions, there is empirical evidence showing
that for appropriately chosen ε, Σ̂ + ε2

n I gives a more stable finite-sample estimate of the
covariance [11], leading to lower misclassification rates.

Figure 2 demonstrates this effect on two simple examples in R
2. In each example, we vary

the number of training samples, m, and the distortion ε. For each (m, ε) combination, we
draw m training samples from two Gaussian distributions, N (μi,Σi), i = 1, 2, and estimate
the Bayes risk of the resulting MICL and MAP classifiers. This procedure is repeated 500
times to estimate the overall Bayes risk with respect to variations in the training data. In
Figure 2 we visualize the (estimated) difference in risks, RMAP − RMICL. Positive values,
then, indicate that MICL is outperforming MAP. The red line approximates the zero level-set
of the difference in risks, where the two methods perform equally well.

The generating distributions are parameterized as (at left) μ1 = [−1
2 , 0], μ2 = [12 , 0],

Σ1 = Σ2 = I, and (at right) μ1 = [−3
4 , 0], μ2 = [34 , 0], Σ1 = diag(1, 4), Σ2 = diag(4, 1). At

left, in the isotropic case, MICL outperforms MAP for all sufficiently large ε, with a larger
performance gain when the number of samples is small. In the anisotropic case (right), for a
good range of ε, MICL dramatically outperforms MAP for small sample sizes. We will see in
the next example that this effect becomes more pronounced as the dimension, n, increases.

10This assumes that the fourth moments E[‖x − μ‖4] of the conditional distributions exist.D
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Figure 2. Excess misclassification risk incurred by using MAP rather than MICL, as a function of ε and m.
MICL outperforms MAP in most settings, with the largest gain when m is relatively small. Left: two isotropic
Gaussians in R

2. Right: anisotropic Gaussians in R
2.

3.2.2. Dimension reward. The effective dimension term Dε(Σj) in the asymptotic MICL
criterion (3.1) can be rewritten as Dε(Σj) =

∑n
i=1

λi
ε2

n
+λi

, where λi is the ith eigenvalue

of Σj. Notice that if the data distribution lies on a perfect subspace of dimension d (i.e.,
λ1, . . . , λd 
 ε2

n and λd+1, . . . , λn � ε2

n ), D⊥ will be very close to d, the dimension of the
subspace. In general, D can be viewed as a “softened” estimate of the dimension, relative to
the distortion ε2. This quantity has been dubbed the “effective number of parameters” in the
context of ridge regression [15]. Thus, minimizing the MICL criterion rewards distributions
that have relatively higher dimension.11 Note, however, that this effect is somewhat countered
by the regularization induced by ε, which has a larger “reward” effect on lower-dimensional
distributions.

Figure 3 empirically compares MICL to the conventional MAP and the regularized MAP
(or RDA [11]). In this example, we draw m samples from three nested Gaussian distributions:
One has a full rank n, one has rank n/2, and one has rank 1. For a rank-d distribution, we
sample data iid N (0, [ Id×d 0

0 In−d×n−d
]), and add iid N (0, .04) noise to each sample, to simulate

real data that may be nearly degenerate but are not perfectly so. We estimate the Bayes
risk for each (m,n) combination by averaging over 500 independent trials. For fairness of
comparison, the regularization parameter in RDA and the distortion ε for MICL are chosen
independently for each trial to minimize the cross-validation error over the training data.
Plotted are the (estimated) differences in risk, RMAP − RMICL (left) and RRDA − RMICL

(right). The red lines again correspond to the zero level-set of the difference. Notice that
with little surprise, MICL outperforms MAP for most (m,n) and that the effect is most
pronounced when n is large and m is small. Interestingly, when m is much smaller than n
(e.g., the bottom row of Figure 3 (right)), MICL demonstrates a significant performance gain
with respect to RDA. As the number of samples increases, though, there is a region where
RDA is slightly better. However, for most (m,n) considered here, MICL and RDA have rather

11Notice that here dimension assumes an “opposite” role to that in model estimation, where we typically
penalize models with higher dimension.D
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Figure 3. Excess risk incurred by using MAP and RDA rather than MICL, as a function of the number of
samples m and dimension n.

close performance.12

4. Implementation issues. The rigorous analysis of the Gaussian case in the previous
section reveals many good properties of the proposed MICL criterion. In reality, however, the
distribution(s) of the data of interest may not be Gaussian. If the rate-distortion function
of the distribution(s) is known, in principle one could carry out similar analysis as for the
Gaussian case. Nevertheless, in this subsection, we discuss some practical ways of modifying
the MICL criterion that are applicable to arbitrary distributions, without losing some of the
desirable properties discussed above.

4.1. Kernel MICL criterion. Since XX T and X TX have the same nonzero eigenvalues,
we have the identity

(4.1) log2 det
(
I+

n

ε2m
XX T

)
= log2 det

(
I+

n

ε2m
X TX

)
.

Thus, one can evaluate the coding length function (2.5) using only the inner products between
the data points. If the data x (of each class) are not Gaussian, but there exists a nonlinear
map ψ : R

n → H such that the transformed data ψ(x) are (approximately) Gaussian, we can
replace the inner product xT

1 x2 with a new one k(x1,x2)
.= ψ(x1)Tψ(x2). The so-defined

symmetric positive definite function k(x1,x2) is known in statistical learning as a “kernel
function.”13 By choosing a proper kernel function, one may achieve better classification
performance for certain classes of non-Gaussian distributions. In practice, some popular
choices include the polynomial kernel k(x1,x2) = (xT

1 x2 + 1)d, the radial basis function
(RBF) kernel k(x1,x2) = exp(−γ‖x1 − x2‖2), and their variants. Notice that by replacing
xT

1 x2 with k(x1,x2), we are now classifying the test sample x by assigning it to the class
which minimizes the additional bits to code ψ(x) jointly with ψ(x1) . . . ψ(xm). Appendix D
describes how to properly account for the mean and dimension of the lifted data, so that the
discriminant functions are well defined and correspond to a proper coding length.

12Note that RDA [11] is designed to be nearly optimal for finite samples of Gaussians.
13The necessary and sufficient conditions for k(·, ·) to be a kernel function are given by Mercer’s theorem [32].D
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The transformation described above is similar to that used in generalizing SVMs [32, 8] to
nonlinear decision boundaries. In fact, SVM can be loosely interpreted as a lossy compression
approach to classification, since it represents the final decision hypersurface in terms of a small
portion of nearby samples, called “support vectors.” However, for degenerate data lying on
low-dimensional subspaces or submanifolds, almost all the training samples help determine
the global shape of the optimal separating hyperplane or hypersurface. In this case, learning
the separating hyperplane or hypersurface via SVM may no longer be more generalizable
than directly harnessing the low-dimensional structures of the training data via MICL for
classification (see Figure 4 for a comparison).

Moreover, the kernelized version of MICL provides a simpler alternative to the SVM ap-
proach of constructing a linear decision boundary in the embedded (kernel) space, potentially
exploiting details of the structure of the embedded data (see Figure 5 for an example). In
section 5.2 we will see that even for real data whose statistical nature is unclear, kernel MICL
outperforms SVM when applied with the same kernel function.

4.2. Local MICL criterion. For data drawn from complicated multimodal distributions,
it may be difficult or impossible to find a kernel function that renders the data approximately
Gaussian. In this case, we can apply the MICL criterion locally, in a neighborhood of the test
sample x. For instance, we may consider the k nearest14 neighbors of x in the training set X ,
which we denote as Nk(x). Training data in this neighborhood that belong to each class are
Nk

j (x) .= Xj ∩Nk(x), j = 1, . . . ,K. In the MICL classifier (Algorithm 1), we can replace the
incremental coding length δLε(x, j) by its local version,

(4.2) δLε(x, j) = Lε(Nk
j (x) ∪ {x}) − Lε(Nk

j (x)) + L(j),

where L(j) is replaced with its local version, L(j) = − log2
|Nk

j (x)|
|Nk(x)| .

The local MICL criterion gives a universal classifier that is applicable to arbitrary distri-
butions.

Proposition 4.1 (asymptotic local MICL). Suppose the probability density function pj(x) =
p(x|y = j) of each class is nonsingular. Then if ε > 0 is held constant while m,k → ∞ with
k(m) = o(m), the local MICL criterion converges to the MAP criterion:

ŷ(x) = argmax
j=1,...,K

ln pj(x) + lnπj .

Proof sketch. With k = o(m), for any fixed x the radius of Nk(x) shrinks to zero. Hence
μ̂j → x and Σ̂j → 0. Thus,

∣∣Lε(Nk
j (x) ∪ {x}) − Lε(Nk

j (x))
∣∣ → 0 for each j. The only

remaining effective term in the classifier is the coding length L(j) for the class label. Since
|Nk

j (x)|
|Nk(x)| → πj · pj(x) as k → ∞, we have the desired conclusion.

Thus, when the sample size is large or, more precisely, when the density of samples around
the query point is high, local MICL behaves like k-NN, since the effect of the first and third
terms in (3.1) diminishes. Similar to k-NN, local MICL approximates the MAP criterion when
the sample size goes to infinity and k is large.

14“Nearest” is in terms of the Euclidean distance.D
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(a) MICL (b) 5-NN (c) SVM-RBF

Figure 4. Extrapolation of data structure. Left: MICL. Center: 5-NN. Right: SVM-RBF.

However, the finite-sample behavior of the local MICL criterion can be dramatically differ-
ent from that of k-NN, especially when the samples are sparse and the distributions involved
are almost singular. In those cases, the first and third terms in (3.1) become significant. The
first term approximates the local shape of the distribution pj(x) from the handful of neigh-
boring samples Nk

j (x) by a (regularized) Gaussian,15 and the third term accounts for the
dimension of the subspace spanned by these samples in case pj(x) is close to singular around
x. These two terms together provide a more comprehensive measure of how well the test sam-
ple x can be interpolated or extrapolated by its neighboring training samples, in terms of their
shape as well as their frequency. As we will demonstrate in the next section with extensive
simulations and experiments, the local MICL criterion consistently has superior finite-sample
performance over the conventional k-NN criterion.

5. Simulations and experiments. In this section, we conduct extensive simulations and
experiments on real imagery data. Our results show that MICL and its kernel and local
variants approach the best reported results from more sophisticated classifiers or systems,
without any domain-specific information. In our implementation, the complexity of the global
MICL (Algorithm 1) is quadratic in the dimension of the data; the complexity of the local
MICL is similar to that of k-NN.

5.1. Simulations on synthetic data.
Extrapolation of data structure. We compare the decision boundary given by MICL in

Figure 1 (right) to those of k-NN and SVM. For MICL we choose ε = 1, for k-NN we choose
k = 5, and SVM is run with an RBF kernel with γ = 1

2 . All three methods give plausible
decision boundaries on the right side of the vertical line. However, both k-NN and SVM assign
everything on the left side of the vertical line to that line, whereas MICL extrapolates the data
structure to this side. Note that while MICL is certainly not the only classifier capable of such
extrapolation, it does provide a very simple and effective means of harnessing data structure
that is ignored by methods such as k-NN and SVM-RBF.

Local MICL and kernel MICL. Figure 5 compares the nonlinear extensions to MICL dis-
cussed in section 4 on a two-spiral decision problem. Here we choose K = 5, ε = 2.5 for
local MICL (LMICL), k = 5 for k-NN, an RBF kernel with γ = 1000 and ε = 1 for ker-
nel MICL (KMICL), and the same kernel for SVM. The local version of MICL exploits the
approximately locally linear structure of the data to produce a smoother decision boundary
than k-NN. Also, notice that both kernel MICL and kernel SVM produce smooth decision

15This is done in the same spirit as using a Gaussian kernel in Parzen’s density estimator [32].D
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(a) LMICL 5-NN (c) KMICL (d) SVM

Figure 5. Comparison of nonlinear extensions to MICL against SVM and k-NN. Notice that local
MICL improves upon k-NN, producing a smoother and more intuitive decision boundary. Kernel MICL
and SVM produce similar boundaries that are smoother and that better respect the data structure than
those given by either of the local methods.

boundaries that extrapolate the spiral structure of the data in the upper left corner. How-
ever, the improved performance of these kernelized methods comes at the price of having to
select a proper kernel, a nontrivial problem for this dataset, since certain popular kernels (e.g.,
polynomial) do not work for this dataset.

5.2. Tests on real imagery data. Real imagery data encountered in applications of learn-
ing and vision are often characterized by complicated distributions that may not satisfy the
Gaussian assumption underlying MICL. In fact, this difficulty in characterizing the distribu-
tion of imagery data has played a major role in the popularity of flexible, empirical classifiers
such as k-NN and SVM for vision tasks. In this section, we compare MICL to other generic
classifiers and demonstrate the applicability and advantages of MICL even in this nonpara-
metric setting.

Handwritten digit recognition. We first test the MICL classifier on two standard datasets for
handwritten digit recognition (Table 1 (top)). The modified National Institute of Standards
and Technology (MNIST) handwritten digit dataset [20] consists of 60,000 training images and
10,000 test images (see Figure 6 (top) for a visualization). We achieved better results using
the local version of MICL due to non-Gaussian distribution of the data. We select the free
parameters k and ε by leave-one-out cross-validation, over the range k ∈ {5, 10, 15, . . . , 75}
and log(ε) ∈ {−10,−9, . . . , 9, 10}. The cross-validation error is minimized at k = 50 and
log(ε) = −10. This very small value of ε suggests that, for this dataset, once we have
restricted our attention to the k nearest neighbors, the local affine structure of the data is more
relevant for classification than the class labels themselves. With these automatically chosen
parameters, our algorithm achieves a test error of 1.61%, outperforming simple methods such
as k-NN as well as many more complicated neural network approaches (e.g., LeNet-1 [20]).
MICL’s error rate approaches the best result for a generic learning machine (1.1% error for
SVM with a degree-4 polynomial kernel). Problem-specific approaches, such as generating
synthetic training samples, have resulted in lower error rates, however, with the best reported
result achieved using a specially engineered neural network [30].

We also test on the challenging United States Postal Service (USPS) digits database,
visualized in Figure 6 (bottom). Here, even humans have considerable difficulties (about 2.5%D
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Table 1
Results for handwritten digit recognition on two standard datasets. Top: MNIST dataset. Bottom: USPS

dataset. The results in the bottom row of the lower table are with identical preprocessing and kernel function.
Kernel MICL outperforms SVM in this comparison.

Method Error (%) Method Error (%)

LMICL 1.61 k-NN 3.09

SVM-poly [32] 1.1 Best [30] 0.4

Method Error (%) Method Error (%)

LMICL 4.78 k-NN 5.28

KMICL-poly 4.7 SVM-poly [7] 5.3

Modified National Institute of Standards and Technology (MNIST) Database

United States Postal Service (USPS) Database

Figure 6. Digit databases. The MNIST database (top) consists of 70, 000 images of resolution 28 × 28.
The USPS database (bottom) consists of 9, 298 images of resolution 16 × 16. A randomly chosen example of
each digit is displayed.

error). We first apply local MICL with k = 20 and log(ε) = −6 chosen by leave-one-out
cross-validation from the range k ∈ {5, 10, . . . , 75} and log(ε) ∈ {−10,−9, . . . , 9, 10}. With
these parameters, local MICL achieves an error rate of 4.78% (see Table 1 (bottom)), again
outperforming k-NN (best error rate achieved with k = 4).

We further compare the performance of kernel MICL to SVM16 on this dataset using the
same homogeneous, degree-3 polynomial kernel and identical preprocessing (normalization
and centering). This allows us to compare pure classification performance, independent of
the various engineering improvements. Here, SVM achieves a 5.3% error, while kernel-MICL
achieves an error rate of 4.7% with log(ε) = −5. This ε was chosen fully automatically,
via leave-one-out cross-validation within the training set. It is optimal for the range log ε ∈
{−10,−9, . . . , 9, 10}.

Using domain-specific information, one can achieve better results. For example, using
many synthetic training images or more advanced skew-correction and normalization tech-
niques lowers the error rate for SVM-poly to 4.1% in [32]. Non-Euclidean distance metrics are
also useful: [29] (best reported in [32]) achieves 2.7% error using tangent distance to a large
number of prototypes. Further performance improvements have been achieved by applying
matching techniques with local deformation prior to classification [19]. All of these techniques
aim at eliminating some of the variation due to nonrigid deformation and misalignment, vari-

16For this experiment, we use the LIB-SVM implementation of SVM [7].D
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ations that are not handled well by holistic methods that treat the entire image as a vector.
While we have avoided extensive preprocessing here, so as to isolate the effect of the classifier,
such preprocessing can also be incorporated into our framework.

Face recognition. We further verify MICL’s appropriateness for real vision problems using
face recognition under varying illumination as an example. Researchers in face recognition
have observed both empirically and theoretically that images of the same face under varying
lighting conditions lie near a low-dimensional linear subspace [2]. This simple structure of the
data suggests that good performance could be obtained directly using Algorithm 1, without
resorting to local or kernel methods. However, these linear subspaces are embedded in a very
high-dimensional image space, and we generally have very few training samples per class with
which to infer them.

For this experiment, we use the Extended Yale Face Database B [12]17, which tests the
illumination-sensitivity of face recognition algorithms. We work with a standard set of 1, 694
frontal images of 38 subjects. Each image has resolution 168 × 192. The database is divided
into four subsets, corresponding to increasingly extreme illumination angles, visualized in
Figure 7. We use Subset 1 for training and test the algorithm’s ability to extrapolate to
Subsets 2–4. We apply Algorithm 1, not the local or kernel version, directly to the raw
imagery data. For this dataset, the leave-one-out cross-validation error is essentially flat
(varying by only a single image) across log ε ∈ {−8, . . . , 6.5}. We report the recognition rate
at log ε = −0.75, the midpoint of this range.

We compare MICL with two standard face recognition techniques based on principal
component analysis (PCA) [31] and linear discriminant analysis (LDA) [3]. For PCA, we
choose the projected dimension to minimize the test error across {5, 10, . . . , 100}, while for
LDA, we choose the maximum possible dimension, 37, which also minimizes the test error. We
also compare to the nearest subspace [21] classifier, which assigns the test image to the class
that minimizes the distance between it and the linear span of the training samples from that
class. Finally, we compare to RDA, again choosing the regularization parameter α (recall that
RDA replaces Σ̂ with Σ̂ + αI in the Gaussian likelihood) by cross-validation from the range
logα ∈ {−8, . . . , 8}. The leave-one-out cross-validation error is flat (and minimal) across
logα = −8, . . . , 2. As for ε above, we choose log α = −3, the midpoint of this range.

Table 2 reports the recognition error rate for each of the five algorithms across the three
training subsets. MICL outperforms the two classical techniques significantly, suggesting
that if we have a criterion that directly exploits the singular or low-dimensional structures
of the data, performing dimensionality reduction before classifying becomes unnecessary or
even undesirable.18 For all illuminations, it performs similarly to RDA, and for moderate
illuminations, its performance approaches that of the nearest subspace technique, again sug-
gesting that MICL can automatically exploit degenerate structures that may be present in
the high-dimensional data.

High-dimensional data spaces pose challenges for any learning algorithm, in the form of
dramatically undersampled distributions. However, they also open the door to new geometric

17We use the normalized and cropped version of this dataset, as in [21].
18Working directly in the high-dimensional space is computationally feasible thanks to the kernel property

(4.1) and can be further accelerated via block determinant identities (see Appendix C for details).D
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Subset 1
(7 images)

Subset 2
(12 images)

Subset 3
(12 images)

Subset 4
(14 images)

Figure 7. The Extended Yale Face Database B includes 1, 694 images of 38 subjects under varying illumi-
nation. The database is divided into four subsets taken under increasingly extreme lighting conditions. In our
experiments, we train using Subset 1 and test with each of the remaining subsets.

Table 2
Face recognition under widely varying illumination. Recognition error rates for various test sets, with

Subset 1 as training. MICL outperforms classical techniques such as PCA, and performs competitively with
other subspace-based techniques.

Subset 2 Subset 3 Subset 4

PCA + NN [31] 0.7% 19.9% 85.3%

LDA + NN [3] 0% 1.3% 59.4%

RDA [11] 0% 0.4% 21.8%

MICL 0% 0.4% 20.6%

Nearest subspace [21] 0% 0% 11.8%

tools for recognition. In related work, we have shown how sparse representation and com-
pressed sensing [34] can be applied to achieve robust and accurate face recognition despite
occlusion and variations in illumination. These techniques rely on geometric phenomena19 that
do not occur in low-dimensional spaces, again suggesting that if the proper tools are available,
it may be best to treat the data as is, rather than performing dimensionality reduction.

6. Discussion. In this paper, we propose and study a new classification criterion, based
on the principle of lossy data compression, called the minimum incremental coding length
(MICL) criterion. We establish its asymptotic optimality for Gaussian data. It generates
a family of classifiers, which we connect to classical techniques such as MAP, RDA, and k-
NN. This family of classifiers extends the working conditions of these classical techniques to
situations where the sample set is sparse or the distribution is singular in a high-dimensional
space.

Our results also have implications for unsupervised learning. In [23], lossy coding length
was used as an objective function for clustering, and a simple agglomerative method was
proposed to segment data from mixtures of Gaussians or linear subspaces. The new theoretical
results described here further explain the surprising efficacy of the simple clustering algorithm
of [23]. For example, Theorem 3.1 implies that the agglomerative method of [23] makes a
decision at each step based on a regularized version of (Gaussian) maximum likelihood or
MAP.

On real vision problems, the MICL criterion and its kernel and local versions perform

19These include, for example, the existence of centrally neighborly polytopes.D
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competitively (nearly optimally for the face recognition problem) without any domain-specific
engineering. We believe that its good performance comes mainly from the fact that MICL can
automatically exploit low-dimensional structure in high-dimensional imagery data for classifi-
cation purposes. This ability allows MICL to be applied in practice with little preprocessing
and engineering of the data, reducing the risk of overfitting. Due to its simplicity and flexi-
bility, we believe it can be successfully applied to an even wider range of real-world data and
classification problems.

Appendix A. Proof of Theorem 3.1. In this section, we prove Theorem 3.1 of section 3.1.
We will require the following two lemmas, the first of which is useful for computing higher
order derivatives of the coding length function.

Lemma A.1. Let δkl be the matrix whose k, l entry is 1 and whose other entries are all zero.
Let Λ(m) .= I + n

ε2
m

m+1Σ, and let Ψ .= (Λ(m) + Γ)−T . Then for k ≥ 1,

(A.1)
∂k ln det(Λ(m) + Γ)

∂Γi1,j1∂Γi2,j2 . . . ∂Γik,jk

= (−1)k+1

⎛
⎝ ∑

σ∈Sym(k−1)

Ψ
k−1∏
l=1

[
δjσ(l)iσ(l)

Ψ
]⎞⎠

ikjk

,

where Sym(p) is the symmetric group on p letters. Thus, the kth partials of log2 det(Λ(m)+Γ)
are all Θ(1) with respect to increasing m.

Proof. Induction on k. For k = 1, the standard result that ∂ ln det W
∂W = W−T gives

(A.2)
∂ ln det(Λ(m) + Γ)

∂Γi1,j1

=
(

(Λ(m) + Γ)−T

)
i1,j1

= (Ψ)i1,j1.

Suppose that (A.1) holds for 1, . . . , k − 1. Then

(A.3)
∂k−1 ln det(Λ(m) + Γ)

∂Γi1,j1∂Γi2,j2 . . . ∂Γik−1,jk−1

= (−1)k

⎛
⎝ ∑

σ∈Sym(k−2)

Ψ
k−2∏
l=1

[
δjσ(l)iσ(l)

Ψ
]⎞⎠

ik−1jk−1

,

and so the kth partial is given by

(−1)k

⎛
⎝ ∂

∂Γik,jk

∑
σ∈Sym(k−2)

Ψδjσ(1)iσ(1)
Ψ . . .Ψδjσ(k−2)iσ(k−2)

Ψ

⎞
⎠

ik−1jk−1

(A.4) = (−1)k
(∑

σ

∂Ψ
∂Γik ,jk

δjσ(1)iσ(1)
Ψ . . .Ψδjσ(k−2)iσ(k−2)

Ψ + · · ·

+ Ψδjσ(1)iσ(1)
Ψ . . .Ψδjσ(k−2)iσ(k−2)

∂Ψ
∂Γik,jk

)
ik−1jk−1

.

Notice that ∂Ψ
∂Γik,jk

= −Ψδjk,ikΨ. Plugging this quantity into (A.4), changing the order of the
partials with respect to Γik,jk

and Γik−1,jk−1
, and recognizing that the sum is now over all

permutations of {1, . . . , k−1} gives the desired formula.D
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Our main use of this lemma is to establish that partials of ln det(Λ(m) + Γ) are all O(1).
Now, let Rε(Q) .= 1

2 log2 det(I + n
ε2 Σ̂(Q)) denote the coding rate associated with a set

of samples Q, and let δRε(Q,z) .= Rε(Q ∪ {z}) − Rε(Q) denote the change in rate due to
introducing a new sample, z. The following lemma shows that δRε is asymptotically quadratic
in z.

Lemma A.2. Let q1, . . . ,qm, . . .
iid∼ pQ(q), and let E[Q] = μ and Cov(Q) = Σ. Let Q(m) =

[q1, . . . ,qm] ∈ R
n×m. Then for all z ∈ R

n,
(A.5)

lim
m→∞ 2m ln 2 δRε(Q(m),z) = (z − μ)T

(
Σ +

ε2

n
I

)−1

(z − μ) − tr

(
Σ
(

Σ +
ε2

n
I

)−1
)

a.s.

Proof. Let Γ .= n
ε2

m
(m+1)2 (z − μ̂)(z − μ̂)T . Then

2 ln 2 δRε = ln det
(
I +

n

ε2
Σ̂(Q(m) ∪ {z})

)
− ln det

(
I +

n

ε2
Σ̂(Q(m))

)
= ln det

(
I +

n

ε2
m

m+ 1
Σ̂(Q(m)) + Γ

)
− ln det

(
I +

n

ε2
Σ̂(Q(m))

)
.

Since ln det(Λ) is analytic in the entries of the matrix Λ, we may Taylor expand the first term
in Γ, about Γ = 0. The above becomes

ln det
(
I +

n

ε2
m

m+ 1
Σ̂
)

+
∑
i,j

[(
I +

n

ε2
m

m+ 1
Σ̂
)−1

]
ij

Γij

+O(m−2) − ln det
(
I +

n

ε2
Σ̂
)
.(A.6)

Here, we have used that ∂ ln detΛ
∂Λij

= (Λ−T )ij . The fact that the higher order terms are O(m−2)
follows from Lemma A.1. Applying the definition of Γ and rearranging gives

(A.7)
1

m+ 1
(z− μ̂)T

(
ε2

n

m+ 1
m

I + Σ̂
)−1

(z− μ̂) − ln

[
det(I + n

ε2 Σ̂)

det(I + n
ε2

m
m+1 Σ̂)

]
+ O(ε−4m−2).

So, limm→∞ 2m ln 2 δRε(Q(m),z) is equal to

lim
m→∞

{
m

m+ 1
(z − μ̂)T

(
ε2

n

m+ 1
m

I + Σ̂(Q(m))
)−1

(z − μ̂)

− ln

[
det(I + n

ε2 Σ̂(Q(m)))

det(I + n
ε2

m
m+1 Σ̂(Q(m)))

]m

+O(ε−4m−1)

}
.(A.8)

The first term goes to (z−μ)T
(
Σ + ε2

n I
)−1

(z−μ) a.s. Let λ̂1 . . . λ̂n be the eigenvalues of the
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sample covariance, Σ̂. Then the limit of the middle term is

lim
m→∞ ln

[
det(I + n

ε2 Σ̂)

det(I + n
ε2

m
m+1 Σ̂)

]m

= ln
n∏

i=1

lim
m→∞

[
1 + n

ε2 λ̂i

1 + n
ε2

m
m+1 λ̂i

]m

(A.9)

= ln
n∏

i=1

exp

(
λi

ε2

n + λi

)
(A.10)

= tr

(
Σ
(

Σ +
ε2

n
I

)−1
)
.(A.11)

Here in (A.9) we have used that limm→∞[ α+β
α+ m

m+1
β ]m = exp( β

β+α ) in conjunction with the

almost sure convergence of the sample eigenvalues λ̂i to the true covariance’s eigenvalues λi.
This establishes the lemma.

Theorem 3.1, restated below, is a straightforward consequence of this analysis.
Theorem 3.1 (asymptotic MICL). Let the training samples {(xi, yi)}m

i=1
iid∼ pX,Y (x, y), with20

μj
.= E[X|Y = j], Σj

.= Cov(X|Y = j). Then as m → ∞, the MICL criterion coincides
(eventually, with probability 1) with the decision rule

(A.12) ŷ(x) = argmax
j=1,...,K

LG

(
x
∣∣μj , Σj +

ε2

n
I
)

+ lnπj +
1
2
Dε(Σj),

where LG(·|μ,Σ) is the log-likelihood function for an N (μ,Σ) distribution, and

(A.13) Dε(Σj)
.= tr

(
Σj

(
Σj +

ε2

n
I
)−1
)

is the effective codimension of the jth model, relative to ε.
Proof. We first consider the decision boundary between two classes whose means and

covariances are μ1,Σ1 and μ2,Σ2, respectively. Let X (m) .= [x1, . . . ,xm] ∈ R
n×m be the first

m training vectors, X (m)
j

.= {xi ∈ X (m) : yi = j} the subset of the first m training vectors

belonging to the jth class, and mj
.= |X (m)

j |. Let Mε(X ) .= n
2 log2(1 + ‖μ̂(X )‖2

ε2 ) be the number
of bits needed to code the mean, and δMε(X ,z) the change due to introducing sample z.
Applying the definition of Lε and rearranging, we have that δLε(z, 1) < δLε(z, 2) iff

(A.14) (m1 + n) δRε

(
X (m)

1 ,z
)

+ Rε

(
X (m)

1 ∪ {z}
)

+ δMε(X (m)
1 ,z) − log2 π̂1

< (m2 + n)δRε

(
X (m)

2 ,z
)

+ Rε

(
X (m)

2 ∪ {z}
)

+ δMε(X (m)
2 ,z) − log2 π̂2.

Now, with probability 1, for all z ∈ R
n, Rε

(
X (m)

j ∪ {z}
)
→ Rε(Σj), δMε(X (m)

j ,z) → 0, and
π̂j → πj .

20We assume that the first and second moments of the conditional distributions exist.D
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Let us multiply (A.14) by ln 2 and let m→ ∞. Using Lemma A.2 to evaluate the limit of
the first term, we have that, with probability 1, ŷ(z) = 1 iff

(A.15)
1
2
(z − μ1)

T

(
Σ1 +

ε2

n
I

)−1

(z − μ1) − 1
2
Dε(Σ1) +

1
2

ln det
(
I +

n

ε2
Σ1

)
− lnπ1

<
1
2
(z − μ2)

T

(
Σ2 +

ε2

n
I

)−1

(z − μ2) − 1
2
Dε(Σ2) +

1
2

ln det
(
I +

n

ε2
Σ2

)
− lnπ2.

Notice that the first and third terms on each side sum to −LG(z|μj ,Σj + ε2

n I). Multiplying by
−1 converts the minimization to a maximization, and extending to K classes by considering
the decision boundaries between each pair of classes establishes the result, (A.12).

Appendix B. Proof of Theorem 3.2. In this section, we analyze the convergence rate of
the MICL discriminant functions to their limiting form (A.12), proving Theorem 3.2 of the
paper. Throughout this section we consider the discriminant function δLε(z, j) associated
with a single group with mean μj and covariance Σj, and so for compactness of notation
we will drop the subscript j. In the course of proving Theorem 3.1, we showed that the
incremental coding length can be written as

δLε(z) = (m+ n) δRε(X ,z) + Rε(X ∪ {z}) + δMε(X ,z) − log2 π̂(B.1)

=
1

2 ln 2
(z − μ̂)T

(
Σ̂ +

ε2

n

m+ 1
m

I

)−1

(z − μ̂) − m

2 ln 2
ln

[
det(I + n

ε2 Σ̂)

det(I + n
ε2

m
m+1 Σ̂)

]

+ Rε(X ∪ {z}) + δMε(X ,z) − log2 π̂ + O(m−1)(B.2)

with limiting form

(B.3) δL∞
ε (z) =

1
2 ln 2

(z − μ)T
(

Σ +
ε2

n
I

)−1

(z − μ) − Dε(Σ)
2 ln 2

+ Rε(Σ) − log2 π.

We need the following deviation bounds: on the empirical class probability, π̂ = 1
m

∑
i Iyi=j ; on

the sample mean, μ̂ = 1
m

∑
i xi; and on the sample covariance, Σ̂ = 1

m−1

∑
i(xi− μ̂)(xi− μ̂)T .

Lemma B.1. Suppose the fourth moment E[ ‖x−μ‖4 ] exists. The following three equations
then hold simultaneously with probability at least 1 − 3α:

|π̂ − π| ≤
√
π(1 − π)
mα

,(B.4)

‖μ̂ − μ‖ ≤
√

tr (Σ)
mα

, and(B.5)

‖Σ̂ − Σ‖F ≤ g(m,α) + o(m− 1
2 ),(B.6)

where

(B.7) g(m,α) .=

√
E[‖z − μ‖4] − ‖Σ‖2

F

mα
+ 2‖μ‖

√
tr (Σ)
mαD
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and the residual o(m− 1
2 ) in (B.6) is independent of α.

Proof. Notice that E[π̂] = π and var(π̂) = π(1 − π)/m. By Chebyshev’s inequality,

(B.8) P

[
|π̂ − π| ≥

√
π(1 − π)
mα

]
≤ α.

Similarly,

(B.9) P [‖μ̂ − μ‖F ≥ η] ≤ E[‖μ̂ − μ‖2]
η2

=
tr (Cov(μ̂))

η2
=

tr (Σ)
mη2

,

so that P [‖μ̂ − μ‖ ≥
√

tr(Σ)
mα ] ≤ α.

Let Σ̃ .= 1
m

∑
i(xi − μ)(xi − μ)T . Then

‖Σ̂ − Σ̃‖F =
∥∥∥∥ 1
m− 1

Σ̃ + μ(μ̂ − μ)T + μ̂(μ − μ̂)T
∥∥∥∥

F

(B.10)

≤ 1
m− 1

‖Σ̃‖F + (‖μ‖ + ‖μ̂‖) ‖μ̂ − μ‖(B.11)

≤ 2‖μ‖
√

tr (Σ)
mα

+ o(m− 1
2 )(B.12)

on the event (B.5). We will next bound ‖Σ̃ − Σ‖F . Let ξ
.= vec((x − μ)(x − μ)T ). Then

E[ξ] = vec(Σ) and Cov(ξ) = E[ξξT ] − vec(Σ)vec(Σ)T . Then,

P [‖Σ̃ − Σ‖F ≥ γ] ≤ E[‖Σ̃ − Σ‖2
F ]

γ2
=

tr
(
Cov(vec(Σ̃))

)
γ2

(B.13)

=
E[‖ξ‖2] − ‖vec(Σ)‖2

mγ2
=

E[‖x − μ‖4] − ‖Σ‖2
F

mγ2
.(B.14)

Setting the left-hand side of (B.14) equal to α and solving for the upper bound γ gives

(B.15) P

[
‖Σ̂ − Σ‖F ≥

√
E[‖x − μ‖4] − ‖Σ‖2

F

mα

]
≤ α.

‖Σ̂−Σ‖F ≤ ‖Σ̃−Σ‖F + ‖Σ̂− Σ̃‖F , so (B.12) and (B.15) give (B.6). Applying a union bound,
(B.4), (B.5), and (B.6) hold simultaneously with probability at least 1 − 3α.

We will analyze, term by term, the convergence of (B.2) to (B.3), proving the following
theorem.

Theorem 3.2 (MICL convergence rate). Suppose the fourth moment E[ ‖x−μ‖4 ] exists. As
m → ∞, the MICL discriminant functions converge to their asymptotic form at a rate of
m− 1

2 . More specifically, with probability at least 1 − 3α,

|δLε(z) − δL∞
ε (z)| ≤ g(m,α)

2 ln 2

(
‖Ψ−1(z − μ)‖2 + ‖Ψ−1ΣΨ−1‖F +

√
n‖Ψ−1/2‖2

F

)

+
1

ln 2

√
tr (Σ)
mα

‖Ψ−1(z − μ)‖ +
1

ln 2

√
1 − π

mπα
+ o(m− 1

2 ),(B.16)
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where Ψ .= Σ + ε2

n I, and g(m,α) is defined in (B.7).
Proof. For compactness of notation, let Ψ̂(m) .= Σ̂ + ε2

n
m+1

m I. Fix α > 0 and let E be the
event that the three conditions in Lemma B.1 are satisfied. From Lemma B.1, P [E] ≥ 1−3α.

Quadratic term. We first analyze the difference between the quadratic term in (B.2) and
its limiting form:

(B.17)
∣∣(z − μ̂)T Ψ̂(m)−1(z − μ̂) − (z − μ)T Ψ−1(z − μ)

∣∣.
Writing z − μ̂ = (z − μ) + (μ − μ̂) and expanding (z − μ̂)T Ψ̂(m)−1(z − μ̂) gives

(z − μ)T Ψ̂(m)−1(z − μ) + 2(z − μ)T [Ψ̂(m)−1 − Ψ−1 + Ψ−1](μ − μ̂) + o(m− 1
2 )(B.18)

= (z − μ)T Ψ−1(z − μ) + (z − μ)T Ψ−1(Σ − Σ̂)Ψ−1(z − μ)

+ 2(z − μ)T Ψ−1(μ − μ̂) + o(m− 1
2 ).(B.19)

In (B.18) we have used that ‖μ−μ̂‖2 = o(m− 1
2 ), and in (B.19) that Ψ̂(m)−1 = Ψ−1+Ψ−1(Σ−

Σ̂)Ψ−1 + o(m− 1
2 ). On event E, (B.17) is bounded above by

‖Ψ−1(z − μ)‖2‖Σ − Σ̂‖F + 2‖Ψ−1(z − μ)‖ ‖μ − μ̂‖ + o(m− 1
2 )(B.20)

≤ g(m,α)‖Ψ−1(z − μ)‖2 + 2

√
tr (Σ)
mα

‖Ψ−1(z − μ)‖ + o(m− 1
2 ).(B.21)

Dimension term. We next consider the convergence of the dimension term, Dε:

(B.22)

∣∣∣∣∣m ln

[
det(I + n

ε2 Σ̂)

det(I + n
ε2

m
m+1 Σ̂)

]
− tr

(
Σ
(

Σ +
ε2

n
I

)−1
)∣∣∣∣∣ .

Let B .= Σ − Σ̂. Then

ln det
(
I +

n

ε2
m

m+ 1
Σ̂
)
− ln det

(
I +

n

ε2
Σ̂
)

(B.23)

= ln det
(

Ψ −B − 1
m+ 1

Σ̂
)
− ln det(Ψ −B)(B.24)

= ln det
(
I − Ψ−1

(
B +

1
m+ 1

Σ̂
))

− ln det(I − Ψ−1B)(B.25)

= ln det
(
I − (I − Ψ−1B)−1Ψ−1 1

m+ 1
Σ̂
)

(B.26)

= ln det
(
I − (I + Ψ−1B)Ψ−1 1

m+ 1
Σ + o(m− 3

2 )
)

(B.27)

= ln det
(
I − Ψ−1 1

m+ 1
Σ
)

+ ln det
(
I − Ψ−1BΨ−1 1

m+ 1
Σ + o(m− 3

2 )
)
,(B.28)

where in (B.27) we have used that (I − Ψ−1B)−1 = I + Ψ−1B + o(m− 1
2 ).D
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Let the ζi be the eigenvalues of Ψ−1Σ, and ωi the eigenvalues of Ψ−1BΨ−1Σ. Then,

m ln

[
det(I + n

ε2 Σ̂)

det(I + n
ε2

m
m+1 Σ̂)

]
= ln

n∏
i=1

(
1 − ζi

m+ 1

)m

+ ln
n∏

i=1

(
1 − ωi

m+ 1

)m

(B.29)

= ln
n∏

i=1

e−ζi

(
1 +

ζi
m

+ o(m−1)
)

+ ln
n∏

i=1

e−ωi

(
1 +

ωi

m
+ o(m−1)

)
(B.30)

= tr
(
Ψ−1Σ

)
+

n∑
i=1

ln
(

1 +
ζi
m

+ o(m−1)
)

+ tr
(
Ψ−1BΨ−1Σ

)

+
n∑

i=1

ln
(
1 +

ωi

m
+ o(m−1)

)
(B.31)

= tr

(
Σ
(

Σ +
ε2

n
I

)−1
)

+ tr
(
Ψ−1ΣΨ−1(Σ − Σ̂)

)
+ o(m−1).(B.32)

On E, (B.22) is bounded above by∣∣∣ tr(Ψ−1ΣΨ−1(Σ − Σ̂)
)∣∣∣+ o(m−1) ≤ ‖Ψ−1ΣΨ−1‖F ‖Σ − Σ̂‖F + o(m−1)(B.33)

≤ g(m,α)‖Ψ−1ΣΨ−1‖F + o(m−1).(B.34)

Rate, mean, and class label. We now consider the convergence of Rε(X ∪ {z}) to Rε(Σ).
Let Γ .= m

(m+1)2 (z − μ̂)(z − μ̂)T . Their absolute difference |Rε(X ∪ {z}) −Rε(Σ)| is equal to

∣∣∣∣12 log2 det
(
ε2

n
I +

m

m+ 1
Σ̂ + Γ

)
− 1

2
log2 det

(
ε2

n
I + Σ

)∣∣∣∣
=

1
2

∣∣∣∣log2 det
(
I + Ψ−1/2

[
(Σ̂ − Σ) − 1

m+ 1
Σ̂ + Γ

]
Ψ−1/2

)∣∣∣∣(B.35)

≤ n

2
log2

(
1 +

1√
n

∥∥∥∥Ψ−1/2

[
(Σ̂ − Σ) − 1

m+ 1
Σ̂ + Γ

]
Ψ−1/2

∥∥∥∥
F

)
(B.36)

≤
√
n

2 ln 2
‖Ψ−1/2(Σ̂ − Σ)Ψ−1/2‖F + o(m− 1

2 )(B.37)

≤
√
n

2 ln 2
‖Ψ−1/2‖2

F ‖Σ̂ − Σ‖F + o(m− 1
2 ).(B.38)

In going from (B.35) to (B.36), we have used that, for symmetric A ∈ R
n×n with eigenvalues

{λi},

|det(I +A)| ≤
∏

i

(1 + |λi|) ≤
(

1 +
∑

i |λi|
n

)n

≤
⎛
⎝1 +

1√
n

(∑
i

λ2
i

)1/2
⎞
⎠

n

(B.39)

=
(

1 +
1√
n

tr
(
ATA

)1/2
)n

=
(

1 +
1√
n
‖A‖F

)n

.(B.40)
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On E, the first term of (B.38) is bounded above by

(B.41)
√
n

2 ln 2
g(m,α)‖Ψ−1/2‖2

F .

Next, consider the excess cost to code the sample mean, and let ν .= m
m+1 , ν̄ .= 1

m+1 . Then

|δMε(X ,z)| =
∣∣∣∣n2 log2

(
1 +

‖νμ̂ + ν̄z‖2

ε2

)
− n

2
log2

(
1 +

‖μ̂‖2

ε2

)∣∣∣∣(B.42)

≤ n

2
log2

(
1 +

∣∣∣∣‖νμ̂ + ν̄z‖2 − ‖μ̂‖2

ε2

∣∣∣∣
)

(B.43)

=
n

2
log2(1 +O(m−1))(B.44)

= o(m− 1
2 ).(B.45)

Finally, we consider the convergence of the cost of coding the class label, Y . On E,

|π̂ − π| ≤
√

π(1−π)
mα . Then,

| log2 π̂ − log2 π| = log2

(
1 +

|π̂ − π|
min(π̂, π)

)
≤ log2

(
1 +

|π̂ − π|
π − |π̂ − π|

)
(B.46)

≤ 1
ln 2

√
1 − π√

mπα−√
1 − π

=
1

ln 2

√
1 − π

mπα
+ o(m− 1

2 ).(B.47)

Combining (B.21), (B.34), (B.41), (B.45), and (B.46) gives the result, (B.16).

Appendix C. Efficient implementation in high-dimensional spaces. Given training sam-
ples X ∈ R

n×m and a test sample z ∈ R
n, the MICL decision rule requires us to compute the

following discriminant function:

(C.1) δLε(x, j) = Lε(Xj ∪ {x}) − Lε(Xj) − log2 πj ,

where

(C.2) Lε(X ) .=
m+ n

2
log2 det

(
I +

n

ε2
Σ̂(X )

)
+
n

2
log2

(
1 +

μ̂T μ̂

ε2

)
.

In high-dimensional spaces, i.e., when n 
 m, it is generally advantageous to work with
the kernelized version of the rate function, in which the sample covariance Σ̂ is replaced by the
mean-centered matrix of inner products 1

m−1ΦmX TXΦm, where Φm
.= I− 1

m11T is the mean-
centering matrix. Notice that the second and third terms of (C.1) can be precomputed offline,
during the training stage. However, the first term depends on the new sample, z, and requires
computing the log-determinant of an n×n orm×mmatrix. Straightforward numerically stable
implementations require Θ(m3) time (computing log det either via Cholesky decomposition or
singular value decomposition). In this section we show how the online computation required
to evaluate (C.1) can be reduced to Θ(m2), with a corresponding practical speedup of several
orders of magnitude for the datasets considered in this paper.D
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We will work with the kernelized version of the rate function:

(C.3) Rε(X ) =
1
2

log2 det
(
I +

n

ε2
1

m− 1
X̄ T X̄

)
=

1
2

log2 det
(
I +

n

ε2
1

m− 1
ΦmX TXΦm

)
,

where Φm
.= I − 1

m1m1T
m ∈ R

m×m.
The quantity of interest, then, is the coding rate when test sample z is introduced:

(C.4) Rε(X ∪ {z}) =
1
2

log2 det
(
I +

n

ε2m
Φm+1

[
K b

bT c

]
Φm+1

)
.

Here Kij = 〈xi,xj〉, bi = 〈xi,z〉, and c = 〈z,z〉, where the inner product 〈·, ·〉 can be the
standard Euclidean inner product (global MICL) or some nonlinear kernel function (kernel
MICL). Equation (C.4) can be written as

(C.5)
1
2

log2 det
[
I +Q+ 1pT + p1T + λ11T q

qT ξ

]
,

where, letting Υ .= Im − 1
m+11m1T

m denote the upper left block of the mean-centering matrix,
Φm+1,

Q
.=

n

ε2m
ΥKΥ, p

.= − n

ε2m

1
m+ 1

Υb, λ
.=

n

ε2m

c

(m+ 1)2
,

ξ
.= 1 +

n

ε2m

1
(m+ 1)2

(
1TK1− 2m1T b + cm2

)
,

q
.=

n

ε2m

1
m+ 1

(
−ΥK1 +mΥb +

1T b

m+ 1
1 − mc

m+ 1
1
)
.(C.6)

Here, Q is constant for each class and can be precomputed during the training phase. Notice
that the total time to compute p,q, λ, ξ is quadratic in dimension n.

We will apply the following identities regarding small-rank adjustments of matrix quanti-
ties (the third of which is the Sherman–Woodbury–Morrison matrix inversion lemma):

(C.7) det
[
A b

bT c

]
= det(A)(c − bTA−1b),

(C.8) det(A+BCBT ) = det(A) det(C) det(C−1 +BTA−1B),

(C.9) (A+BCBT )−1 = A−1 −A−1B(C−1 +BTA−1B)−1BTA−1.

Let Γ .= I+Q+1pT +p1T +λ11T .= I+Q+
[
1 p

]
Λ[ 1

T

pT ]. The determinant in (C.5) becomes

det
[

Γ q
qT ξ

]
= (det Γ)(ξ − qT Γ−1q)

= det(I +Q) det(Λ) det
(

Λ−1 +
[
1T

pT

]
(I +Q)−1

[
1 p

])
(ξ − qT Γ−1q).
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Here, the first equation follows from (C.7), and the second from (C.8). det(I+Q) and (I+Q)−1

can be precomputed offline. A straightforward application of (C.9) gives that

Γ−1 = (I +Q)−1 − (I +Q)−1
[
1 p

](
Λ−1 +

[
1T

pT

]
(I +Q)−1

[
1 p

])−1 [1T

pT

]
(I +Q)−1.

Then, for u,v ∈ R
m, let suv

.= uT (I +Q)−1v. We can write the above in terms of quadratic
products involving 1, q, and p:

det
[

Γ q
qT ξ

]
= det(I +Q) det(Λ) det

(
Λ−1 +

[
s11 s1p

s1p spp

])

×
(
ξ − sqq +

[
sq1

sqp

]T (
Λ−1 +

[
s11 s1p

s1p spp

])−1 [
sq1

sqp

])
.(C.10)

The su v can be computed in quadratic time, and, given these values, the remaining operations
are constant time.

Appendix D. Implementation of kernel MICL. We start with the coding length function

Lε(X ) .=
m+ n

2
log2 det

(
I +

n

ε2
Σ̂(X )

)
+
n

2
log2

(
1 +

μ̂T μ̂

ε2

)
(D.1)

=
m+ n

2
log2 det

(
I +

n

ε2
1

m− 1
(X − μ̂1T )(X − μ̂1T )T

)
+
n

2
log2

(
1 +

μ̂T μ̂

ε2

)

=
m+ n

2
log2 det

(
I +

n

ε2
1

m− 1
XΦmΦT

mX T

)
+
n

2
log2

(
1 +

1TX TX1
m2ε2

)
.(D.2)

Here, Φm
.= I − 1

m11T ∈ R
m×m is the mean-centering matrix. Noticing that the nonzero

eigenvalues of (XΦm)(XΦm)T and (XΦm)T (XΦm) are equal; (D.2) is equal to

(D.3)
m+ n

2
log2 det

(
I +

n

ε2
1

m− 1
ΦT

mKΦm

)
+
n

2
log2

(
1 +

1TK1
m2ε2

)
,

where K = X TX ∈ R
m×m is the kernel matrix, or Grammian, Kij = 〈xi,xj〉.

As discussed in section 4, when the data X are nonlinear or non-Gaussian, MICL can still
be applied if we know a map ψ : R

n → H such that ψ(x) is approximately linear or Gaussian.
Suppose we are given such a map from the data space to a Hilbert space H of finite dimension
N , and suppose that we know a kernel function k(x1,x2) = 〈ψ(x1), ψ(x2)〉H. Often, H is
very high-dimensional and it is computationally costly to actually compute ψ(x). However,
since k(·, ·) is known, we can still efficiently compute the coding length in the high-dimensional
space H by replacing n with N in (D.3) and replacing Kij = 〈xi,xj〉 with Kij = k(xi,xj).
Notice that ΦmKΦm still corresponds to the mean-centered matrix of inner products (of the
vectors ψ(xi)), and 1

m2 1TK1 corresponds to the norm-squared of the sample mean of the
ψ(xi).

Example D.1 (homogeneous polynomial). Setting k(x1,x2) =
(
γ xT

1 x2

)d gives the homoge-
neous polynomial kernel used in section 5.2 for handwritten digit recognition. In this case,D
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(D.4) ψ : x = [x1, . . . , xn] �→ γd/2
[
xd

1,
√
dxd−1

1 x2, . . . ,
√
dxn−1x

d−1
n , xd

n

]
∈ R

N ,

where N = M
[d]
n =

(
n+d−1

d−1

)
.

Example D.2 (radial basis function). Another popular choice is

(D.5) k(x1,x2) = exp
(
−‖x1 − x2‖2

2

2σ2

)
.

In this case, H is infinite-dimensional, and (D.3) is not valid (i.e., the coding length is infi-
nite). However, we can instead consider the normalized discriminant functions

(D.6) δLε(x, i) =
2δLε(x, i) − n log2 n

n
.

For every finite n, δLε(x, i) gives the same classification as δLε(x, i), but as n→ ∞,

δLε(x, i) → log2 det+
(

1
ε2m

Φm+1K
′Φm+1

)
+ log2

(
1 +

1TK ′1
ε2(m+ 1)2

)

− log2 det+
(

1
ε2(m− 1)

ΦmKΦm

)
− log2

(
1 +

1TK1
ε2m2

)
,(D.7)

where K and K ′ are the kernel matrices before and after introducing the test sample x, and
det+(A) denotes the product of the positive eigenvalues of A � 0. It is interesting to notice
that if rank(K ′) = rank(K) + 1 for each group,

δLε(x, i) + 2 log2 ε→ log2 det+
(

1
m

Φm+1K
′Φm+1

)
+ log2

(
1 +

1TK ′1
ε2(m+ 1)2

)

− log2 det+
(

1
(m− 1)

ΦmKΦm

)
− log2

(
1 +

1TK1
ε2m2

)
.(D.8)

The “covariance” portion of the discriminant function becomes independent of the choice of
distortion! Only the cost of encoding the μ̂ still depends on ε.
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