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Abstract

Palm lines are the most important features for palmprint
recognition. They are best considered as typical multiscale
features, where the principal lines can be represented at a
larger scale while the wrinkles at a smaller scale. Moti-
vated by the success of coding-based palmprint recognition
methods, this paper investigates a compact representation
of multiscale palm line orientation features, and proposes a
novel method called the sparse multiscale competitive code
(SMCC). The SMCC method first defines a filter bank of sec-
ond derivatives of Gaussians with different orientations and
scales, and then uses the l1-norm sparse coding to obtain a
robust estimation of the multiscale orientation field. Finally,
a generalized competitive code is used to encode the domi-
nant orientation. Experimental results show that the SMCC
achieves higher verification accuracy than state-of-the-art
palmprint recognition methods, yet uses a smaller template
size than other multiscale methods.

1. Introduction

With the increasing demand for biometric solutions to
security systems, recently palmprint recognition, a rela-
tively novel and effective biometric technology, has re-
ceived considerable interest [29]. Palmprint, the inner sur-
face of the palm, carries a variety of distinctive discrimina-
tive features, such as geometry, shape, principal lines, wrin-
kles, and patterns of ridges, which can be easily captured
by appropriate imaging sensors. With the progress in sen-
sor techniques, various palmprint recognition technologies,
e.g. low resolution [29], latent [13], multispectral [25], and
3D [30], have been investigated.

Palmprint recognition methods can be roughly grouped
into three categories: holistic [23], local feature-based [18],
and hybrid approaches [20]. Among them, coding-based
methods, which encode the response of a bank of filters,
have been very successful in palmprint representation and

matching. After convolving the palmprint image with 2D
Gabor filters, the PalmCode method [18, 29] encodes the
phase of the filter responses as binary features. Subse-
quently, to reduce the spatial correlation of PalmCode,
Kong et al. [16] further introduce a FusionCode method,
which encodes the phase of the filter response whose mag-
nitude is the maximum.

Compared to the phase of the filter response, the orienta-
tion of palm lines carries more discriminative information
for personal identification. To date, most state-of-the-art
palmprint recognition approaches, such as the competitive
code [17], the ordinal code [26], and the robust line orien-
tation code (RLOC) [14], are orientation coding methods,
which involve three components: the filter bank design for
extracting the palmprint orientation information, the coding
scheme for compact and efficient representation of orienta-
tion information, and the matching approach for fast and ac-
curate palmprint recognition. Rather than directly encoding
the dominant orientation, Guo et al. [8] suggested a binary
orientation co-occurrence vector (BOCV) method to repre-
sent multiple orientations for a local region.

Besides phase and orientation features, Chu et al. [5]
proposed a Gabor magnitude feature representation method
where AdaBoosting and LDA are adopted to reduce the fea-
ture dimensionality. Phase, orientation, or magnitude fea-
tures can be regarded as some kind of local texture repre-
sentation method. Thus effective palmprint representation
can be derived by developing appropriate texture descrip-
tors. Most recently, a number of local texture descriptors,
e.g. local direction histogram [12] and regional appearance
correlation (RAC) [11], have been proposed for palmprint
recognition with high accuracy.

Palm lines are generally considered as typical multiscale
features, where the principal lines can be represented at a
larger scale while the wrinkles at a smaller scale. Due to
the influence of lighting and aging, some wrinkles in the
palmprint image may appear or disappear, while the princi-
pal lines are robust. Most coding-based methods, however,
neglect the multiscale characteristic of palm lines and en-



code the responses of filters at only one specific scale. At
a specific scale, although one can get a compact and effec-
tive code, the performance of a coding-based method would
deteriorate when applied to matching palmprint images of
poor quality.

To address this problem, several multiscale palmprint
recognition methods have been proposed. At the beginning,
multiscale methods are usually adopted to facilitate fast
palmprint identification by using the hierarchical matching
scheme [22, 27]. Most recently, several approaches have
been suggested to improve the recognition performance by
utilizing multiscale palmprint features [10, 31]. Zuo et al.
[31] proposed a combined angular distance to combine the
distances of competitive codes [17] obtained at different
scales. Han et al. [10] proposed an LDA-based method to
combine the distances of appearance statistics at different
scales.

In this paper, we propose a novel multiscale palmprint
verification method, called the sparse multiscale competi-
tive code (SMCC). The proposed SMCC method first de-
fines a filter bank of second derivatives of Gaussians with
different orientations and scales, and then uses the l1-norm
sparse coding to obtain a robust estimation of the multi-
scale/multiorientation filter responses. Finally, the compet-
itive code [17] is extended to encode the dominant orien-
tation of the filter responses. The performance of SMCC
on two popular palmprint databases, PolyU and CASIA, is
better than other state-of-the-art mono-scale and multiscale
palmprint verification methods. The novelty of SMCC in-
cludes:

• It uses the sparse representation to robustly estimate
the local orientation of palm lines. We model the palm-
print representation problem as a sparse coding solu-
tion based on known dictionaries, which can be ef-
ficiently solved by well-studied convex optimization
methods. In contrast, the traditional palmprint recog-
nition methods obtain the response of filters by con-
volving the filters with the palmprint image, which is
less robust when noise is present.

• It encodes the computed sparse codes into one uni-
fied code by extending the competitive rule used in
the competitive code [17]. Thus it is a compact rep-
resentation of multiscale features. In comparison, pre-
vious multiscale palmprint recognition methods usu-
ally use multiple feature vectors to represent multiscale
features. This kind of method improves the represen-
tation capability at the expense of increasing the tem-
plate size. Compared with other multiscale coding-
based methods, the SMCC has the smallest template
size.

The remainder of this paper is organized as follows:
Section 2 introduces the sparse palmprint representation

by using l1-norm sparse coding. Section 3 describes the
multiscale competitive code via the sparse representation
method, and Section 4 presents the experimental results on
the PolyU and the CASIA palmprint databases. Finally,
Section 5 concludes our paper.

2. 2. Sparse Palmprint Representation
Palm lines are typical multiscale features, where mul-

tiscale / multiorientation filter banks could be adopted for
multiscale palmprint representation. Given a filter bank
(dictionary) D = [d1, ...,dK ] ∈ Rn×K and an image
patch x ∈ Rn, the convolution method is usually used
to calculate the filter coefficients, but it suffers from non-
orthogonality and crosstalk among the basis filters.

As a palm line patch generally has a specific orienta-
tion and scale, the filter coefficients are thus expected to
be sparse, i.e., with only few nonzero values. Inspired by
recent progress and success in sparse representation, we
model the mutiscale palmprint representation problem as a
sparse code learning problem with the l0 regularization,

P0 : min ‖α‖0, s.t. ‖x − Dα‖22 ≤ ε, α ∈ RK , (1)

where ‖ · ‖0 denotes the l0-norm, which is the number of
nonzero entries in a vector. Generally speaking, sparse
code learning involves two sub-problems: dictionary learn-
ing and sparse coding [1, 19, 24]. In dictionary learning,
a set of training images is used to learn a dictionary to de-
scribe the image characteristics. In sparse coding, the sparse
representation of an image patch is obtained by solving a
sparsity regularized approximation problem.

In our palmprint verification scheme, we utilize both
the sparse representation and the multiscale / multiorien-
tation methods to derive an effective palmprint representa-
tion method. We use a set of existing second derivatives
of Gaussian (sDoG) filters as the dictionary and use the
sparse coding method for sparse palmprint representation.
The reason for choosing the existing filters rather than a
learnt dictionary is that sDoG filters have an explicit physi-
cal meaning: they are directly related to the local orientation
and scale of the palm lines. So sDoG filters could be uti-
lized to derive a compact and effective multiscale palmprint
representation described in Section 3.

2.1. The Filter Bank

The filter bank consists of 18 sDoG filters at three scales
and six orientations. The sDoG filter is defined as

F (δx, δy, θ) =
(
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(2)
where A is a constant, x′ = (x− x0) cos θ + (y− y0) sin θ,
y′ = −(x−x0) sin θ +(y− y0) cos θ, (x0, y0) is the center



 

Figure 1. The filter bank used for sparse palmprint representation,
which consists of second derivatives of Gaussian filters at three
scales and six orientations.

of the filter, θ is the orientation of the filter, and δx and δy

are the horizontal and vertical standard deviations, respec-
tively. Here we choose the number of scales s = 3 and
the number of orientations t = 6. There are only three pa-
rameters to determine the filter bank: average δ̄x of δx, the
ratio η = δy/δx between δy and δx, and the scale differ-
ence ∆. Then the filter bank parameters are determined by
(δ̄x − ∆, ηδ̄x − η∆), (δ̄x, ηδ̄x), and (δ̄x + ∆, ηδ̄x + η∆),
respectively. We first determine the values of δ̄x = 2.7 and
η = 2.5, and then experimentally determine the value of ∆.
The scale parameters for (δx, δy) are (2.4, 6.0), (2.7, 6.75),
and (3.0, 7.5), and the window size of the filter is 33 × 33.
The filter bank used for sparse palmprint representation is
shown in Figure 1. Then each filter is preprocessed so that
it has a mean of zero and l1 norm of 1. Finally, all the filters
are used to construct the dictionary D for sparse palmprint
representation.

Besides sDoG, there are other families of filter bank,
such as Gabor [17] and elliptical Gaussian [26], which can
also be used for our purpose. Since all these filters are de-
signed to describe line features, it is expected that they will
achieve similar performance for orientation coding methods
[28]. So in this paper we do not consider the sparse repre-
sentation by using Gabor or elliptical Gaussian filters.

2.2. Sparse Coding

Given the dictionary D described above, for each patch
x of the palmprint image, a sparse solution can be obtained
by solving the optimization problem defined in (1). How-
ever, this is a nonconvex problem and cannot be efficiently
solved. In practice, convex relaxation is usually adopted to
change Problem P0 into a convex optimization problem by
replacing the l0 regularization with the l1 regularization,

P1 : min ‖α‖1, s.t. ‖x − Dα‖22 ≤ ε, α ∈ RK . (3)

Suppose D obeys a uniform uncertainty principle. If the
solution to P0 is sufficiently sparse, then the solution to P1
is guaranteed to stably recover the solution to P0 [4]. Prob-
lem P1 can be formulated into a second-order cone pro-
gramming problem and be efficiently solved by a number

of optimization methods, such as the interior point method
[15] and the iteratively reweighted least-squares method [7].

Given a palmprint image I , the patch xij is defined as
a subimage with a size of 33 × 33 and centered at (i, j).
We preprocess the patch to make it have a mean of zero and
standard deviation of one. Then the sparse code αij of the
patch image is obtained by solving Problem P1.

In our method, we first transform Problem P1 into an
unconstrained optimization problem,

P2 : min
αij

‖xij −Dαij‖22 + λ‖αij‖1. (4)

By choosing an appropriate λ value, Problem P2 has
the same solution as Problem P1. However, the l1-
regularization is nondifferentiable when αij contains zero
entries. So far, a number of approaches have been devel-
oped to solve P2 by using sub-gradient [6], unconstrained
approximations [21], or constrained optimization strategies
[15].

In sparse palmprint representation, we use the recently
developed fast iterative shrinkage-thresholding (FISTA) al-
gorithm [2] to solve the unconstrained optimization prob-
lem in (4) by introducing a new vector yk. Let ak be the
current estimate of αij and L denote the Lipschitz con-
stant of the gradient of the function f(α) = ‖xij −Dα‖22.
FISTA [2] uses the following quadratic approximation of
‖xij −Dα‖22 + λ‖α‖1 at a given point yk:

QL(α,yk) = f(yk) + 〈α− yk,Of(yk)〉
+L

2 ‖α− yk‖22 + λ‖α‖1 . (5)

By solving the following minimization problem,

ak+1 = min
α

QL(α,yk), (6)

we can have an updated solution.
Since the l1-norm is separable, the computation of ak+1

can be efficiently done by solving one 1D minimization
problem for each of its components:

ak+1 = Tλ/L (yk − Of(yk)/L) , (7)

where Ta is the shrinkage operator defined by

Ta(x)i = (|xi| − a)+sgn(xi). (8)

The detailed procedure of our solution is described in
Algorithm 1. In our implementation, we set λ = 0.02.
Thanks to its computational simplicity and good conver-
gence performance, FISTA is very efficient for sparse palm-
print representation. Compared with other methods, in our
palmprint verification experiments the FISTA method [2] is
about 13 times faster than l1 magic [3] and 3 times faster
than FOCUSS [7] yet achieving the same verification accu-
racy.
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Figure 2. Representation of a palmprint image patch using: (a) sparse coding, and (b) regular convolution.
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Figure 3. Schematic diagram of the feature extraction procedure of the SMCC. First, sparse coding is used to calculate the coefficients of
18 filters in the dictionary that correspond to 3 scales and 6 orientations. This is done for all patches centered at the blue pixels in the
palmprint image (a). The sparse codes of all the patches are arranged into 18 coefficient images in (b), where the images in the same row
are in different scales while those in the same column are in different orientations. Second, negative coefficients are replaced with zeros
and the coefficient images in the same row are summed to construct a combined receptive field (c). Finally, the competitive code [17] (d)
is generated for binary palmprint representation, which includes three binary feature matrices and one palmprint mask.

Algorithm 1 Sparse Palmprint Representation via FISTA
Input: D, xij , λ, L, α0 ← DT xij , y1 ← α0, t1 ← 1,

k ← 1
Output: αij ← ak

1: while not converged do
2: ak ← Tλ/L (yk − Of(yk)/L)

3: tk+1 ← 1+
√

1+4t2k
2

4: yk+1 ← ak + tk−1
tk+1

(ak − ak−1)
5: k ← k + 1
6: end while

Finally, we provide an example to compare the results of
the convolution method and the proposed sparse represen-
tation method. As shown in Figure 2, the representation of
the patch image using the proposed method is much sparser
than that of using the regular convolution.

3. The SMCC for Palmprint Verification
The filter coefficients obtained by sparse coding in Sec-

tion 2 are only a general sparse representation of the multi-
scale orientation field of palmprint. In this section, we fur-
ther investigate the compact representation of the multiscale
orientation field, and also discuss the matching method for
effective and efficient palmprint verification.

3.1. Coding

To derive a compact and effective representation of the
sparse multiscale orientation field, we proposed a sparse
multiscale competitive code method by generalizing the
competitive code [17].

Figure 3 shows the feature extraction procedure of the
SMCC method, which involves three major steps: sparse
coding, clipping and summing, and competitive coding.
The details of SMCC are described as follows:

• Sparse coding: Given a 128×128 palmprint image, we
uniformly sample 32× 32 patches, where the horizon-
tal and vertical distances between two adjacent centers



of patches are three pixels. For each patch xij cen-
tered at pixel (i, j), we use the FISTA algorithm [2] to
calculate the filter coefficients αij . So we obtain 18
coefficient images that correspond to the 3 scales and
6 orientations.

• Clipping and summing: The response to the correct
orientation and scale should be positive. So after
sparse coding, all the negative values of the sparse
multiscale orientation field are clipped to zeros. Next,
we sum the clipped coefficient images in the same ori-
entation to construct a combined receptive field ωij of
the palmprint image.

• Competitive coding: The competitive code [17] en-
codes the dominant orientation of the receptive field
into a binary representation and utilizes the angular
distance to measure the dissimilarity. Let ωij(θ) de-
note the combined receptive field ωij in the θth direc-
tion and W (i, j) be the winning index of the orienta-
tion in the patch xij :

W (i, j) = arg min
θ

ωij(θ). (9)

If the number t of orientations is even, a coding rule
[17],

C(i, j, k) =
{

1, k ≤ W (i, j) ≤ k + t/2,
0, otherwise,

k = 1, ..., t/2,

(10)

is defined to compactly encode each winning index
into t/2 bits for efficient matching of palmprint fea-
tures. Besides, as it is possible that not all pixels in the
palmprint image are inside the palm we further add one
mask bit to indicate the palmprint pixels. So the final
SMCC code of a palmprint image consists of t/2 + 1
binary matrices C = {C1, C2, ..., Ct/2, CM}, where
Ck = (C(i, j, k)) and CM is the palmprint mask.

3.2. Matching

We use the angular distance proposed in [17] to mea-
sure the dissimilarity between SMCC codes. Given two
SMCC codes P = {P1, P2, ..., Pt/2, PM} and Q =
{Q1, Q2, ..., Qt/2, QM}, their angular distance is defined
as

dA =

N∑
x,y=1

t/2∑
i=1

{PM (x,y)∧QM (x,y)}∧{Pi(x,y)⊗Qi(x,y)}

t
2

N∑
x,y=1

(PM (x, y) ∧QM (x, y))

(11)
where ⊗ is the bitwise exclusive OR (XOR) operator and ∧
is the bitwise AND operator.

To reduce the adverse effect of image translation and ro-
tation, we further divide each binary matrix in the SMCC
code into four submatrices. For every combination of trans-
lation and rotation, for each submatrix we record the partial
angular distance between the sample SMCC code and the
query SMCC code, i.e., the summations in (11) are only
for pixels (x, y) that are within the overlapping region of
two corresponding submatrices, and then use the average of
the four partial angular distances as the mismatching score
under the combination of translation and rotation. The min-
imum mismatching score is recorded as the final mismatch-
ing score. Then the palmprint in the database having the
smallest mismatching score with the query palmprint is con-
sidered as the best match.

4. Experimental Results
In this section, we use two popular palmprint databases,

PolyU and CASIA, to evaluate the verification performance
of the SMCC method. Several state-of-the-art mono-scale
methods, such as competitive code [17], ordinal code [26],
and robust line orientation code (RLOC) [14], are also im-
plemented to compare with the SMCC. Besides, we also
cite the performance of several recently developed meth-
ods [5, 8, 11] and several multiscale approaches [10, 31]
reported in literature.

4.1. Experimental Results on the PolyU Palmprint
Database

The PolyU palmprint database (version 2)1 contains
7,752 palmprint images from 193 individuals, where 131
individuals are male. The age distribution is: subjects aged
less than 30 accounts for 86 percent, those older than 50 is
about 3 percent, and those between 30 and 50 is about 11
percent. The samples of each individual were collected in
two sessions, where the average interval between the first
and the second sessions was around two months. In each
session, each individual was asked to provide about 10 im-
ages of each palm. Then each original palmprint image was
cropped to a size of 128× 128.

In our verification experiments, each palmprint image
is compared with all the other palmprint images in the
database. The total number of matches is 30,042,876, which
includes 74,068 genuine and 29,968,808 imposter matches.
We use the receiver operating characteristic (ROC) curve,
equal error rate (EER), and the false reject rate (FRR) at
specific false accept rate to evaluate the verification perfor-
mance of the palmprint recognition methods.

Figure 4 shows the ROC curves of SMCC and several
state-of-the-art palmprint recognition methods. One can see
that for any given FAR, the genuine accept rate (GAR) of
SMCC is always higher than those of other methods.

1http://www.comp.polyu.edu.hk/ biometrics/
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Figure 4. The ROC curves of different palmprint verification meth-
ods on the PolyU palmprint database (version 2).

Table 1. Comparison of error rates of different palmprint verifica-
tion methods on the PolyU palmprint database.

Method EER (%) GAR−2(%) GAR−3(%)
SMCC 0.014 99.98 99.89

CompCode [17] 0.038 99.93 99.81
RLOC [14] 0.091 99.75 99.40

OrdiCode [26] 0.104 99.46 98.58

Table 1 lists the values of GAR at several typical
FAR values (GAR−2 and GAR−3) and the values of EER
of SMCC, competitive code (CompCode) [17], ordinal
code (OrdiCode) [26], and RLOC [14]. We use GAR−2

(GAR−3) to denote the genuine acceptance rate when FAR
= 10−2% (10−3%). Compared with these methods, the
SMCC achieves the lowest EER value and the highest
GAR−2 and GAR−3 values.

It is important to evaluate whether the improvement of
error rates of the SMCC is statistically significant. Fol-
lowing [9], we discuss the statistical significance in perfor-
mance difference of different algorithms. Let α = 0.05 be
the confidence interval, and e and ê be the error rate of a
classifier C and the estimated error rate using a test set with
finite samples, respectively. Assume that recognition errors
are Bernoulli trials. Given a typical value β = 0.2, Guyon et
al. [9] proposed a simple equation to determine the number
of trials N ≈ 100/e to achieve 1− α confidence in that the
error rate estimate is within the range |e − ê| ≤ βe. In our
experiments, the number of genuine and imposter compar-
isons are 74,068 and 29,968,808, respectively. Thus the sta-
tistical significance could be guaranteed with an empirical
error rate down to 0.33 × 10−3%. From Table 1, the EER,
the FRR−2 ( = 1 − GAR−2), and FRR−3 ( = 1 − GAR−3)
values of the SMCC are both higher than 0.33 × 10−3%
and 20% lower than those of other methods. So we can
conclude that the improvement of error rates of the SMCC
on the PolyU palmprint database is statistically significant.

Table 2. Feature extraction (FeaExt) and mathcing time (ms) and
template sizes (bytes) of different palmprint verification methods.

Method FeaExt Matching Template Size
SMCC 330 0.05 384

CompCode [17] 70 0.04 384
RLOC [14] 2.2 0.85 1024

OrdiCode [26] 58 0.04 384
Note: The experimental environment is: Windows XP

Professional, Pentium 4 2.66GHz, 512M RAM, VC 6.0.

Table 3. Comparison of the SMCC with three recent methods in
terms of EER (%) and template size (bytes) on the PolyU database.

Method EER (%) Template Size (bytes)
SMCC 0.014 384

GMBoostLDA [5] 0.20 1400*
RAC [11] 0.01 184320*
BOCV [8] 0.019 768

Note: The template sizes of these two methods are our
estimate, based on the dimension of features and if the

features are stored in 8-byte numbers.

Table 4. Comparison of error rate (%) and template size (bytes) of
different multiscale palmprint verification methods on the PolyU
database.

Method EER (%) Template Size (bytes)
SMCC 0.014 384

MCC [31] 0.023 480
HAS [10] 0.02 672*

Note: The number “672” could not be directly obtained
from literature. It is our estimate.

Table 2 lists the computational time of SMCC, competi-
tive code (CompCode) [17], ordinal code (OrdiCode) [26],
and RLOC [14]. The feature extraction time of SMCC is
330ms, which is higher than the other three methods but
is still sufficient for practical use. The matching time of
SMCC is 0.05ms, which is much lower than that of RLOC
[14] and is only slightly higher than that of competitive code
[17] and ordinal code [26].

We look into three recent methods: Gabor magnitude
feature (GMBoostLDA) [5], regional appearance correla-
tion (RAC) [11], and binary orientation co-occurrence vec-
tor (BOCV) [8], and collect the statistics of their perfor-
mance on the PolyU database in Table 3, where the EER of
GMBoostLDA is estimated from the ROC curve in [5]. We
can see that the SMCC is superior to GMBoostLDA [5] and
BOCV [8] in terms of EER and template size. Compared
with SMCC, RAC [11] achieves a slightly lower EER than
SMCC, but has a much larger template size. So by taking
both accuracy and template size into account, the SMCC is
very promising.
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Figure 5. The ROC curves of different palmprint verification meth-
ods on the CASIA palmprint database.

Table 5. Comparison of error rates of different palmprint verifica-
tion methods on the CASIA palmprint database.

Method EER (%) GAR−2(%) GAR−3(%)
SMCC 0.48 98.74 98.16

CompCode [17] 0.55 98.34 97.60
RLOC [14] 0.81 97.60 96.31

OrdiCode [26] 0.84 97.74 96.80

We also compare the EER value of SMCC with those
of two multiscale palmprint recognition methods, the mul-
tiscale competitive code (MCC) [31] and hierarchical ap-
pearance statistics (HAS) [10] and show the results in Table
4. It should be noted that, for the MCC and HAS we use
the EER values reported in [31] and [10], which are also
obtained using the PolyU palmprint database. One can see
that the SMCC achieves the lowest EER value.

Finally, we compare the sizes of templates used by dif-
ferent methods. Table 2 and Table 3 list the template sizes of
the SMCC and several mono-scale methods, while Table 4
presents the template sizes of multiscale methods. The tem-
plate size of the SMCC is smaller than those of multiscale
methods. Although the template sizes of the competitive
code [17] and the ordinal code [26] are equal to that of the
SMCC, they only record mono-scale information, while the
SMCC records multiscale information. Thus the SMCC is a
more compact and effective multiscale palmprint represen-
tation method.

4.2. Experimental Results on the CASIA Palmprint
Database

The CASIA palmprint database2 contains 5,239 palm-
print images from 301 individuals. To the best of our knowl-
edge, this database is the largest publicly available database
in terms of the number of subjects. The samples were col-

2http://www.csbr.ia.ac.cn

lected in one session only. The subject was asked to provide
about 8 palmprint images of his / her left and right palms.
In our experiments, we found that individual “101” is the
same as individual “19”. So we merged the images in these
two folders into one folder. Thus, the number of individuals
is 300 and the number of palms is 600.3

For the CASIA palmprint database, the total number of
matches is 13,710,466, which includes 20,574 genuine and
13,689,892 imposter matches. Figure 5 shows the ROC
curves of the SMCC, CompCode [17], OrdiCode [26], and
RLOC [14]. From Figure 5, it is observed that for any given
FAR value, the genuine accept rate of the SMCC is always
higher than those of the other three palmprint recognition
methods.

Table 5 lists the GAR values at several typical FAR
values (GAR−2 and (GAR−3) and the EER values of
the SMCC, CompeCode [17], OrdiCode [26], and RLOC
[14]. The SMCC again achieves the lowest EER value and
the highest GAR−2 and GAR−3 values. Using the same
method for the experiments on the PolyU database, we can
also testify to the statistical significance in the performance
improvement of error rates of the SMCC on the CASIA
palmprint database. These results indicate that the SMCC
is superior to the existing palmprint verification methods.

Comparing Table 1 with Table 5, one can observe that
the error rates obtained using the CASIA database are
much higher than those obtained using the PolyU palmprint
database. This may be caused by three reasons. First, the
images in CASIA were captured using web cameras, and
thus the image quality was not as good as that from PolyU.
Second, there were no pegs to restrict postures and posi-
tions of palms during the data collection of CASIA, which
brought a large degree of freedom. Finally, the number of
palms in CASIA is larger than that in PolyU, which may
make palmprint verification more difficult.

5. Conclusion

In this paper, we propose a method called the sparse
multiscale competitive code for palmprint verification. The
SMCC first uses the sparse coding method to obtain a sparse
representation of the multiscale orientation field, and then
extends the competitive code [17] for compact and effec-
tive multiscale palmprint representation. Compared with
the existing mono-scale and multiscale palmprint recogni-
tion methods, the SMCC achieves better verification per-
formance, yet requires a smaller template size than the mul-
tiscale palmprint recognition methods.

Compact and effective local feature representation is an
important topic in computer vision. The SMCC is insensi-
tive to illumination and scaling factors, and thus is expected

3Two poor quality images were excluded from our experiments because
they lack necessary fiducial points for preprocessing.



to be effective as a potential texture descriptor for several
other biometric recognition and vision tasks.
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