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Abstract. Partial differential equations (PDEs) have been successfully applied
to many computer vision and image processing problems. However, designing
PDEs requires high mathematical skills and good insight into the problems. In
this paper, we show that the design of PDEs could be made easier by borrowing
the learning strategy from machine learning. In our learning-based PDE (L-PDE)
framework for image restoration, there are two terms in our PDE model: (i) a reg-
ularizer which encodes the prior knowledge of the image model and (ii) a linear
combination of differential invariants, which is data-driven and can effectively
adapt to different problems and complex conditions. The L-PDE is learnt from
some input/output pairs of training samples via an optimal control technique. The
effectiveness of our L-PDE framework for image restoration is demonstrated with
two exemplary applications: image denoising and inpainting, where the PDEs are
obtained easily and the produced results are comparable to or better than those of
traditional PDEs, which were elaborately designed.

1 Introduction

1.1 Prior Work

Partial differential equations (PDEs) have been successfully applied to solve many prob-
lems in computer vision and image processing. This kind of methods can date back to
the 1960s [1, 2]. However, this technique did not draw much attention until the introduc-
tion of the concept of scale space by Koenderink [3] and Witkin [4] in the 1980s. The
Perona-Malik (P-M) anisotropic equation [5] and the mean curvature motion (MCM)
equation [6] further drew great interest from researchers toward designing PDEs for
various problems in computer vision and image processing. In general, there are two
types of methods for designing PDEs for vision tasks [7]:

1. Variational Design: Basically, variational methods first define an energy functional
to collect the desired properties of the output image, including the image prior mod-
els (e.g., the Tikhonov regularizer [8] and the total variation (TV) regularizer [9]),
and then derive the evolution equations by computing the Euler-Lagrange equation
of the energy functional.
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2. Direct Design: Direct methods involve writing down the PDEs directly, based on
the mathematical and physical understandings of the problem. This method requires
proficiency in the properties of differential operators, in particular nonlinear ones.
Famous examples include anisotropic diffusion [5], shock filter [10] and curve evo-
lution [6].

In a geometric view, most traditional PDEs in computer vision and image process-
ing are obtained by either optimizing some global geometric quantities (e.g., length,
area, and total squared curvature) or by computing geometric invariances under certain
transformation groups. All of these methods require good skills when choosing appro-
priate PDE forms and predicting the final effect of composing related terms such that
the obtained PDEs roughly meet the goals. A lot of trial and error may also be neces-
sary for designing a good PDE. As a result, current methods for designing PDEs greatly
limit the applications of PDEs to wider and more complex scopes. This motivates us to
explore whether we can acquire PDEs that are more powerful but require much less
human effort.

1.2 Our Approach

Inspired by learning-based methods in machine learning, we would like to explore a
framework for learning PDEs to accomplish various computer vision and image pro-
cessing tasks. In this paper, as preliminary work, we propose a learning-based PDE
(L-PDE) framework for image restoration. For image restoration problems, we know
that the output image should obey some statistical models of natural images. Such sta-
tistical models can serve as the regularizer term in our PDE, which controls the output
image, making it a natural image. Hence this term is called the regularization term. The
other term in our PDE is to cope with different image restoration problems and different
data. As most image restoration problems are translationally and rotationally invariant,
i.e., when the input image is translated or rotated by some amount the output image is
also translated or rotated by the same amount, this second term must be functions of
fundamental differential invariants [11] that are invariant under translation and rotation.
We assume that the second term is a linear combination of the fundamental differential
invariants. Although a linear combination is simple, our PDE model is already general
enough and many existing PDEs can be viewed as a special case of our model. The lin-
ear combination coefficients are learnt from real data so that the learnt PDE can adapt to
different image restoration problems and different data. Hence the second term is called
the data-driven differential invariant term.

To learn the coupling coefficients among the differential invariants in the data-driven
term, we prepare some input/output training image pairs and adopt a technique called
PDE-based optimal control [12]. Once the coefficients are computed, the L-PDE is
obtained and can be applied to test images. Hence with our framework, the most effort
on obtaining a PDE is preparing some input/output training image pairs. So our L-PDE
framework might be a possible way of designing PDEs for vision tasks in a lazy manner.
Though the optimal control technique has already been applied to some computer vision
problems, such as optical flow estimation [13] and tracking [14], we use it in a different
way. We aim at determining the form (coefficients) of the PDEs, while the existing
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work uses the optimal control to determine the outputs of their PDEs, which are known
apriori. In short, our L-PDE framework connects PDE-based methods and learning-
based methods via optimal control.

2 Learning-based PDE Model

In this section, we present the form of the PDEs in our L-PDE framework for image
restoration. We denote f as the input image and u as the desired output image. The
meaning of the notations that will be used hereafter can be found in Table 1.

Table 1. Notations.

Ω An open bounded region of R2 ∂Ω Boundary of Ω
(x, y) (x, y) ∈ Ω, spatial variable t t ∈ (0, Tf ), temporal variable
Q Ω × (0, Tf ) Γ ∂Ω × (0, Tf )

∥ · ∥ L2 norm ∇u Gradient of u
Hu Hessian of u div(u) Divergence of u
℘ ℘ = {(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0)}, index set for differentiation

κ(u) κ(u) = div
(

∇u
∥∇u∥

)
, mean curvature of u

2.1 Description of Our PDE Model

Our PDE model is an evolutionary PDE combining a TV regularizer and a linear com-
bination of fundamental differential invariants:

∂u
∂t = L(u,a), (x, y, t) ∈ Q,

u = 0, (x, y, t) ∈ Γ,
u|t=0 = f, (x, y) ∈ Ω,

(1)

where L(u,a) = κ(u) + F (u,a). The Dirichlet boundary condition1 is for ease of
mathematical deduction. The forms and the geometric meanings of κ(u) and F (u,a)
will be presented below.

Total Variation Regularization Term: The TV regularization has been success-
fully incorporated in PDEs for a large class of computer vision and image processing
problems due to its mathematical tractability and effectiveness in representing the sta-
tistical model of natural images. It was first introduced to computer vision and image
processing by Rudin, Osher and Fatemi (ROF) in their paper on edge preserving image
denoising [9]. It first defines a variational minimization model min

u

∫
Ω
∥∇u∥dΩ in the

bounded variation space (which allows for piecewise constant images) and then derives
1 As in real applications f will be padded with zeros of several pixels’ width around the input

image, the difference between the Dirichlet boundary condition in our model and the Neumann
boundary condition in traditional PDEs is slight.
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the mean curvature κ(u) as the regularization term in its associated Euler-Lagrange
equation [9, 7]. The TV regularization is especially useful in applications, e.g., image
restoration, where edges are to be respected. That is why our PDE model incorporates
κ(u).

Data-Driven Differential Invariant Term: As we have explained in Section 1.2,
the data-driven differential invariant term is a linear combination of fundamental differ-
ential invariants that are invariant under translation and rotation. For 2D scalar images,
there are five such fundamental differential invariants up to the second order [11]. They
are listed in Table 2 (f is added as the zeroth invariant due to the following geometric
considerations). All the differential invariants have geometric meanings. inv0(u) = f
is the input image. inv1(u) = u is the desired output image. inv2(u) = ∥∇u∥2 is
the squared norm of the gradient. inv3(u) = tr(Hu) is the Laplacian, which has been
widely used to measure the smoothness of an image [15]. inv4(u) = tr(H2

u), known as
“deviation from flatness”, is another useful way to measure the local “unflatness” of the
image. inv5(u) = (∇u)THu(∇u) is a kind of image “curvature”, which has been used
as a general purpose visual front-end operation [16]. Using such differential invariants,
all local intrinsic properties of images, which should be invariant to coordinate trans-
formation, can be described. Therefore, the data-driven term for our L-PDE model can
be written as:

F (u,a) = a(t)T inv(u), (2)

where a(t) = [a0(t), ..., a5(t)]
T are coefficient functions, which are used to control the

evolution of u. For different problems, a(t) is different. They are learnt from training
images and hence our L-PDE can adapt to different problems and data. We will present a
PDE-based optimal control framework to learn these coefficient functions in Section 3.

Table 2. The fundamental differential invariants up to the second order.

inv(u) = [inv0(u), ..., inv5(u)]
T

i invi(u)

0 f

1 u Zeroth Order
2 ∥∇u∥2 = u2

x + u2
y First Order

3 tr(Hu) = uxx + uyy

Second Order4 tr(H2
u) = u2

xx + 2u2
xy + u2

yy

5 (∇u)THu(∇u) = u2
xuxx + 2uxuyuxy + u2

yuyy

2.2 Connection between L-PDE and Traditional PDEs

In this subsection, we discuss the relationship between our L-PDE model and some
well-known related work.

Traditional PDEs were designed with different insights. However, as shown in Ta-
ble 3, many of those for image restoration in fact share a common formulation and are
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all special cases of our proposed L-PDE model. The difference between these PDEs
lies in the choice of a(t) and the regularization term. However, our L-PDE model and
the traditional PDEs present intrinsically different perspectives on interpreting the form
of PDEs. Traditional PDEs are all crafted by people with skills, based on their insight
to the problems, whereas our model automatically determines the PDEs from real data.
One can easily see that manually designed PDEs only correspond to trivial coefficient
functions, where only popular differential invariants, e.g., the Laplacian and the zeroth
order invariants, are used. Moreover, the nonzero coefficients are also special constants.
In comparison, the coefficients in our L-PDEs can be much more flexible. They may
not be sparse. They can be arbitrary real numbers and can even vary with time. So our
L-PDE model can be much more adaptive to the input images and solve different image
restoration problems in a unified framework.

Table 3. Reformulating some popular PDEs in our L-PDE model.

PDE a(t) in data-driven term Regularization term
Gaussian scale space [3] a(t) = [0, 0, 0, 1, 0, 0]T –

Tikhonov [8] a(t) = [1,−1, 0, 1, 0, 0]T –
ROF [9], TV inpainting [17] a(t) = [1,−1, 0, 0, 0, 0]T κ(u)

3 Learning Coefficients via Optimal Control

3.1 The Objective Functional

Given the form of the general data-driven term in (2), we have to determine the coef-
ficient functions a(t) in order to obtain a workable PDE. We may prepare some pairs
of input/output training samples (fk, ũk), where fk is the input image and ũk is the
expected output image. Since the final output of our PDE should be close to the ground
truth, the coefficient functions should minimize the following functional:

J({uk}Kk=1,a) =
1

2

K∑
k=1

∫
Ω

(uk(Tf )− ũk)
2dΩ +

1

2

5∑
i=0

αi

∫ Tf

0

a2i (t)dt, (3)

where uk(Tf ) is the output image at time t = Tf
2 computed from (1) when the input

image is fk, and αi are positive weighting parameters3. The first term of J requires
the final output of our PDE to be close to the ground truth. The second term is for
regularization so that this optimal control problem is well-posed.

2 For different problems, Tf may be different. How to determine the optimal Tf is left to future
work.

3 In this paper, we simply fix αi = 10−7, i = 0, ..., 5.
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3.2 Solving the Optimal Control Problem

Then we have the following optimal control problem with PDE constraints:

min
a

J({uk}Kk=1,a), s.t.


∂uk

∂t = L(uk,a), (x, y, t) ∈ Q,
uk = 0, (x, y, t) ∈ Γ,

uk|t=0 = fk, (x, y) ∈ Ω.
(4)

By introducing the adjoint equation of (4), the Gâteaux derivative of J can be computed
and consequently, the (locally) optimal a(t) can be computed via gradient based algo-
rithms (e.g., conjugate gradient [18]). Here, we give the adjoint equation and Gâteaux
derivative directly due to the page limit4.

Adjoint Equation: The adjoint equation of (4) is:
∂φk

∂t +
∑

(p,q)∈℘

(−1)(p+q) ∂
p+q(σpq(uk)φk)

∂xp∂yq = 0, (x, y, t) ∈ Q,

φk = 0, (x, y, t) ∈ Γ,
φk|t=Tf

= ũk − uk(Tf ), (x, y) ∈ Ω,

(5)

where

σpq(u) =
∂L(u)

∂upq
=

∂κ(u)

∂upq
+

5∑
i=0

ai
∂invi(u)
∂upq

and upq =
∂p+qu

∂xp∂yq
.

Gâteaux Derivative of the Functional: With the help of the adjoint equation, at
each iteration the derivative of J with respect to a(t) is as follows:

∂J

∂ai
= αiai −

K∑
k=1

∫
Ω

φkinvi(uk)dΩ, i = 0, ..., 5. (6)

where the adjoint function φk is the solution to (5).

3.3 Initialization of a(t)

A good initialization of a(t) results in a better approximation power of the learnt PDE
and also makes the optimization process shorter. Here we propose a heuristic method
for initializing the coefficient functions. At each time step, ∂uk(t)

∂t is expected to be
ũk−uk(t)

Tf−t so that uk tends to the expected output ũk. On the other hand, with ∂uk(t)
∂t =

L(uk,a), we want a(t) to minimize:

K∑
k=1

∫
Ω

(
L(uk,a)−

∂uk(t)

∂t

)2

dΩ =
K∑

k=1

∫
Ω

[pk(t)
Ta(t)− dk(t)]

2dΩ, (7)

4 For more details and a more mathematically rigorous exposition, please see Supplementary
Material and refer to [19–21].
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where pk(t) = inv(uk) and dk(t) = ũk−uk(t)
Tf−t − κ(uk). So the initial a(t) can be

obtained by solving the following system5:

P(t)a(t) = d(t), (8)

where P(t) =
K∑

k=1

∫
Ω
pk(t)pk(t)

T dΩ and d(t) =
K∑

k=1

∫
Ω
pk(t)dk(t)dΩ.

4 Our L-PDE Framework for Image Restoration

We now summarize our L-PDE framework for image restoration in Algorithm 1. After
the PDE is learnt, it can be applied to new test images by solving (1), whose input f is
the test image and the solution u(Tf ) is the desired output image.

Algorithm 1 (The framework to learn PDEs for image restoration)
Require: Training image pairs (fk, ũk), k = 1, ...,K; Tf .
1: Initialize a(t), t ∈ [0, Tf ), by solving (8).
2: while not converged do
3: Compute ∂J

∂ai
, i = 0, ..., 5, using (6).

4: Decide the search direction using the conjugate gradient method [18];
5: Perform golden search along the search direction and update a(t).
6: end while

Ensure: The coefficient functions a(t), t ∈ [0, Tf ).

5 Experimental Results

In this section, we demonstrate the applications of our L-PDE framework for image
restoration to two problems, denoising and inpainting. Our experiments are done on
grayscale images. For the best visual comparison, the readers are encouraged to inspect
the images in this section on screen.

5.1 Image Denoising

For the image denoising problem, we compare our learnt PDE to the state-of-the-art
PDE denoising methods, P-M [5], ROF [9] and TV-L1 [22], on images with both syn-
thetic and real noise. For each experiment, 6 noisy images and their ground truths are
randomly chosen to train the coefficients in the L-PDE, and the remaining images are
the test images. The parameters in the three compared PDEs are tuned to so that the
mean peak signal to noise ratio (PSNR) of all test images are the highest.

5 For notational convenience, we simply write integrals here. In real computation, the integrals
should be discretized.
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- 20.49dB 22.16dB 23.18dB 22.61dB 24.52dB

- 20.48dB 23.02dB 24.08dB 23.27dB 25.81dB

- 20.76dB 23.73dB 25.63dB 24.94dB 26.50dB
(a) original (b) noisy (c) P-M (d) ROF (e) TV-L1 (f) L-PDE

Fig. 1. The results of denoising images with Gaussian noise. (a) Original noiseless image. (b)
Noisy image with additive Gaussian noise (σ = 25). (c)-(f) Denoised images using the P-M,
ROF, TV-L1, and our L-PDE models, respectively. The PSNRs are presented below each image.

- 12.09dB 16.79dB 18.79dB 19.37dB 19.65dB

- 12.15dB 18.10dB 19.81dB 20.75dB 22.46dB

- 12.29dB 18.35dB 19.53dB 20.26dB 21.26dB
(a) original (b) noisy (c) P-M (d) ROF (e) TV-L1 (f) L-PDE

Fig. 2. The results of denoising images with mixture noise. (a) Original noiseless image. (b) Noisy
image with mixture noise. (c)-(f) Denoised images using the P-M, ROF, TV-L1, and our L-PDE
models, respectively. The PSNRs are shown below each image.
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Denoising Images with Synthetic Noise We perform two simulation experiments on
images with synthetic noise. The images are chosen from the Berkeley image database
[23]. There are 86 images in total 6 and the image size is 321× 481 pixels. For the first
experiment, zero-mean Gaussian white noise with σ = 25 is added to the images. For
the second experiment, a mixture of zero-mean Gaussian white noise (σ = 50), Poisson
noise (λ being the pixel values) and the salt & pepper noise (d = 0.1) is added to the
images. For both experiments, Tf is chosen as 2.

Fig. 1 compares the results of the L-PDE with those of the traditional PDEs on
images with Gaussian noise. It shows that the L-PDE preserves details better than the
traditional PDEs. Moreover, the L-PDE also achieves higher PSNRs. Fig. 2 shows the
comparison of denoising results on mixture noise. One can see that the P-M model
cannot remove the salt & pepper noise well. Although ROF and TV-L1 perform better
than P-M, their denoised images remain noisy. In comparison, our L-PDE suppresses
almost all of the noise while preserving the details well.

Gaussian Mixture
10dB

15dB

20dB

25dB

30dB

A
ve

ra
ge

 P
S

N
R

Denoising Performance

 

 
P−M
ROF
TV−L1
L−PDE

Fig. 3. Performance of denoising as measured in PSNR. In each experiment, the average PSNR
(colored bar) and standard deviation (thick vertical line) of the denoised images in the test set is
shown.

The quantitative results of the experiments on two kinds of noise are summarized in
Fig. 3. One can see that none of the three traditional PDEs can work well on both kinds
of noise. On Gaussian noise, ROF outperforms P-M and TV-L1 and has comparable
results with L-PDE, because this model is specifically designed for Gaussian noise.
However, ROF does not work well on mixture noise. On mixture noise, the performance
of TV-L1 is better than ROF and P-M. This is because TV-L1 incorporates a contrast
invariant fidelity term, which makes it more adaptive to unknown noise than ROF and
P-M. So the performance of the traditional PDEs heavily depends on the test data. In
contrast, our L-PDE outperforms all the compared traditional PDEs in both denoising
experiments. This is because our L-PDE is data-driven. It learns the form of the PDE
from training data to fit the noise, no matter whether the noise distribution is known or
unknown.

6 We randomly choose 6 images for training and the remaining 80 images for testing.
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Denoising Images with Really Unknown Noise To further testify to the data-driven
nature of our L-PDE, in this experiment we test on images with really unknown noise.
We take 240 images, each with a size 300 × 300 pixels, of 8 objects using a Canon
30D digital camera, setting its ISO to 1600. For each object, 30 images are taken with-
out changing the camera settings (by fixing the focus, aperture and exposure time) and
without moving the camera position. The mean image of them can be regarded as the
noiseless ground truth image. We randomly choose 6 objects. For each object we ran-
domly choose one noisy image. These noisy images and their ground truth images are
used to train an L-PDE, where Tf is set as 1. Then we compare our L-PDE with the
traditional PDEs on images of the remaining 2 objects. In Fig. 4, we show the com-
parison of these results. The zoomed-in regions show that the output of the L-PDE has
less severe artifacts and is sharper than that of other algorithms. As shown in Table 4,
the PSNRs of our L-PDE are dramatically higher than those of traditional PDEs. This
shows that our L-PDE framework can easily adapt to different types of noise and obtain
L-PDEs that fit for different types of noise well. In contrast, as the traditional PDEs
were designed under specific assumptions on the types of noise, they may not fit for
other types of noise as well as our L-PDEs.

- 27.70dB 29.44dB 29.08dB 29.19dB 33.41dB

- 27.82dB 29.36dB 29.03dB 29.14dB 33.18dB
(a) noiseless (b) noisy (c) P-M (d) ROF (e) TV-L1 (f) L-PDE

Fig. 4. The results of denoising images with really unknown noise. The second and fourth rows
show the corresponding zoomed-in regions in the boxes in the first and third rows, respectively.
(a) The estimated noiseless image. (b) Captured noisy image. ((c)-(f) Denoised images using the
P-M, ROF, TV-L1, and our L-PDE models, respectively. The estimated PSNRs are shown below
each image.
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Table 4. Denoising results (in PSNR, presented in “mean ± std-dev dB”) of the images of the
remaining two objects, each object having 30 noisy images.

Object Noisy P-M ROF TV-L1 L-PDE
1 27.97± 0.19dB 29.55± 0.28dB 29.22± 0.26dB 29.34± 0.27dB 33.25± 0.10dB
2 28.01± 0.31dB 29.89± 0.48dB 29.50± 0.44dB 29.63± 0.45dB 33.36± 0.09dB

5.2 Image Inpainting

In this subsection, we apply our L-PDE framework to the image inpainting problem.
Obviously, to obtain a “good” inpainting result, proper information of the image and
the structure of the missing pixels are needed to impose certain priors on the solution.
Different from the TV inpainting model [17], which only propagates κ(u) to fill in the
missing region R, our L-PDE learns the structure of the missing pixels in R from the
training data and applies both κ(u) and the data-driven term to the test image. As the
data inside the region R of missing pixels is unavailable, we cannot involve the input
image f , which is inv0(u), in our L-PDE model. So we limit the coefficient a0(t) to be
0 throughout the optimal control process. In this experiment, Tf = 4.

Fig. 5 shows a typical result of noisy image inpainting. We use 6 noisy images
(masked by dense text) with their ground truths to train an L-PDE and then apply it to
test images. Comparing to the FoE inpainting model [24], which is not a PDE-based
method, both TV inpainting [17] and our L-PDE can simultaneously denoise the image
and fill in the missing pixels. Moreover, the visual quality and PSNR of our L-PDE are
both better than those of TV inpainting [17]. We also apply this L-PDE to other images
with purely random masks. Fig. 6 shows that the proposed method also works well.

Finally, we show the curves of the learnt coefficients of PDEs for different image
restoration problems in Figure 7. Currently we are unable to analyze the obtained PDEs
in depth as this work seems to be non-trivial. So we leave the analysis to future work.

6 Conclusions and Future Work

In this paper, we have presented a framework of learning PDEs from training data for
image restoration. The experiments on natural image denoising and inpainting show
that our framework is effective. Compared to the traditional PDEs, our L-PDEs are
obtained much more easily. In the future, we would like to improve and enrich our
work in the following aspects. First, solve the theoretical issues in our L-PDE model,
e.g., the existence and uniqueness of the solution to (1). Second, develop more efficient
numerical algorithms to solve our optimal control problem (4). Third, we will also
consider incorporating the idea of diffusion tensor [25] and generalizing our framework
for vector/matrix/tensor valued images. Finally, we will also apply our framework to
more computer vision and image processing problems.
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(a) noisy and masked (b) FoE

(c) TV (d) L-PDE

noisy and masked FoE TV L-PDE

(e)

Fig. 5. The results of noisy image inpainting. Gaussian noise with σ = 15 is added and then
texts are overlaid. PSNRs are computed on the whole image. (a) Noisy image with overlaid
text; PSNR = 14.29dB. (b) Inpainting result from FoE; PSNR = 24.42dB. (c) Inpainting result
from TV; PSNR = 26.84dB. (d) Inpainting result from L-PDE; PSNR = 27.68dB. (e) Close-up
comparison of these algorithms.
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Fig. 6. The results of purely randomly masked image inpainting (50% pixels are masked), using
our L-PDE. The first and the third columns show the masked images. The second and fourth
columns show the corresponding inpainted images.
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Fig. 7. Learnt coefficients ai(t), i = 0, 1, ..., 5, of PDEs for different image restoration problems.
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