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We develop a supervised dimensionality reduction method, called Lorentzian discriminant projection

(LDP), for feature extraction and classification. Our method represents the structures of sample data by

a manifold, which is furnished with a Lorentzian metric tensor. Different from classic discriminant

analysis techniques, LDP uses distances from points to their within-class neighbors and global

geometric centroid to model a new manifold to detect the intrinsic local and global geometric

structures of data set. In this way, both the geometry of a group of classes and global data structures can

be learnt from the Lorentzian metric tensor. Thus discriminant analysis in the original sample space

reduces to metric learning on a Lorentzian manifold. We also establish the kernel, tensor and

regularization extensions of LDP in this paper. The experimental results on benchmark databases

demonstrate the effectiveness of our proposed method and the corresponding extensions.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Feature extraction has been studied by researchers in machine
learning, pattern recognition and computer vision for long
time. There are many approaches for this task. One of the
most successful and well-studied techniques is dimensionality
reduction. We devote this paper to addressing the supervised
dimensionality reduction from the perspective of Lorentzian
geometry which is extensively used in general relativity, as a
basic geometric tool for modeling the space–time in physics.
1.1. Related work

Principal component analysis (PCA) [2] and linear discriminant
analysis (LDA) [1] are two most popular linear dimensionality
reduction techniques. PCA projects the data points along
the directions of maximal variances and aims to preserve the
Euclidean distances between samples. Unlike PCA which is
unsupervised, LDA is supervised. It searches for the projection
axes on which the points of different classes are far from each
other and at the same time the data points of the same class are
close to each other. However, these linear models may fail to
discover nonlinear data structures.

During the recent years, a number of nonlinear dimensionality
reduction algorithms called manifold learning have been developed
ll rights reserved.
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to address this issue [17,7,14,8,10,13]. However, these nonlinear
techniques might not be suitable for real world applications because
they yield maps that are defined only on the training data points. To
compute the maps for the new testing points requires extra effort.

Along this direction, there is considerable interest in using linear
methods, inspired by the geometric intuition of manifold learning,
to find the nonlinear structure of data set. Some popular ones
include locality preserving projection (LPP) [19,12], neighborhood
preserving embedding (NPE) [18], marginal Fisher analysis (MFA)
[11], maximum margin criterion (MMC) [20], average neighborhood
margin maximization (ANMM) [21], semi-Riemannian discriminant
analysis (SRDA) [5] and unsupervised discriminant projection
(UDP) [24].

In addition, the kernel trick [3] has been widely applied to
extend linear dimensionality reduction algorithms to nonlinear
ones by mapping the data to a high-dimensional (usually infinite-
dimensional) feature space. It is worth noting that most of the
existing dimensionality reduction methods are vector based, but
in many real world tasks, the data are more naturally represented
as higher-order tensors. For example, a captured image is an
order-2 tensor, i.e. matrix, and the LBP or Gabor feature of an
image is in the form of order-3 tensor [26]. Thus a number of
algorithms [28,29,31] have been proposed to handle the data as
tensors directly. Cai et al. [43] also proposed a regularized
subspace learning framework which explicitly considers the
spatial relationship between the pixels in images.

1.2. Our approach

Recently, Yang et al. [24] adapted both local and global scatters
to unsupervised dimensionality reduction. They maximized the
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ratio of the global scatters to the local scatters. Zhao et al. [5] first
applied the semi-Riemannian geometry to classification [5].
Inspired by prior work, in this paper, we propose a novel method,
called Lorentzian discriminant projection (LDP), which focuses on
supervised dimensionality reduction. Its goal is to discover both
local class discriminant and global geometric structures of the
data set from the perspective of Lorentzian geometry. We first
construct a manifold to model the local class and the global
data structures. In this way, both the local discriminant and the
global geometric structures of the data set can be accurately
characterized by learning a special Lorentzian metric tensor on
the newly built manifold. In fact, the role of Lorentzian metric
tensor in LDP is to transfer the geometry from the sample space to
the feature space.

To our knowledge, this is the first time to introduce Lorentzian
geometry to feature extraction. Compared with traditional
algorithms, our method has the following advantages:
(1)
 The solution to many popular dimensionality reduction
algorithms, such as LPP, NPE, LDA, MFA and UDP is to pose
a trace ratio optimization problem, which however does
not have a closed-form solution [6]. While LDP avoids
this problem since it only needs to compute a simple
eigen-decomposition problem.
(2)
 In general, the amount and the prior distribution of the
training data, and the type of problem all influence the
classification performance. Our LDP proposes a Lorentzian
metric learning framework to deform feature space towards
the optimization of both local within-class compactness and
global structure diversity. For different data set, we can learn
their specific discriminant structure from the original sample
space and apply it to the feature space. Therefore, our
‘‘learning strategy’’ is more natural than the traditional
‘‘design-based strategy’’, i.e. design a weighted graph directly
[11,19]. The experimental results also indicate that LDP is
more effective than traditional methods in extracting
discriminant features.
The rest of this paper is organized as follows. In Section 2, we
introduce the algorithm details of Lorentzian discriminant
projection (LDP). Section 3 builds the kernel, tensor and
regularization extension of LDP, respectively. The experimental
results of LDP applied to real-world face analysis and handwriting
digits classification are presented in Section 4. Finally, we
conclude the paper along with some directions for further
research in Section 5.
Fig. 1. An illustration of a three-dimensional Lorentzian space–time with the

signature (2,1). Inside the light cone is the time-like space–time and outside the

space-like space–time.
2. Lorentzian discriminant projection

2.1. Fundamentals of Lorentzian manifold

Lorentzian geometry is an active field of mathematical
research that can be seen as part of differential geometry as well
as mathematical physics. It represents the mathematical founda-
tion of the general relativity which is probably one of the most
successful and beautiful theories of physics.

In differential geometry, a semi-Riemannian manifold is a
generalization of a Riemannian manifold. It is furnished with
a non-degenerate and symmetric metric tensor called the
semi-Riemannian metric tensor. The metric matrix on the
semi-Riemannian manifold is diagonalizable and the diagonal
entries are non-zero. We use the metric signature to denote the
number of positive and negative ones. Given a semi-Riemannian
manifold M of dimension n, if the metric has p positive and
q negative diagonal entries, then the metric signature is (p,q),
where p+q¼n.

Lorentzian manifold is the most important subclass of semi-
Riemannian manifold in which the metric signature is (n�1,1).
The metric matrix on the Lorentzian manifold Ln

1 is of form

G¼
L̂ðn�1Þ�ðn�1Þ 0

0 � �l

" #
, ð1Þ

where L̂ðn�1Þ�ðn�1Þ is diagonal and its diagonal entries and �l are
positive. Suppose that r¼ ½r̂

T
, �r �T is an n-dimensional vector, then

a metric tensor g(r,r) with respect to G is expressible as

gðr,rÞ ¼ rT Gr¼ r̂
TL̂r̂� �lð�rÞ2: ð2Þ

Because of the non-degeneracy of the Lorentzian metric, vectors
can be classified into space-like (gðr,rÞ40 or r¼0), time-like
ðgðr,rÞo0Þ or null (g(r,r)¼0 and ra0). Fig. 1 shows the three-
dimensional Lorentzian space–time with the signature (2,1). One
may refer to [4] for more details.

2.2. The motivation of LDP

The theory and algorithm in this paper are based on the
perspective that the discrimination power is tightly related to
both local class and global data structures. Our LDP is inspired by
two factors: the viewpoint of Lorentzian manifold applied to
general relativity and the success of considering both local and
global structures for dimensionality reduction.

The Lorentzian geometry has been successfully applied to
Einstein’s general relativity to model the space–time as a four-
dimensional Lorentzian manifold of signature (3,1). And as will be
shown later, this manifold is also convenient to model the
structures of a group of classes. On one hand, we model the local
class structure by the distances between each sample and its
within-class neighbors. We also characterize the global data
structure by the distances between each point and the global
geometric centroid. Combining both local and global distances
together, we naturally form a new manifold to preserve the
discriminant structure for data set. On the other hand, to optimize
both local and global structures at the same time, we need to
perform discrepancies of within-class quantities and global
quantities. To do so, we introduce Lorentzian metrics which are
the unique tools to integrate such kinds of dual quantities from
mathematical point of view. Therefore, the discriminant structure
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of the data set is initially modeled as a Lorentzian manifold where
coordinates are characterized by the distances between sample
pairs (each point with its within-class neighbors and the global
geometric centroid). Furthermore, we use the positive part L̂ to
handle the local class structure and the negative part � �l to model
the global data structure.

To this end, learning a discriminant subspace reduces to
learning the geometry of a Lorentzian manifold. Thus, supervised
dimensionality reduction is coupled with Lorentzian metric
learning. Moreover, we present an approach to optimize both
the local discriminant and global geometric structures by learning
the Lorentzian metric in the original sample space and applying it
to the discriminant subspace.

2.3. Modeling feature space as a Lorentzian manifold

For supervised dimensionality reduction task, the samples can
be represented as a point set Sx ¼ fx1,x2, . . . ,xmg, xiARn. The class
label of xi is denoted by Ci and mi is the number of points which
share the same label with xi. As we have previously described, the
goal of the proposed algorithm is to transform points from the
original high-dimensional sample space to a low-dimensional
discriminant subspace, i.e. Sy �Rd where d5n. In this subspace,
feature points belonging to the same class should have higher
within-class similarity and more consistent global geometric
structure. To achieve this goal, we introduce a Lorentzian
manifold to model the structure of features in a low dimensional
discriminant subspace.

With yi, Syi
¼ fyi,y

i
1, . . . ,yi

mi�1g (points share the same class
label with yi) and y (the geometric centroid of Sy, i.e.,
y ¼ ð1=mÞ

Pm
i ¼ 1 yi), a new point dyi

is defined as

dyi
¼ ½dðyi,y

i
1Þ, . . . ,dðyi,y

i
mi�1Þ,dðyi,yÞ�

T � ½d̂
T

yi
,dðyi,yÞ�

T , ð3Þ

where yi
jASyi

and d(yp,yq) is the distance between yp and yq. It is
easy to see that this coordinate representation can contain both
local within-class similarity and global geometric structure. We
consider these mi-tuple coordinate representations as points
sampled from a new manifold Lmi

1 furnished with a Lorentzian
metric tensor gl. It is straightforward to see that glðdyi

,dyi
Þ can be

written as

glðdyi
,dyi
Þ ¼ dT

yi
Gl

idyi
¼ trððYiDiÞG

l
iðYiDiÞ

T
Þ, ð4Þ

where the metric matrix Gi
l is real diagonal and the signature of

the metric is (mi
�1,1), Di ¼ ½emi

,�Imi�mi
�T (Imi�mi

is an identity
matrix of size mi�mi and emi

is an all-one column vector of length
mi) and Yi ¼ ½yi,y

i
1, . . . yi

mi�1,y �.
Then the total Lorentzian metric tensor can be given as

Xm

i ¼ 1

glðdyi
,dyi
Þ ¼ trðYLYT

Þ, ð5Þ

where L¼
Pm

i ¼ 1 BiDiG
l
iD

T
i BT

i , Y¼ ½y1,y2, . . . ,ym,y � and Bi is a
binary selection matrix of size (m+1)� (mi+1) which satisfies
Yi¼YBi.

1

If there is a linear isometric transformation between the low
dimensional feature y and the original sample x, i.e., y-Uy¼ x,
we can have an optimization model:

arg min
U

trðUT XLXT UÞ,

s:t: UT U¼ Id�d,

8<
: ð6Þ

where X¼ ½x1,x2, . . . ,xm,x� and x is the geometric centroid of Sx.
The linear transformation U that minimizes the objective function
1 It means (Bi)pq¼1 if the q-th vector in Yi is the p-th vector in Y [16,15].
in (6) can be found as being composed of the eigenvectors
associated with the d smallest eigenvalues of the following
problem:

XLXT u¼ lu: ð7Þ

It is sufficient to note that the Lorentzian metric tensor forms
the geometry of the feature structure. Thus a question naturally
arises: How to learn a special Lorentzian metric tensor to furnish
the newly built manifold? This is discussed in the next subsection.

2.4. Learning the Lorentzian metric tensors

The Lorentzian metric matrices Gi
l are key to the proposed

dimensionality reduction algorithm. The role of Gi
l in our model is

similar to that of weights in graph based models [11]. In these
algorithms, one should design a weighted graph based on some
similarity criteria, such as Gaussian similarity from Euclidean
distance as in [19] and prior class information in supervised
learning algorithms as in [1]. The performance of these algorithms
strongly depends on such human designed graph weight matrix.
In contrast, our LDP proposes a novel method to learn Lorentzian
metric matrices from the sample set Sx and then apply it to the
feature set Sy. In this way, LDP can transfer both local
compactness and global structure diversity from the sample
space to the feature space for specific data set. The metric Gi

l

consists of two parts: the positive-definite part L̂i and the
negative-definite part � �li. In this subsection, we introduce an
efficient way to learn L̂ i and �li successively.

The positive part L̂ i of the Lorentzian metric tensor is used to
measure the local structure of Syi

in low-dimensional discrimi-
nant subspace. We can characterize the within-class similarity
and local geometry by learning L̂i from Sxi

and then apply it to
Syi

. L̂i in the original sample space can be given as

gp
l ðd̂xi

,d̂xi
Þ ¼ d̂

T

xi
L̂ id̂xi

¼ gT
i D̂xi

gi, ð8Þ

where

gi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L̂ið1,1Þ

q
, . . . ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L̂iðmi�1,mi�1Þ

q� �T

and

D̂xi
¼ diagðdðxi,x

i
1Þ

2, . . . ,dðxi,x
i
mi�1Þ

2
Þ:

For the purpose of classification, we try to find gi which will
draw the within-class samples closer together. Therefore, for each
Sxi

, we may minimize this metric and obtain the following
optimization problem:

arg min
gi

gT
i D̂xi

gi,

s:t: eT
mi�1gi ¼ 1:

8><
>: ð9Þ

Imposing the sum-to-one constraint eT
mi�1gi ¼ 1 leads to the

symmetries of the objective function, say, invariants to transla-
tions, rotations, and scalings [9]. It is easy to check that the
solution to the above problem is

gi ¼
ðD̂xi
Þ
�1emi�1

eT
mi�1ðD̂xi

Þ
�1emi�1

: ð10Þ

Thus the positive-definite part L̂i can be obtained as

L̂iðp,qÞ ¼
ðgiðpÞÞ

2 if p¼ q,

0 otherwise:

(
ð11Þ

It is easy to check that LDP coincides with the PCA algorithm if
L̂i ¼ 0 and �li ¼ 1, i¼1,2,y,m. From this point of view, the
negative part �li of the Lorentzian metric tensor is exactly a
special weight used to measure the global geometric structure



ARTICLE IN PRESS

Table 1
Algorithm of LDP.

Input: Sample point set Sx and the labels {C1, C2,y, Cm}.

Output: Feature point set Sy and the projection matrix U.

1. Compute the metric matrix Gi
l using Eqs. (10) and (11).

Form L using L¼
Pm

i ¼ 1 BiDiG
l
iD

T
i BT

i .

2. Obtain U by Eq. (7), and project samples: y¼UTx.

3. Choose an optimal g in [0, 1.5] with the adaptation �l i’g �l i .

R. Liu et al. / Pattern Recognition 43 (2010) 3298–3306 3301
(global scatter) of Sy. As introduced in Section 2.1, a null (or light-
like) vector r is the vector that vanishes the metric tensor:
g(r,r)¼0. Inspired by this physical property used in general
relativity, we make Gi

l satisfy the following simplified local null
property for discriminant analysis:

gðemi
,emi
Þ ¼

Xmi�1

j ¼ 1

L̂iðj,jÞ�
�li ¼ 0: ð12Þ

So the negative definite part of Gi
l can be determined by

�li ¼
Pmi�1

j ¼ 1 L̂ iðj,jÞ. We empirically find that the discriminability
will be enhanced if we choose a positive factor gA ½0,1:5� to
multiply the negative part i.e., �li’g �li. This parameter actually
plays the role of adjusting the trade-off between local compact-
ness and global structure diversity. The value of g can be
determined by cross-validation.

To summarize, the main procedure of LDP is shown in Table 1.

2.5. Comparisons with the work in [5]

In [5], the authors proposed a geometric framework for
classification. This work and LDP are both supervised feature
extraction techniques. Their criteria, however, are quite different.
The work in [5] only considers the local structures and uses the
distances between each sample and its local interclass/intraclass
neighbors to model the intrinsic structure of a group of classes.
While, LDP constructs an (mi,1) Lorentzian manifold to model
both local compactness and global structure diversity for feature
extraction. Therefore, the newly built Lorentzian manifold has a
more transparent link to discriminant analysis than general semi-
Riemannian manifold.

Second, in [5], the authors propose an alternative way to learn
the general semi-Riemannian metric matrix based on the
‘‘smoothing’’ criteria. However, this criterion is not directly linked
to classification. In contrast, our LDP proposes a more natural
criterion for metric learning: we try to find the positive part of the
Lorentzian metric matrix which draws the within-class samples
closer together while simultaneously determines the negative
elements to preserve the global data structure.
3. Extensions

In this section, we introduce three useful extensions of
Lorentzian discriminant projection, kernel LDP (KLDP), tensor
LDP (TLDP) and smooth LDP(SLDP), which have their own
advantages under different circumstances.

3.1. Kernel LDP

We describe a method to conduct LDP in the reproducing
kernel Hilbert space into which the data points are mapped. This
gives rise to Kernel LDP.

Suppose that we map Sx to some high (usually infinite)
dimensional feature space F through a nonlinear mapping
F : Rn-F , and apply linear LDP there.
Assume the kernel Gram matrix is K with Kij ¼/FðxiÞ,FðxjÞS.
Let the projection be u¼

Pm
i ¼ 1 aiFðxiÞþamþ1FðxÞ ¼FðXÞa,

where a¼ ½a1, . . . ,am,amþ1�
T . Then the optimal a can be obtained

by solving

arg min
a

aT KLKa,

s:t: aT Ka¼ 1:

8<
: ð13Þ

3.2. Tensor LDP

In order to match the tensor nature of data, we further extend
vector-based LDP to tensor form.

An order-n tensor is an element of the space Rn1�n2�����nN . The
scalar product of tensors A and B with the same dimensions is
/A,BS¼

Pn1

i1 ¼ 1 � � �
PnN

iN ¼ 1 A(i1,y,iN) B(i1,y,iN). The Frobenius-
norm of a tensor A is given by JAJF ¼/A,AS. The j-mode product
of a tensor A and a matrix VARnj�dj is an n1 � n2 � � � � � nj�1 �

dj � njþ1 � � � � � nN tensor denoted as A�jV. The j-mode unfolding
of A is denoted by AðjÞARnj�ðnjþ 1 ...nN n1 ...nj�1Þ, where the element
A(i1,y,iN) of the original tensor appears at the ij-th row and the
uj-th column of A(j), in which uj ¼ ðijþ1�1Þ njþ2njþ3 . . .nNn1n2 . . .
nj�1þðijþ2�1Þnjþ3 . . .nNn1n2 . . .nj�1þ � � � þðiN�1Þn1n2 . . .nj�1þ

ði1�1Þn2n3 . . .nj�1þði2�1Þn3 . . .nj�1þ � � � þ ij�1.
Given SX ¼ fX1,X2, . . . ,Xmg, XiARn1�n2�����nN , our objective is to

find N optimal interrelated projection matrices UjARnj�dj , such
that the projected low-dimensional tensors can be represented as

Yi ¼ Xi�1U1�2U2 � � � �NUN , i¼ 1,2, . . . ,m:

We adopt an iterative scheme to obtain the projections [23,22].
Given

U1,U2, . . . ,Uj�1,Ujþ1, . . . ,UN ,

let

Y ðjÞi ¼ Xi�1U1 � � � ��j�1Uj�1�jþ1Ujþ1 � � � ��NUN :

Then, by the corresponding j-mode unfolding, we can get
Y ðjÞi ) YðjÞi . Therefore, the optimization model (6) can be rewritten
as

arg min
Uj

trðUT
j L�UjÞ,

s:t: UT
j Uj ¼ Idj�dj

,

8><
>: ð14Þ

where L� ¼
Pm

i ¼ 1ðY
ðjÞB�i D�i ÞðG

l
iÞ
�
ðYðjÞB�i D�i Þ

T and YðjÞ ¼ ½YðjÞ1 ,YðjÞ2 , . . . ,
YðjÞm ,Y

ðjÞ
�. The matric matrix (Gi

l)n can be obtained by replacing each
element in Gi

l by a dj � dj matrix:

ðGl
iÞ
�
¼

Gl
ið1,1ÞI

dj�dj

&

Gl
iðmi,miÞIdj�dj

0
BBB@

1
CCCA,

where dj ¼ djþ1djþ2 . . . dNd1 . . . dj�1. We can also obtain Bi
n and Di

n

in the same way, respectively.

3.3. Smooth regularized LDP

Learning the spatial relationship between the pixels in images
is important for dimensionality reduction, especially in face
recognition, clustering and image retrieval applications. In [43],
a Laplacian penalized functional was introduced as a smooth
regularization for dimensionality reduction. This prior informa-
tion significantly improves the performance of traditional
methods. By incorporating this Laplacian regularization, we
propose another extended LDP (SLDP) for spatially smooth
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subspace learning:

arg min
U

trðUT LsUÞ,

s:t: UT U¼ Id�d,

8<
: ð15Þ

where Ls
¼ ðð1�dÞXLXT

þdDTDÞ and DTD is the discretized
Laplacian regularization [43] and dA ½0,1� controls the smoothness
of the estimator.
4. Experimental results

To evaluate our proposed LDP and its kernel, tensor and
smooth extensions, four groups of experiments are conducted on
different kinds of benchmark databases (CMU PIE, FRGC v2 [32]
and MNIST2).
(1)
2

3

tens
4

Linear techniques: The performance of LDP is compared with
PCA, LPP, LDA, MMC and MFA.
(2)
 Kernel techniques: The performance of KLDP is compared with
KPCA, KLPP, KDA [35], KMMC and KMFA. We all adopt the
Gaussian kernel, and the variance of the Gaussian kernel were
set by cross-validation.
(3)
 Tensor techniques: The performance of TLDP is compared with
TPCA [30], TLPP [36],3 TLDA (DATER) [28], TMMC and TMFA.
(4)
 Smooth regularization techniques: The performance of SLDP is
compared with SLPP, SMFA and SLDA.4
We use original one-dimensional (vector) and two-dimensional
(matrix) image data and the expressive features yielded by LBP
[33] and Gabor filter [34] for our experiments, respectively.

The generalized eigen-analysis based methods (e.g. LDA, LPP
and MFA) encounter the computational trouble as they need to
compute the matrix inverse. This small sample size problem [1]
frequently occurs in computer vision and pattern recognition
since samples have large dimensions whereas the number of
classes is usually small. The PCA preprocessing is a classic and
well-recognized method to solve this problem. For a fair
comparison with other algorithms, we perform the PCA-based
two step strategy in all experiments. Here, we choose the
percentage of the energy retained in the PCA preprocessing step
between 97% and 100% along with all possible dimensions.

4.1. Face analysis

In this subsection, we demonstrate the effectiveness of LDP
(linear, kernel, tensor and smooth regularized forms) with
real-world face analysis (representation and recognition). We
show as follows the comprehensive performance comparisons
between our proposed algorithms and the other state-of-the-art
methods.

4.1.1. Face representation

In the face representation problem, we want to use LDP to
learn an optimal discriminant subspace which is spanned by the
columns of U in (6). The eigenvectors can be displayed as images,
called the Lorentzianfaces in our approach. Using the facial
images in experiment 4 of FRGC v2 as the training set, we present
the Lorentzianfaces in Fig. 2, together with Eigenfaces [2] and
Fisherfaces [1]. We can find that the tailing Lorentzianfaces
http://yann.lecun.com/exdb/mnist/

TPCA and TLPP were designed for matrices only, so we just test it on order-2

or data.

Three compared smooth regularization algorithms are all proposed in [43].
contain most discriminant facial features (i.e. eyes, nose and
mouth) which are insensitive to variations in both lighting
direction and facial expression [37], while the leading
Lorentzianfaces retain unwanted variations due to lighting and
facial expression. It is also interesting to see that the tailing
Lorentzianfaces (c.2 in Fig. 2) share similar patterns with the
leading Fisherfaces (b.1 in Fig. 2) when g¼ 0:1. But if we choose
g¼ 1:5, the tailing Lorentzianfaces (d.2 in Fig. 2) are somehow
similar to the leading Eigenfaces (a.1 in Fig. 2). Thus the
parameter g in our LDP has its own advantages for different
circumstances. Hence, LDP is capable of resolving a wide range of
problems.

4.1.2. Face recognition experiments on CMU PIE

The CMU PIE database contains 68 persons with 41,368 face
images as a whole. The face images were captured under varying
pose, illumination and expression. We choose the five near frontal
pose (C05, C07, C09, C27 and C29) and illumination indexed as 10
and 13 such that each person has 10 images. All the face images
are manually aligned and cropped. The cropped images are 32
�32 pixels, with 256 gray levels per pixel. We randomly select
three images of each person for training and the remaining seven
images are for testing. The top row of Fig. 3 shows facial images of
one person.

The recognition rate curves of linear methods versus the
variation of dimensions are illustrated in Fig. 4. The recognition
rate of each method and the corresponding dimension are given
in Table 2. As can be seen, the proposed LDP outperforms other
algorithms involved in all four experiments.

LBP is a new approach which is proved effective for feature
extraction. In our experiments, we subdivide each image by 4 �4
grids and perform the LBP8

u 2 on 16 evenly partitioned sub-blocks.
Thus the LBP feature of one image is a 59 � (4 �4) order-3 tensor.
We compare tensor methods on LBP features of CMU PIE to test
the discriminative power of different methods on order-3 tensor
data. Table 3 shows the recognition results. One can see that our
proposed TLDP is the best among them.

4.1.3. Face recognition experiments on FRGC v2

Experiments are also conducted on a subset of facial data in
experiment 4 of FRGC v2 that measures the recognition
performance from uncontrolled images. Experiment 4 is the most
challenging FRGC experiment which has 8014 single uncontrolled
still images of 466 persons in the query set. We choose the first 10
images of each person in this set if the number of images is not
less than 10. Then we collect 800 images of first 80 persons. The
images are all cropped to a size of 32 �32. The bottom row of
Fig. 3 shows the facial images of one person in our experiment.

We randomly select two images of each person as the training
set and the rest images are used as the testing set. Table 4 shows
the recognition results on original raw data of experiment 4 of
FRGC v2. The recognition rate curves versus the variation of
dimensions are illustrated in Fig. 4. One can find that our
proposed LDP is superior to other methods on uncontrolled
facial data. We also compare tensor methods on the LBP feature
yielded from FRGC v2. Again, the results presented in Table 3
show that LDP is better than other methods in comparison.

4.2. Handwriting digits classification

The handwriting digits classification experiments are designed
to test the performance of feature extraction on multi-resolution
images, which are widely used for image processing. Since Gabor
filter is the most popular multi-resolution operator which has
been frequently used in texture analysis [34] and digit recognition

http://yann.lecun.com/exdb/mnist/
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Fig. 2. Eigenfaces, Fisherfaces and Lorentzianfaces calculated from the facial images in the FRGC v2 database. For each row, the first five faces are spanned by the leading

eigenvectors and the last five faces are spanned by the tailing eigenvectors. (a) Eigenfaces, (b) Fisherfaces, (c) Lorentzianfaces (g=0.1), and (d) Lorentzianfaces (g=1.5).

Fig. 3. Some facial images used in our experiments. All images are 32�32 pixels in size. (a) CMU PIE, (b) FRGC v2

R. Liu et al. / Pattern Recognition 43 (2010) 3298–3306 3303
[27], we perform experiments on Gabor features of MNIST
database. Firstly, we choose the first 20 images of each class for
the experiments. Then the images are all cropped to a size of 28
�28 (Fig. 5). For each image, we extract 24 Gabor features in four
different scales and six different directions and down-sample
them to 7 �7 images [26]. Then we get order-3 tensor features of
size 24 � (7 �7). We randomly take five images as the training
set and the remaining 15 images as the testing set. The
classification results, listed in Table 5 and showed in Fig. 4,
demonstrate that our proposed LDP and TLDP perform better than
other methods on the multi-resolution image set, respectively.
4.3. Discussions

We find the free parameters for the tested methods in the
following way. The number of K-nearest neighborhoods in LPP
and the intraclass neighbor parameter K̂ in MFA are chosen as
l�1, where l denotes the number of training samples per class.
The interclass neighbor parameter �K in MFA, the values of the
Gaussian kernel parameter t in LPP and the value of g in LDP are
all tuned optimally in the training phase.

By conducting experiments systematically, we find that our
proposed LDP and its extensions can perform better than those
traditional methods on the three databases. It can also be seen
that the kernel and tensor approaches outperform vector-based
methods in some databases, but the vector-based methods have
their own advantages under some circumstances (Table 4). In
addition, the results demonstrate that, when the training set is
not enough to characterize the data distribution (only three
training images for CMU PIE or two training images for FRGC v2),
discrepancy criterion based MMC and its tensor extension appear
to be less effective than other methods (Tables 2 and 4).
Fortunately, the kernel trick can significantly improve the
performance of MMC. If the training set adequately characterizes
the data distribution as the case of five training images for
MNIST, MMC has the potential to outperform other methods
(Table 5). But all experiments show that MMC does not perform
better than LDP.

The face recognition experiments also demonstrate the power
of smooth regularization for dimensionality reduction. By using 2-
D Laplacian smoothing regularization technique, the regularized
algorithms significantly outperform the corresponding ordinary
versions. From Tables 2 and 4, we can see the performance of
traditional algorithms is significantly improved by smooth
regularization (e.g., the recognition rate of LPP is improved from
70.0% to 77.9% on CMU PIE and from 81.3% to 87.5% on FRGC v2,
respectively). SLDP also outperforms the original LDP on both two
face data. This is because that smooth regularization can explicitly
take into account the spatial relationship between the pixels in an
image and the projection vectors can be smoother than those
obtained by the ordinary dimensionality reduction algorithms.

For handwriting digits data, the dimension of the embedding
subspace significantly affects the performance of some feature
extraction algorithms. This is because when the dimension
increases, the noise begins to appear in the embedding subspace
and starts to affect the accuracy. This drawback is not only
for LDP, but also for most other feature extraction algorithms
(e.g., LDA and MMC). However, solving this problem is clearly
beyond the scope of this paper.
5. Conclusions and future work

This paper presents a novel discriminant analysis method
called Lorentzian discriminant projection (LDP). In the first step,
we construct a Lorentzian manifold to model both local and global
discriminant and geometric structures of the data set. Then, an
approach to Lorentzian metric learning is proposed to learn
metric tensor from the original high-dimensional sample space
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Fig. 4. The recognition rate curves of linear methods versus the variation of dimensions. (a) CMU PIE. (b) FRGC v2. (c) MNIST.

Table 2
The maximal recognition results (%) on the original CMU PIE facial data (vector and matrix images). Using the original data directly without dimensionality reduction is the

baseline. The percentage of energy retained in the PCA step is 97%. The optimal dimensions of feature space are given in the brackets.

Method Linear Kernel Order-2 Tensor Smooth regularized

Baseline 67.65 – – –

PCA 66.6 (86) 67.7 (188) 68.5 (14, 3) –

LPP 70.0 (60) 62.4 (30) 69.5 (18, 27) 77.9 (55)

LDA 71.2 (27) 81.9 (67) 74.8 (25, 5) 76.9 (69)

MMC 66.0 (39) 83.4 (80) 73.1 (31, 26) –

MFA 70.8 (28) 80.5 (27) 73.5 (28, 5) 73.1 (98)

LDP 74.8 (26) 84.0 (115) 79.4 (15, 14) 79.2 (69)

Table 3
The maximal recognition results (%) on the LBP features of CMU PIE and FRGC v2

facial data. Using the LBP features directly without dimensionality reduction is the

baseline. The optimal dimensions of feature space are given in the brackets.

Method CMU PIE FRGC v2

Baseline 85.3 75.2

TLDA 90.6 (34, 4, 4) 82.3 (33, 4, 3)

TMMC 90.1 (53, 3, 4) 80.6 (53, 4, 3)

TMFA 89.5 (48, 4, 4) 81.1 (57, 4, 3)

TLDP 91.6 (52, 4, 3) 82.5 (42, 3, 3)
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and apply it to the low-dimensional discriminant subspace. In this
way, both the local class and the global data structures can be
well preserved in the reduced low-dimensional discriminant
subspace. We also derive the kernel, tensor and smooth
regularized extension of LDP for nonlinear and multi-linear data,
respectively. The experimental results have shown that our
proposed LDP, KLDP, TLDP and SLDP are all promising.

For future work, we are considering the sparsity of the data set.
For example, our LDP only model the Lorentzian manifold by
combining the L2 distances as the coordinates. One of the
disadvantages of this approach is that the learnt projective maps
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Table 4
The maximal recognition results (%) on the original FRGC v2 facial data (vector and matrix images). Using the original data directly without dimensionality reduction is the

baseline. The percentage of energy retained in the PCA step is 99%. The optimal dimensions of feature space are given in the brackets.

Method Linear Kernel Order-2 Tensor Smooth regularized

Baseline 60.8 – – –

PCA 60.8 (151) 60.8 (144) 60.9 (32, 22) –

LPP 81.3 (94) 78.1 (29) 75.2 (24, 17) 87.5 (154)

LDA 90.2 (63) 91.7 (77) 85.5 (13, 15) 90.3 (107)

MMC 67.2 (74) 90.5 (115) 64.7 (27, 29) –

MFA 84.4 (42) 89.7 (28) 83.8 (15, 15) 89.4 (107)

LDP 92.0 (59) 92.7 (79) 87.2 (20, 32) 92.5 (79)

Fig. 5. Some handwriting digits in the MNIST database. All images are 28 �28

pixels in size. (a) Training, (b) Testing.

Table 5
The maximal classification results (%) on the Gabor features of MNIST data. Using

the Gabor features directly without dimensionality reduction is the baseline. For

linear methods, the percentage of energy retained in the PCA step is 98%. The

optimal dimensions of feature space are given in the brackets.

Method Linear Order-3 Tensor

Baseline 68.0 –

PCA 68.0 (47) –

LPP 71.3 (22) –

LDA 84.7 (10) 86.0 (13, 6, 4)

MMC 84.7 (9) 79.3 (21, 5, 7)

MFA 84.0 (13) 86.0 (16, 5, 5)

LDP 87.3 (15) 87.4 (24, 5, 4)
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are linear combination of all the original features. But recent
psychological and physiological evidence have shown that the
representation of objects in human brain may be sparse [38,39].
How to utilize the sparsity for the Lorentzian metric learning
framework effectively is an interesting direction. Another open
problem in LDP is that the dense matrix eigenvalue problem is
computationally expensive to solve especially for large-scale
problems. Recently, Cai et al. [40–42] propose a new regulariza-
tion framework for linear dimensionality reduction called spectral
regression (SR). With this framework, different kinds of regular-
izers can be naturally incorporated in dimensionality reduction
algorithms which make them more flexible. Furthermore, SR only
needs to solve a set of regularized least squares problems and
computational analysis shows that it has only linear-time
complexity which is huge speed up comparing to the cubic-time
complexity of the ordinary approaches. We intend to further
investigate regularization and least squares formulation for our
LDP model.
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