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Abstract—In this work, we address the problem of performing class-specific unsupervised object segmentation, i.e., automatic

segmentation without annotated training images. Object segmentation can be regarded as a special data clustering problem where

both class-specific information and local texture/color similarities have to be considered. To this end, we propose a hybrid graph model

(HGM) that can make effective use of both symmetric and asymmetric relationship among samples. The vertices of a hybrid graph

represent the samples and are connected by directed edges and/or undirected ones, which represent the asymmetric and/or

symmetric relationship between them, respectively. When applied to object segmentation, vertices are superpixels, the asymmetric

relationship is the conditional dependence of occurrence, and the symmetric relationship is the color/texture similarity. By combining

the Markov chain formed by the directed subgraph and the minimal cut of the undirected subgraph, the object boundaries can be

determined for each image. Using the HGM, we can conveniently achieve simultaneous segmentation and recognition by integrating

both top-down and bottom-up information into a unified process. Experiments on 42 object classes (9,415 images in total) show

promising results.

Index Terms—Segmentation, graph-theoretic methods, spectral clustering.

Ç

1 INTRODUCTION

CLASS-SPECIFIC (or category-level) object segmentation is
one of the fundamental problems in computer vision.

Its goal is to segment an image into regions, with each
region solely containing object(s) of a class. As object
segmentation requires that each segmented region be a
semantic object, it is much more challenging than tradi-
tional image segmentation [2], [3], [4], [5], [6] (we shall call
this oversegmentation instead throughout this paper),
which only requires that each region is a homogeneous
texture. To achieve object segmentation, object classes
should be represented appropriately. As the variance of
object shape and color/texture within an object class can be
large, it is very difficult to obtain class-specific features that
can describe the object class accurately. In this regard, object
segmentation is a difficult problem. However, object
segmentation is feasible due to the recent development of
recognition and oversegmentation techniques in computer
vision. On the one hand, recently established shape models,
such as the implicit shape model [7] and the sparse
representation model [8], provide us with effective ways
to extract the approximate shape priors of an object class.
On the other hand, current oversegmentation techniques

[2], [3], [4], [6] can well handle the low-level image features
and produce reliable texture segmentation results. This
greatly reduces the difficulty of object segmentation
because we only have to consider how to group the
obtained subregions. So, accurate object segmentation is
possible if we can combine both class-specific (high-level)
and low-level priors effectively. To achieve this, in this
paper we introduce a novel spectral method called the
hybrid graph model (HGM).1

According to whether the learning of object class priors
requires human interaction or not, the existing object
segmentation algorithms are broken into two categories:
supervised and unsupervised. Supervised algorithms re-
quire either manually segmented masks in training images
[7], [9], [10], the specification of shape templates [9], [11],
[12], [13], [14], or other kinds of priors (e.g., object part
configuration [15] or class fragments [16]). These algorithms
may be applicable to a particular object class [13], a range of
objects [10], [12], or object classes [7], [9], [11], [14], [15], [16],
[17] provided that the class dependent priors are available.
However, as a practical object recognition system needs to
handle a large number of classes of objects and most classes
may require many training samples due to significant
intraclass shape and appearance variances, it is important
that the learning does not involve any human interaction.
This makes unsupervised algorithms more appealing. There
has been sparse research in this direction. Borenstein and
Ullman [18] used the overlap between automatically
extracted object parts (or fragments) to determine the
foreground and the background. As individual parts are
considered independently, the approach is prone to
wrongly judge background clutters as foreground parts.
Winn and Jojic [19] combined all images together to find a
consistent segmentation based on the assumption that the
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object shape and color distribution pattern are consistent
within class and that the color/texture variability within a
single object of a class is limited. Moreover, each image
should only contain one object of the class. Rother et al. [20]
showed that it is possible to use only two images to segment
their common parts simultaneously. They required the
common parts to have similar shape and color/texture.
Russell et al. [21] segmented images in multiple ways and
then borrowed techniques from document analysis to
discover multiple object classes. Their assumption was that
some regions in some of the segmentations are correct for
each object. As segmentation precedes class discovery, it is
usually hard to have accurate segmentation. Due to the
limitations of these existing methods, we aim at proposing a
novel unsupervised algorithm that can produce more
accurate object boundaries, where the assumption on the
variance of object shape and color/texture is much weaker
and images can contain multiple objects.

To ensure robustness, we follow the doctrine that object
segmentation should be handled in parallel to object
recognition [7], [9], [14], [15], [19], [22] as they are strongly
coupled problems. So, the top-down (for recognition) and
the bottom-up information (for segmentation) should be
utilized simultaneously. Although no annotated training
images are available, as long as there are enough images,
the common patterns of the object class will appear
frequently and the effect of the background will fade out
as it is much less structured compared to the objects. So, our
target is to segment a large number of images simultaneously
(Fig. 1). As we will not assume small intraclass shape
variance (e.g., Fig. 1a), unlike [7], [9], [14], we do not expect
that there will be a global shape prior for recognition.
Therefore, we adopt local shape priors based on the work of
Agarwal and Roth [8]. We first extract the object parts using
an interest point detector [23]. The concurrence of object
parts and the weak spatial relationship among them form
our shape priors. The local shape priors provide very weak
top-down constraints on the object shape, as the object parts
are only sparsely distributed across the objects, and very
often they also reside in the background. So, it is unlikely to
obtain accurate segmentation by using such priors only. On
the other hand, we break the images into superpixels [24]
and group homogeneous superpixels into relatively large
subregions [6]. Although a subregion may not exactly
correspond to an object, it is nonetheless homogeneous in
texture. Such trustworthy oversegmentation results provide
good basis for object segmentation. For example, Cao and
Fei-Fei [25] suggested to further group such subregions into
objects. In contrast, we view the oversegmentation results as

trustworthy bottom-up constraints on the object appearance.
Both top-down and bottom-up constraints can be repre-
sented by our HGM naturally.

The vertices of a hybrid graph (Fig. 2) represent the
samples, e.g., superpixels of an image. The vertices are
connected by directed edges and/or undirected ones. A
directed edge represents the dependence between the
vertices that it connects (which is asymmetric), while an
undirected edge represents the similarity between the
vertices (which is symmetric). The directed and the undir-
ected subgraphs represent our weak top-down and trust-
worthy bottom-up priors, respectively. Then, an image is
segmented by classifying the vertices of the hybrid graph into
two clusters, with one cluster being the foreground contain-
ing object(s) of the class and another being the background.
The classification is based on computing a score vector that
assigns each vertex its “probability” of belonging to the
underlying class. The score vector is the solution to an
optimization problem that combines a random walk on the
directed subgraph and a minimal cut (Min-Cut) of the
undirected subgraph. The optimization problem can also be
deduced from the well-established manifold regularization [26]
framework, where the random walk defines the loss function
and the Min-Cut defines the regularization function.

Compared to the previous unsupervised object segmen-
tation algorithms [18], [19], [20], [21], the main advantages
of our HGM-based method include:

. Larger variation in shape (including position, size,
pose and profile) is allowed within a class.

. Larger variation in color/texture is allowed not only
within class but also within object.

. Multiple objects of the same class are allowed in
each image.

. More accurate output of object boundaries.

. It is fully automatic for single-class object segmen-
tation.

The remainder of this paper is organized as follows:
Section 2 introduces the general formulation of an HGM for
two-class clustering. Section 3 details our HGM-based
single-class object segmentation approach. Section 4 shows
the experimental results. Section 5 extends our HGM to
address multiclass clustering and presents the results on
multiclass object segmentation. Finally, Section 6 concludes
our paper.
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Fig. 1. Our HGM-based single-class object segmentation. (a) Inputs: A
set of images each consisting of objects (foreground) of a class and
different backgrounds. (b) Outputs: Regions solely containing objects of
the class. The whole process is fully automatic. Fig. 2. An illustration of the hybrid graph. A vertex denotes a data

sample (superpixel). A directed edge represents the relation of
conditional dependence between a pair of samples, while an undirected
edge represents the relation of homogeneous association. Between
each pair of vertices, there are at most three edges: two directed edges
and one undirected edge. In some scenarios, it is possible that some
vertices are isolated.



2 THE HYBRID GRAPH MODEL FOR TWO-CLASS

CLUSTERING

In this section, we present the HGM for two-class clustering
in an abstract sense. The extension to multiclass clustering
is deferred until Section 5. Let the set of n data samples (a
sample denotes a superpixel when applying HGM to object
segmentation) be V ¼ fv1; . . . ; vng, with both symmetric and
asymmetric relationships among them. We want to classify
the samples into two classes C and �C. Instead of directly
assigning definite class labels, we aim at calculating a score
vector �!¼ ð�1; . . . ; �nÞT and a threshold value t, where �i is
the “probability” of vi belonging to C. With an appropriate t,
C can be determined as the set Vþ ¼ fvi j �i � tg and �C
consists of the remaining samples V� ¼ fvi j �i < tg.

2.1 Representing Data by a Hybrid Graph

In a hybrid graph, the symmetric relationship is repre-
sented by undirected edges, while the asymmetric relation-
ship is represented by directed edges. The asymmetric
relationship is usually the conditional dependence between
the samples (which incorporates weak class-specific
information), while the symmetric relationship often
measures the homogeneity (e.g., similarity) among the
samples of a class. As a result, a hybrid graph incorporates
two matrices that are associated to the directed subgraph
and the undirected subgraph, respectively:

1. Conditional Dependence Matrix P :

P ¼ ½pij�n�n;

where pij measures the conditional dependence of
vj on vi. This matrix is usually asymmetric. In our
object segmentation task, it represents the shape
configuration between superpixels, where the
shape priors are first acquired from the concur-
rence of object parts and then transformed to the
superpixels.

2. Homogeneous Association Matrix A:

A ¼ ½aij�n�n;

where aij measures the homogeneity between vi
and vj. This matrix is symmetric. In our problem, it
represents the color/texture similarity and the
spatial adjacency among superpixels, which mainly
come from the oversegmentation results.

Therefore, in a hybrid graph (Fig. 2) there are at most
three edges between each pair of vertices: Two are directed
and one is undirected. The weights assigned to directed
edges and undirected ones correspond to matrix P and
matrix A, respectively. So, it is convenient to denote the
hybrid graph as G ¼ ðV ;P;AÞ.

2.2 Computing the Score Vector

As mentioned before, �i is the “probability” of sample vi
belonging to the class C. Let us consider the directed
subgraph and undirected subgraph one by one.

From the directed subgraph, as the samples are inter-
dependent, the probability of sample vi should depend on
the probabilities of samples that point to it. So, the
interdependence among the samples naturally forms a

Markov Chain. Ideally, like PageRank [27], this results in a

stationary distribution �!:

PT �!¼ �!; ð1Þ

which is also the solution to

min
�!
kPT �!� �!k2: ð2Þ

On the other hand, from the undirected subgraph, if two

entities vi and vj are strongly associated, they are more

likely to belong to the same class. So, the score vector

should minimize the cut costX
i;j

aijð�i � �jÞ2: ð3Þ

Putting the above two criteria together, we have an

optimization problem to calculate the score vector �!:

min
�!
EðG; �!Þ; subject to �!T

�!¼ 1; ð4Þ

where

EðG; �!Þ ¼ kPT �!� �!k2 þ �
X
i;j

aijð�i � �jÞ2; ð5Þ

G ¼ ðV ;P;AÞ is the hybrid graph, and � is a positive

parameter used to balance the effects of the two criteria. In

our experiments, we fix � ¼ 1. The solution to problem (4)

is the eigenvector associated to the minimum eigenvalue of

the following matrix:

MðGÞ ¼ ðI � P ÞðI � PT Þ þ �LA; ð6Þ

whereLA is the Laplacian matrix of the undirected subgraph:

LA ¼ DA �AwithDA ¼ diagf
Pn

j¼1 a1j; . . . ;
Pn

j¼1 anjg, and I

is the identity matrix. Note that, if �! is the optimal solution to

(4), so is� �!. However, as �i is the “probability” of sample vi
belonging to C, we have to choose the �! such thatPn

i¼1 �i � 0.

2.3 Determining the Threshold

With the score vector �!, the samples can be classified by

using a threshold t. It is natural that this threshold t be

chosen as the mean of �!. However, some computed values

in �! may be negative.2 Such negative scores make the

threshold underestimated. So, we further estimate the

threshold t by the geometric mean of �!. So, a reasonable

estimate of t is tl � t � th, where

tl ¼
1

n

Xn
i¼1

�i and th ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

�2
i

s
:

As we also want the classes to be compact and isolated

from each other, we borrow the normalized cut (N-Cut) [5]

of the undirected subgraph as the criterion to help

determine the final threshold t:
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2. The negativity problem is not critical for our purpose because,
actually, it is the relative order of the scores that matters. For ease of
optimization, we do not enforce nonnegativity of the score vector �! in (4).



t ¼ arg min
t2½tl;th�

NCutðVþ; V�Þ

¼ arg min
t2½tl;th�

cutðVþ; V�Þ
assocðVþ; V Þ

þ cutðVþ; V�Þ
assocðV�; V Þ

;
ð7Þ

where

cutðVþ; V�Þ ¼
X

vi2Vþ;vj2V�
aij; assocðVþ; V Þ ¼

X
vi2Vþ;vj2V

aij;

and assocðV�; V Þ ¼
X

vi2V�;vj2V
aij:

The optimal threshold can be found by testing t with �!. So,
solving the above optimization problem just takes
OðnÞ operations, where n is the number of samples. We
have found that this configuration works well in our
experiments.

2.4 Discussions

2.4.1 Connection to Manifold Regularization

Although HGM is essentially a heuristic approach to
assign “probabilities” of samples belonging to the target
class C, it can be fit into the well-established manifold
regularization [26] framework. Let us consider the problem
of learning the conditional distribution Prðy j xÞ from data
samples. There is an unknown probability distribution
Prðx; yÞ on X � Y , where X is the input sample space and
Y ¼ f1; 0g with Y ¼ 1 if a sample belongs to C and Y ¼ 0 if
otherwise. Labeled samples are ðxi; yiÞ pairs drawn from
Prðy j xÞ. Unlabeled samples are simply xi 2 X drawn
from the marginal distribution PrXðxÞ of Prðx; yÞ. To learn
the conditional distribution Prðy j xÞ with few or even no
labeled samples, the prior knowledge of the marginal
distribution PrXðxÞ can be exploited:

Prðy j xÞ ¼ arg min
PrðyjxÞ

Xn
i¼1

Lðy0i; Prðy j xiÞÞ

þ �RPrX ðPrðy j xÞÞ;

where y0
!¼ ½y01; . . . ; y0n�T is a label vector that is possibly

known a priori and L is some loss function, such as the
squared loss ðy0i � Prðy j xiÞÞ2 for MSE and the hinge loss
function max½0; 1� y0iPrðy j xiÞ� for SVM. The regulariza-
tion term RPrX ðPrðy j xÞÞ is defined according to the
connection between the marginal and the conditional
distributions. It is often assumed that if two points x1 and
x2 are close to each other with respect to the intrinsic
geometry prescribed by PrXðxÞ, then the conditional
distributions Prðy j x1Þ and Prðy j x2Þ are similar. So, the
regularization term can be defined as

RPrX ðPrðy j xÞÞ ¼
Xn
i;j¼1

aijðPrðy j xiÞ � Prðy j xjÞÞ2;

where aij measures the similarity between xi and xj.
There are two kinds of methods to learn the conditional

distribution: inductive and transductive. Inductive methods
learn a function fðxiÞ to fit Prðy j xiÞ, while transductive
methods learn a label vector directly. HGM is a kind of
transductive method. It learns a label vector �!, where
�i ¼ Prðy ¼ 1 j xiÞ. Considering the squared loss function
and integrating all the above ingredients, the label vector
can be computed by minimizing

�!¼ arg min
�!
Xn
i¼1

ðy0i � �iÞ2 þ �
Xn
i;j¼1

aijð�i � �jÞ2:

The definition of the loss function usually needs some

labeled data. For example, Zhou et al. [28] used partially

labeled samples and defined y0k ¼ 0 if xk is unlabeled. In

HGM, it could be viewed that the labels come from the

random walk on the directed graph

y0i ¼ P̂ rðy ¼ 1 j xiÞ �
Xn
j¼1

Prðy ¼ 1 j xjÞPrðxi j xjÞ

¼
Xn
j¼1

�jpji:

It is easy to see that, in this way,

Xn
i¼1

ðy0i � �iÞ2 �
Xn
i¼1

Xn
j¼1

�jpji � �i

 !2

¼ kPT �!� �!k2:

Therefore, (5) is naturally deduced.
So, our HGM is a kind of the regularization approach

[26]. A key difference is that in HGM there is no labeled

sample and we use a conditional dependence matrix P to

incorporate the class-specific priors instead. It is worth

noting that the Laplacian matrix LA in (6) can be replaced

by the normalized Laplacian (i.e., N-Cut of the undirected

subgraph). However, we have experimentally found that

using normalized Laplacian tends to cut off the high-

curvature details of objects (e.g., the legs of horses). In

comparison, the original Laplacian matrix always produces

promising results. So, we adopt (3) to measure the cut cost.

2.4.2 Connection to Affinity Matrix Learning

Spectral methods that cluster data samples using the

eigenvectors and eigenvalues of a similarity matrix have

been regarded as a powerful technique for segmentation.

As demonstrated in previous research, such as [5], these

methods are able to produce impressive image segmenta-

tion results using simple low-level image features. How-

ever, it is difficult to combine various features by defining

the edge weights of the graph. Shi et al. [29], [30] therefore

interpreted spectral methods in the Markov random walk

framework and turned instead to learn a directed graph G

that encodes various image features, i.e., to learn the

weights matrix of the graph. This technique is known as

affinity matrix learning.
Our HGM can also be regarded as an extension of affinity

matrix learning for object segmentation. At first, two affinity

matrices P and A are constructed or learned, then the

segmentation is obtained by performing eigenvector decom-

position of ðI � P ÞðI � PT Þ þ �LA, which could be viewed as

the affinity matrix of HGM. However, there is a key

difference: HGM uses a directed subgraph and an undirected

subgraph to represent the top-down priors specific to an

object class and the bottom-up priors within single images,

respectively, while affinity matrix learning uses a directed

graph only.
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3 HGM-BASED SINGLE-CLASS OBJECT

SEGMENTATION

Our HGM-based object segmentation algorithm is outlined

in Fig. 3. Given an image (Fig. 3(1)), we aim at learning a

mask map (Fig. 3(4)) by incorporating the priors of shapes

(Fig. 3(2.3)) and color/texture (Fig. 3(2.4)) into an HGM

(Fig. 3(3)). Then, the mask map can be computed by the

method in Section 2.2, and finally, based on the mask map,

the image can be segmented (Fig. 3(5)) by thresholding the

mask (Section 2.3). In the following, we describe details of

each step.

3.1 Acquiring Prior Information

We first resize all images to about the same size, with the
longer side being 320 pixels. Then, the remaining pre-
processing procedure mainly aims at acquiring the prior
information of the object class.

3.1.1 Acquiring Local Shape Priors

Our local shape priors consist of visual words [21] and the

spatial distances between them. A visual word is the center

of a cluster of local windows that have similar appearance.

It represents the whole cluster and is a feature of local

appearance of an object class (e.g., the tyres of cars). The

aforementioned “object part” is an instance of the cluster

that a visual word represents.
Building the codebook. We follow the methods in [7], [8].

First, a number of images are randomly chosen from all

provided images and are tentatively converted to gray scale.

These images are considered as “special” self-training

images for extracting the shape priors of the class. Second,

object parts with rich textures are detected by extracting

windows of size 25� 25 around the points detected with the

Harris interest point detector [23] (Fig. 3(2.1)). Third, all

detected parts are clustered into several clusters by agglom-

erative clustering [7] (Fig. 3(2.3)). The similarity measure is

the Normalized Gray-Scale Correlation (NGC) [7] and the

threshold is set to be 0.3 in all our experiments. Then, all the

cluster centers form the visual words that describe the local

appearances of the images. Fig. 4 shows some visual words.

Note that the visual words may not belong to the object class

as this process does not (and could not) tell whether the object

parts belong to the object region or not. For example, there are

about 24 percent object parts that have no intersection with

the foreground. Finally, the codebook consists of all the

visual words. It can be refined by HGM for higher accuracy

(see the Appendix, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersocie-

ty.org/101109/TPAMI.2009.40).
Building the spatial relation table. As we are to address

larger shape variation, unlike deformable templates [9],

[11], [12], [13], [14] and implicit shape model [7], we can

only assume very weak shape configurations. We hence

only consider the spatial distance between visual words. By

iterating over all selected images and matching visual

words to all detected object parts using NGC, we have a

table of the spatial relation between pairs of visual words:

½vwi; vwj; dij � Nð�ij; �ijÞ�; ð8Þ

where vwi and vwj are two visual words and Nð�ij; �ijÞ is a

Gaussian that fits the distribution of the spatial distance dij
between object parts matched to vwi and vwj. Fig. 5 shows

some examples of the visual words pairs in the spatial

relation table. Unlike [8], which also considered direction

between object parts, we ignore the direction because we

allow arbitrary object orientation.
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Fig. 3. Illustration of HGM-based object segmentation. Given an
image (1), a mask map (4) has to be learned. To this end, we obtain
object parts (2.1) using the Harris interest point detector and group the
pixels into superpixels (2.2). Then, we further cluster object parts and
superpixels into visual words (2.3) and midlevel oversegmentation (2.4),
respectively. Next, we incorporate the acquired priors into an HGM by
defining the conditional dependence matrix P according to shape priors
and the homogenous association matrix A according to the color/texture
priors. With the mask map (4) computed from the HGM, the image can
be easily segmented (5).

Fig. 4. Some examples of the visual words from the Horse image data
set [31]. We find 245 visual words by clustering 4,025 object parts
detected from 78 horse images. Not all of the visual words, e.g., the last
visual word, correspond to semantic object parts.



3.1.2 Acquiring Color/Texture Priors

Color and texture are also features of objects. As object
regions should consist of subregions that are homogeneous
in color or texture, for computational efficiency, we shall not
consider pixel-level segmentation. So, we first oversegment
the images into superpixels [24] (Fig. 3(2.2)), then use the
midlevel clustering algorithm proposed in [6] to group the
superpixels into much larger subregions (Fig. 3(2.4)). Then,
the similarity between superpixels can be measured by
whether they belong to the same subregions. Using midlevel
clustering results as the similarity measure is superior to
directly using pairwise similarities, as in [32], because the
clustering algorithm in [6] incorporates more information to
judge the homogeneity of a subregion.

3.2 Learning Mask Maps via HGM

Given an image, we aim at learning a mask map that
gives each superpixel a probability of lying inside
object(s). Our basic notion is to integrate all of the priors
into a unified framework.

3.2.1 The Hybrid Graph for Object Segmentation

Our hybrid graph G ¼ ðV ;P;AÞ for object segmentation
(Fig. 3(3)) includes a vertex set V , where superpixels are the
vertices, and an edge set E, implied by P and A. The shape
priors are encoded in the conditional dependence matrix P
of the directed subgraph, while the color/texture priors are
embodied by the homogeneous association matrix A of the
undirected subgraph. Next, we elaborate the definitions of
these two matrices.

3.2.2 Defining Conditional Dependence Matrix P

As a vertex in the HGM denotes a superpixel rather than an
object part, we need to transfer the object part based priors
to superpixel based. Let fS1; . . . ; Sng be the n superpixels
and fO1; . . . ; Omg be the m object parts (Fig. 6), then P is
computed as follows:

P ¼ K1 	 F 	K2;

where K1 ¼ ½k1
ij�n�m and K2 ¼ ½k2

ij�m�n record the overlap
between superpixels and object parts:

k1
ij ¼

jSi \OjjP
l jSi \Olj

; k2
ij ¼

jOi \ SjjP
l jOi \ Slj

;

where j 	 j is the area of a region. The matrix F is the
conditional dependence matrix for the object parts. Simi-
larly to [33], F is computed as follows:

For an object part Oi observed at location ‘i in an image,

let ei be the event of ½Oi; ‘i� being observed. For an object

class CC, we define fij as the conditional dependence of ej on

ei, i.e., fij ¼ Prðej j ei;CCÞ. With the event ei fixed, ej is

equivalent to a new event ~eij ¼ ½Oi;Oj; dij� that Oj is

observed at the location with distance dij from Oi. Hence,

fij ¼ Prðej j ei;CCÞ / Prð~eij j CCÞ:

To compute fij, we have to estimate Prð~eijjCCÞ. By matching

Oi and Oj to the codebook of the object class CC, we obtain a

set of interpretations I ij ¼ fIi0j0 j Ii0j0 is the event that Oi and

Oj are matched to the visual words vwi0 and vwj0 ,

respectively} (i.e., Oi and Oj are interpreted as the visual

words vwi0 and vwj0 , respectively). Then,

Prð~eij j CCÞ ¼
X

Ii0j0 2I ij
PrðIi0j0 j CCÞPrð~eij j Ii0j0 ;CCÞ

¼
X

Ii0j0 2I ij
PrðIi0j0 j CCÞPrð½vwi0 ; vwj0 ; dij� j Ii0j0 ;CCÞ;

where PrðIi0j0 j CCÞ can be computed as 1
jI ijj , assuming the

independence on CC and the equal probability of each event,

and Prð½vwi0 ; vwj0 ; dij� j Ii0j0 ;CCÞ can be computed as

1ffiffiffiffiffiffi
2�
p

�i0j0
exp �ðdij � �i

0j0 Þ2

2�2
i0j0

 !
;

due to (8). Finally, normalizing the rows of F gives:

fij ¼
Prð~eij j CCÞP
k Prð~eik j CCÞ

:

3.2.3 Defining Homogeneous Association Matrix A

We expect the superpixels belonging to the same subregion

(Fig. 3(2.4)) and/or being spatially close to each other to

have similar scores. Based on this heuristics, we define

aij ¼ exp
�
� �d2

ij

�
þ sij;

where

sij ¼
1; if vi and vj are in the same subregion;
0; otherwise,

�
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Fig. 5. An example of matching real image patches (object parts) to the
visual words. For the three exemplar visual words pairs, their
corresponding parameters of the Gaussian models are ð�12 ¼ 42:08;
�12 ¼ 17:30Þ, ð�13 ¼ 37:23; �13 ¼ 12:75Þ, and ð�23 ¼ 30:93; �23 ¼ 13:17Þ,
respectively.

Fig. 6. Illustration of the definition of matrix P . We transfer the priors for
object parts (encoded in F ) to superpixels using the overlap between
superpixels and object parts (encoded in K1 and K2).



dij is the spatial distance between superpixels vi and vj and,
in our experiments, � is chosen as 0.04. Note that the
magnitude of aij is dominated by sij, which results from
oversegmentation.

Finally, we obtain the segmentation result (Fig. 3(5))
following the procedure in Sections 2.2 and 2.3.

4 EXPERIMENTS ON SINGLE-CLASS SEGMENTATION

In this section, we present the experimental results and
analyze how the components P and A contribute to the final
object segmentation.

4.1 Evaluation Metrics

The segmentation accuracy is the most frequently used
evaluation metric. It is defined as the following:

accuracy ¼ jCLF j þ jCLBjjImagej ; ð9Þ

where CLF and CLB are the correctly labeled foreground
and background pixels, respectively, and Image is the
whole image. However, a disadvantage of “accuracy” is
that very bad segmentation can also obtain a promising
“accuracy” if the object is small (i.e., jCLBj 
 jCLF j). So, we
also consider the F -Measure, which is a popular metric
used in information retrieval community:

F� ¼
ð1þ �Þ 	 recall 	 precision
� 	 precisionþ recall ; ð10Þ

where � is the parameter to balance recall and precision and

recall ¼ jA \BjjAj ; precision ¼ jA \BjjBj ;

where A is the ground truth mask and B is the mask output
by segmentation system. The most common choice of � is 2.

4.2 Experimental Results

We apply HGM to 12 public image sets with 3,200 images in
total: 10 image sets with 1,300 images are from Corel photo
CDs [34], and the other two sets (Airplane and Motorbike)
with 1,900 images are from Caltech-101 [35] (Table 1). Each
set consists of a number of images each containing objects of
the same class in a variety of positions, sizes, poses, and
profiles. After tweaking on the Bird image set of Corel,3 we
fix the parameters and apply them to all experiments which
are of totally different object classes. Our system auto-
matically outputs the foreground of the images. The
numbers of “special” self-training images (Section 3.1.1)
for each object class are also listed in Table 1.

Fig. 7 shows some examples of segmentation results.
Table 1 shows the evaluation results on all the 12 image sets,
where the special self-training images are also used to
compute those values because the whole segmentation
process is fully automatic. For comparison, we also
implement the classic N-Cut [5] algorithm that only uses
low-level features for image segmentation. To see the effect
of combining the symmetric and the asymmetric relation-
ships in HGM, we also implement an approach that can be
easily conceived: a Min-Cut of the directed subgraph

(as inspired by [28], for example) plus the Min-Cut of the
undirected subgraph. We shall call this merging of the Min-
Cuts of both directed and undirected subgraphs the naive
HGM (nHGM).

Comparison results. One can see from Table 1 that the
performance of HGM is quite satisfactory, while N-Cut and
nHGM cannot perform well on these segmentation tasks.
For N-Cut, the main reason is that it does not use any class-
specific information that is indispensable for segmenting
objects of a class. For nHGM, as the densities of A and P are
quite different (see Fig. 8) and the dense part will suppress
the sparse one, the top-down priors in P will be ineffective
if P is merged with A.

Cao and Fei-Fei [25] recently reported the segmentation
accuracy on 28 image classes from the Caltech101 data set.
They selected 30 images for each class and their average
segmentation accuracy is 0.67. In comparison, HGM
segments all the 6,200 color images4 and gains an average
accuracy of 0.74. Fig. 9 shows the details on each class.

We also apply HGM to two object classes (side view of
Cars and Horses) that have been used by LOCUS [19].5 The
shape variation within class and/or color/texture variation
within objects in these two image sets are smaller than those
in the sets we have just presented above. For comparison,
we quote results from Borenstein et al. [31], which require
54 hand segmented training data for the Horse image set,
and LOCUS [19], which is also an unsupervised object
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TABLE 1
Evaluation Results on 12 Object Classes

“# special images” refers to the number of “special” self-training images
for extracting the shape prior (Section 3.1.1).

3. Parameter selection is unavoidable, as in those unsupervised
algorithms [18], [20], [21], [19].

4. By removing the gray-scale images, there are 6,200 color images in
total.

5. As listed in Section 1, we are only aware of four papers on
unsupervised object segmentation [18], [20], [21], [19]. However, Rother
et al. [20] and Russell et al. [21] actually address slightly different
problems from ours. So, we mainly focus on comparing with LOCUS
[19], which was claimed to be more accurate than [18].



segmentation algorithm. For the Horse data set, the number

of images is 328. As both baselines only reported results on

200 images and we are unable to know which images they

used, we report the average accuracy of first 200 images (the

average accuracy across all of 328 images is 0.954). As

shown in Table 2, HGM achieves higher segmentation
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Fig. 7. Some examples of single-class segmentation results of the 12 object classes. Each row is from the same class. For each group of images:
(left) result of nHGM; (middle) result of N-Cut; (right) result of HGM. Note here that HGM can specify the regions that contain object(s) of the desired
class, while nHGM and N-Cut can only determine the segmentation boundaries.



accuracies than LOCUS. This benefits from the over-
segmentation algorithm [6] (Fig. 3(2.4)) that HGM adopts,
which preserves boundaries of homogeneous color/texture
during its grouping process. On the other hand, the extra sij
defined in (9) encourages HGM to segment images along
these boundaries. Notice that HGM segments images fully
automatically. In contrast, as mentioned in [19], LOCUS
requires some effort in choosing some images (without
segmentation) to learn a class model. And LOCUS also
needs some easy manual work like flipping asymmetric
objects to face a consistent direction.6

As an unsupervised approach, HGM is also comparable
to the state-of-the-art supervised approaches tested on the
Horse data set. For examples, Levin and Weiss [22] obtained
accuracies over 0.95 as more fragments were learned, and
Cour and Shi [17] gained an accuracy of 0.942.

So, HGM is competitive to recently established
approaches.

4.3 Analysis

4.3.1 Dissection of HGM

To see how HGM produces promising segmentation results
in the case that there exists large variation in shape (including
position, size, pose, and profile) within an object class and no
annotated training images are available, we refer to Fig. 10.
The task is to segment an airplane from the background
clutters. We define the matrix P and A by the procedures in
Sections 3.2.2 and 3.2.3, respectively. As the object is
relatively small and there exist heavy background clutters,
it is hard to get accurate segmentation by using the local
shape priors incorporated by matrix P only (Fig. 10b). In
order to obtain more accurate object segmentation, we
oversegment the image into 27 subregions by using the
method in [6] (Fig. 10c). Then, we use the oversegmentation
result to define our homogenous association matrix A
according to (9). Fig. 10d shows that we can obtain a much
better mask map by combing both P and A. To see the
individual strengths of P and A, one may refer to Fig. 8 that
visualizes their densities. Although matrix A is much denser
than matrixP , from Figs. 10b and 10d, one can see that bothP
and A contribute to the final performance in a cooperative
way: The weak shape priors encoded in P take the role of
finding parts of the desired object approximately, and the
trustworthy texture/color priors encoded inA are to help find

the whole object by enforcing the superpixels in the same
subregion to have the same probability of belonging to the
foreground. Fig. 11 shows some examples of the Horse data
set. One may notice that there are relatively fewer back-
ground noises in the Horse data set (see the second column of
Fig. 11). This is because the shape variation within class and/
or color/texture variation within objects in this data set are
relatively smaller. So, although HGM does not require the
priors encoded in P to be accurate, the results will be better if
one can obtain more accurate class-specific information.

One may notice that HGM depends on the performance
of oversegmentation [6]. So, the basic motivation of HGM is
similar to the tradition of performing object segmentation
on the basis of oversegmentation. However, instead of
directly constructing descriptors for each subregion and
selecting some subregions to further group into objects as
did in [25], HGM regards the oversegmentation results as
the interaction between superpixels: some pairs of super-
pixels should belong to the same region simultaneously and
some should not. And the weak shape priors encoded in P
also reflect such interaction. So, HGM can handle size, color,
texture, profile, and pose variations better than those
methods that focus on the objects only.

4.3.2 Impact of Oversegmentation

As the matrix A heavily relies on oversegmentation, it is
necessary to investigate the impact of oversegmentation. Let
“#subregion” be the number of subregions left in an image
after oversegmentation. It can be seen from Fig. 12 that if
oversegmentation is less successful, i.e., the number of
subregions is large, object segmentation is also less accurate.
This testifies to the importance of low-level image features
in object segmentation.

5 EXTENSION TO MULTICLASS CLUSTERING

Now we extend our HGM for more general data clustering
and apply it to unsupervised multiclass object segmenta-
tion, which aims at automatically segmenting a set of
images containing object(s) of several classes.

5.1 HGM-Based Data Clustering

Previous clustering algorithms, such as K-means [36], fuzzy
C-means [37], and spectral clustering [38] usually have only
one distance metric to encode all the information among
data. All information, such as the spatial continuity and
color/texture similarity in image segmentation [5], has to be
merged into a single scalar “distance.” This merging requires
an artificial definition of the “distance” that combines
different categories of quantities. And, as much of the extra
information is lost, accurate clustering is often difficult.
Recently, there has been some work considering (semisu-
pervised) classification on a directed graph [28], [39], [40]
where the relationship between samples is asymmetric, e.g.,
the hyperlink between Web pages. We find that, using an
HGM, we can naturally deal with asymmetric and symmetric
relationships at the same time and make better use of
different sources of information, rather than awkwardly
reducing them into a scalar “distance.”

Let G ¼ ðV ;P;AÞ be the hybrid graph that represents
n samples and the pairwise relationship among them. We
want to partition V into K disjoint subsets such that each
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Fig. 8. Visualization of matrices P and A. The matrices are constructed
in the segmentation task of Fig. 10. The magnitudes of both matrices
have been normalized to the range between 0 and 1. (a) The density of
matrix P. (b) The density of matrix A.

6. For comparison, please notice the different facing directions of objects
in Fig. 7.



subset corresponds to a cluster. We may use an extra
adjacency matrix C ¼ ½cij�n�n to record the information of
samples being in the same cluster:

cij ¼
1; if vi and vj belong to the same cluster;
0; otherwise.

�

This amounts to adding extra undirected edges to graph G

(or adjusting the weights if the undirected edges already
exist). Denote this new graph by GC ¼ ðV ;P;Aþ CÞ, which
has the same conditional dependence matrix P and a new
homogeneous association matrix Aþ C. We have to deter-
mine an optimal C such that the objective function EðGC; �

!Þ
defined in (5) is minimized over all possible C and �!.

Note that, with fixed C, the minimal value of EðGC; �
!Þ is

exactly the minimal eigenvalue�0ðGCÞofMðGCÞ, whereMð	Þ
is defined in (6). So, we have to findC that minimizes �0ðGCÞ.
Unfortunately, computing �0ðGCÞ for all possible clusterings
is prohibitive. To make the optimization tractable, we adopt a
greedy grouping algorithm (Algorithm 1). At the beginning,
each sample vi is a cluster. And, in each iteration, a pair of
clusters Si and Sj are merged if they are adjacent and the
increase in �0ðGCÞ due to merging Si and Sj is minimal. The
iteration ends when there are only K groups left.

Algorithm 1. Greedy Grouping

1: Inputs: the data V ¼ fv1; . . . ; vng, a matrix P , a matrix A

and a positive integer K.
2: initialize C :¼ ffvg j v 2 V g; G :¼ ðV ;P;AÞ and

�! :¼ arg min �!ðG; �
!Þ.

3: while jCj > K do

4: choose different and adjacent groups S1 and S2, such

that �0ðGCÞ is minimal after merging S1 and S2.

5: C :¼ ðC n fS1; S2gÞ [ fS1 [ S2g
G :¼ ðV ;P;Aþ CÞ and �! :¼ arg min �!ðG; �

!Þ
6: end while

7: return C and �!

5.2 Efficient Computation by Approximation

The inverse power method [41] is very efficient in
computing the minimal eigenvalue and the corresponding
eigenvector of a symmetric matrix. However, during
clustering �0ðGCÞ should be computed for every pair of
clusters at each iteration, resulting in unaffordable
computation load, especially at the beginning of the
grouping when the number of clusters is large. Fortu-
nately, at the early stage of clustering, C only changes
slightly; so, �0ðGCÞ also changes slightly as it is a
continuous function of C. Therefore, we may approximate
�0ðGCÞ by

�0ðGCÞ � ~�0ðGCÞ ¼ �0ðGÞ þ �ðCÞ; ð11Þ

where

�ðCÞ ¼
X
i;j

cijð�0ðGÞi � �0ðGÞjÞ
2

is the cut of the undirected subgraph when the weight is C
and the vertex values are �!0ðGÞ ¼ ð�0ðGÞ1; . . . ; �0ðGÞnÞ

T .
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Fig. 9. Comparison of HGM and Spartial-LTM [25] on the 28 classes from the Caltech101 data set. The horizontal axis shows the abbreviated names
of the classes and the vertical axis represents the average segmentation accuracy. Note here that we test on all the 6,200 color images, whereas
Cao and Fei-Fei [25] only select 30 images for each class.

TABLE 2
Comparison with Borenstein et al. [31] (Supervised) and

LOCUS [19] (Unsupervised) on the Two Image Sets They Used



So, we just need to check �ðCÞ for the optimal C, which is
computationally efficient. When �ðCÞ gets large, the
approximation is no longer reliable. So, the approximation
stops when �ðCÞ > t�, where t� is a threshold. At this
moment, usually there are only a small number of clusters
left. So, the inverse power method is affordable. In our
experiments, we have found that the approximation (11) is
reliable when choosing t� ¼ 1:0.

5.3 Experimental Results

In this section, we present the experimental results of using
the extended HGM for unsupervised multiclass object
segmentation. Given a set of images containing objects of
several classes, we follow the same procedure in Section 3
to construct the HGM. In this case, the visual words come
from all the object classes and even the backgrounds, just
as the single-class case and the spatial relation table is built
alike. To segment a new image that may contain object(s)
of several classes, we use the clustering algorithm
described above to cluster the superpixels into K regions,
K � 1 of which each containing instance(s) of an object
class (the remaining one region may be another object class
or the background that is unstructured across all the
images). We assume that K is known a priori for each test
image because it has been widely recognized that it is
difficult for a clustering algorithm to reliably estimate the
number K of clusters.

One should be reminded that, in the case of multiclass
segmentation, HGM cannot assign class labels to each cluster
because the visual words are not classified among the object
classes. While, in single-class segmentation, since the spatial
relation table actually records the shape configuration of one
object class and some noise due to the background, HGM can
recognize the region(s) of the class.

We apply our approach to MSRC image data set [42]
which contains 23 object classes and has 591 images in total.
We simply feed all images into our system, rather than
manually sorting the images into different sets according to
their objects and then applying our system one by one. And
we have to tell the computer how many regions each image
should be broken into (to make this automated, the computer
simply reads the number of regions from the ground truth
mask). The examples in Fig. 13 demonstrate that our
approach achieves more meaningful segmentation results
than N-Cut does, which just utilizes the low-level informa-
tion within each image. Please observe that, for different
images, different objects are segmented (but no object labels
are assigned).

To quantitatively evaluate the segmentation results, we
define an error measure as follows:

error ¼ 1

log2K

XK
i¼1

wi 	 entropyðCiÞ;

where Ci is the ith cluster of the segmentation result and
entropyðCiÞ is the inconsistency between the segmentation
and the ground truth mask, defined as

entropyðCiÞ ¼ �
XK
j¼1

qij log2 qij;

in which qij ¼ jCi \ Tjj=jCij and Tj is the jth cluster in the

ground truth mask. entropyðCiÞ actually measures how

scattered the cluster Ci distributes across the ground truth

clusters. And wi is the weight of Ci; it is computed by

wi ¼
jCij�1PK
j¼1 jCjj

�1
;

which is inversely proportional to the area of the cluster Ci.

We give larger weights to smaller clusters because this can

better measure the accuracy of separating small objects from

a large background. Otherwise, the segmentation accuracy

of large objects or a large background will dominate the

error; one can easily see that 0 � error � 1. Using our error

measure, we can compute the segmentation error for every

image. Then, the average error of our approach on MSRC

data set is 0.2992, while that of N-Cut is 0.5001.

6 CONCLUSION

In this paper, we propose the HGM for performing class-
specific object segmentation without annotated training
images. The core is a general learning algorithm based on
the hybrid graph topology. Object segmentation is achieved
by combining top-down and bottom-up information natu-
rally: We first obtain local shape priors of object class(es)
(top-down) and color/texture priors of each image (bottom-
up), then use an HGM to integrate them into a unified
framework. We demonstrate our algorithm on two tasks:
unsupervised single-class and multiclass object segmenta-
tion. They are both based on minimizing an energy function
that combines the random walk on the directed subgraph
and the Min-Cut on the undirected subgraphs.

It is worth noting that HGM is a general framework. It

can be applied to various problems as long as the meanings

of the graph vertices, the relationship represented by the

directed/undirected edges and the two matrices P and A

can be interpreted appropriately (see an example in the

Appendix, which can be found on the Computer Society
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Fig. 10. The evolutions of the score vector (mask map) during a segmentation process. (a) An image. (b) The mask map estimated by using P only.
(c) Results of the oversegmentation operator. (d) The mask map estimated by using both P and A.



Digital Library at http://doi.ieeecomputersociety.org/

101109/TPAMI.2009.40). As a clustering algorithm, HGM

is able to make effective use of two kinds of prior

information (asymmetric and symmetric relationship) si-

multaneously. This characteristic makes HGM attractive in

semantic data clustering.
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Fig. 11. Some segmentation results, including the intermediate results, of the Horse data set. (a) The image and its detected object parts; (b) the

mask map estimated by using P only; (c) result of the oversegmentation operator; (d) the mask map estimated by using both P and A; (e) the final

segmentation result.
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