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ABSTRACT: This article introduces the frequency structure matrix as

a new representation of color filter arrays (CFAs). The matrix records

the frequency components of CFA filtered images and their positions

in the spectrum. The matrix can be conveniently obtained by applying
the symbolic DFT to the CFA pattern. With this new representation, it

is easy to analyze the characteristics of CFAs and to formulate the

CFA design as an optimization problem. VVC 2011 Wiley Periodicals, Inc.
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Library (wileyonlinelibrary.com). DOI 10.1002/ima.20252
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I. INTRODUCTION

To reduce cost, size, and complexity, color filter arrays (CFAs)

are commonly used in consumer digital cameras. A CFA is a

mosaic of optically selective filters, each filtering the incident

light projected to one pixel. Therefore, the sensed image has only

one color at each pixel. The missing two colors of each pixel

have to be estimated by methods called demosaicking. The most

widely used CFA was the Bayer CFA (Bayer, 1976) [Fig. 1(a)],

whose sampling rates for green, red and blue (G, R, and B) are

1/2, 1/4, and 1/4, respectively.

The representation of CFA is crucial. Different representations

lead to different demosaicking algorithms. For the CFA design, an

appropriate representation is also necessary as it requires proper math-

ematical modeling for optimization. The spatial representation could

not provide enough insight into why a demosaicking algorithm can

work well, hence is inadequate for the CFA design. Since the spectral

representation can reveal the structure and composition of frequencies,

it is more suitable for theoretical analysis on the performance of CFAs

and the corresponding demosaicking algorithms.

There has been some prior work on analyzing the spectral compo-

nents of CFA filtered images (Alleysson et al., 2005; Dubois, 2005; Hir-

akawa and Wolfe, 2007; Dubois, 2008; Hirakawa and Wolfe, 2008).

Alleysson et al. (2005) and Dubois (2005) showed that in the frequency

domain, a Bayer CFA filtered image has one luminance component at

the baseband and several chrominance ones modulated at higher fre-

quencies (Fig. 1(b)). An image sampled with any CFA was represented

with a green component and those that correspond to differences

between colors (Hirakawa and Wolfe, 2007; Hirakawa and Wolfe,

2008). To design a CFA, one can first specify the modulation points of

frequency components and then select a set of parameters satisfying

some constraints. A CFA filtered image was represented as a sum of dif-

ferent combinations of the original components, which correspond to

components modulated at different frequencies (Dubois, 2008). This

combination was represented using several matrices, which record pa-

rameters of the components in the frequency domain. Based on this rep-

resentation, a demosaicking method by demultiplexing the frequency

components was also proposed in that paper.

However, the existing representations have some limitations.

For example, they are not very intuitive, not revealing enough of

the relationship between a CFA and its spectral representation and a

bit too complex to calculate. So when applied to the CFA design,

these representations often cause some difficulties. For example,

one cannot easily express a CFA and its spectral representation

with the same set of parameters. Thus, it is difficult to design CFAs

using a unified framework, by expressing all the constraints and the

objective function mathematically.

In this article, we propose a new representation, the frequency

structure matrix, which records the frequency components at all the

modulation points. It is more intuitive and informative, and directly

related to the CFA. The matrix can be easily obtained by computing

the symbolic DFT of the CFA pattern. With this representation, the

CFA design can be formulated as an optimization problem (Li et al,

2008b).Correspondence to: Yan Li; e-mail: yan.li@tudelft.nl
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II. THE FREQUENCY STRUCTURE MATRIX

Figure 1b shows the spectrum of the image ‘‘window’’ filtered with

the Bayer CFA. As shown by Alleysson et al., (2005) and Dubois,

(2005), it contains several frequency components: (F(R) 1 2F(G) 1
F(B))/4 at frequency point (0,0), (2F(R) 1 F(B))/4 modulated at (0.5,

0), (F(R) 2 F(B))/4 at (0,0.5), and (2F(R) 1 2F(G) 2 F(B))/4 at (0.5,

0.5), where F(R), F(G), and F(B) denote the DFT spectra of the origi-

nal image of primary colors R, G, and B, respectively, and one pe-

riod in the frequency domain is a square [0,1)2. It is also shown that

images filtered with any CFA have similar spectra, consisting of

several components modulated at different frequency points (Hira-

kawa and Wolfe, 2007; Dubois, 2008; Hirakawa and Wolfe, 2008).

Inspired by the observed patterns of the spectra of CFA filtered

images, we propose to represent the spectra by faithfully recording the

frequency components: their frequency details and their positions.

Such information can naturally be arranged in a matrix form. There-

fore, we call it the frequency structure matrix. For example, we may

represent the spectrum of an image filtered with the Bayer CFA as:

SBayer ¼ 1

4

FðRÞ þ 2FðGÞ þ FðBÞ �FðRÞ þ FðBÞ

FðRÞ � FðBÞ �FðRÞ þ 2FðGÞ � FðBÞ

� �
:

(Note that by convention the spectra of images are displayed with

(0,0) being at the center, while in the frequency structure matrix,

(0,0) is at the top-left corner of the matrix. The readers should cir-

cularly shift either of them in order to match them.) One can see

that all the information of the spectra that is of interest to him/her

can be found in SBayer.

In the following, we present the formal definition of the fre-

quency structure matrix. We also prove that the frequency structure

matrix can be easily calculated by applying the symbolic DFT to

the CFA pattern. For brevity, sometimes we may write ‘‘frequency

structure’’ instead of ‘‘frequency structure matrix.’’

III. FROM SPECTRATO FREQUENCY STRUCTURE

To obtain the frequency-domain representation, a CFA filtered image

is first represented in the spatial domain by decomposing the image

and the CFA pattern into three channels, corresponding to three pri-

mary colors, respectively. Then, the DFT of the CFA filtered image is

computed using the convolution theory. Once the expression of the

spectrum is available, we can identify its frequency components and

their corresponding positions in the frequency domain. Then, we can

arrange these components into a matrix form, according to their posi-

tions, and obtain the frequency structure matrix.

Figure 1. Bayer CFA pattern (Bayes, 1976) and the spectrum of the ‘‘window’’ image filtered with it. (c)–(f) show each component in the spec-

trum (b). (c) (F(R) 1 2F(G) 1 F(B))/4 at frequency point (0,0), (d) (2F(R) 1 F(B))/4 modulated at (0.5,0), (e) (F(R) 2F(B))/4 at (0,0.5), and (f) (2F(R) 1 2F(G)

2F(B))/4 at (0.5,0.5). The ‘‘window’’ is a commonly used test image from the Kodak dataset (Alleysson et al., 2005). [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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A. Spectra of CFA Filtered Images. A CFA hCFA (x,y) is usu-
ally a periodic tiling of a much smaller array called the CFA pattern

hp(x,y). Using the well-established tri-primary color theory, a CFA

pattern can be decomposed into three primary CFA patterns

h
ðCÞ
p ðx; yÞ, each accounting for one primary color C (Alleysson et al.,

2005; Hirakawa and Wolfe, 2007; Dubois, 2008). Then, symboli-

cally we can write:

hp ¼
X
C

hðCÞp � C: ð1Þ

To ensure the same dynamic range of the sensed image at all pixels,

the sum of all primary CFA patterns should be an all-one matrixX
C

hðCÞp ðx; yÞ ¼ 1; 8x; y: ð2Þ

For example, for the Bean CFA pattern hBean 5 [C M; B Y] (Fig. 2a),
the primary CFA patterns of colors R, G, and B are respectively:

h
ðRÞ
Bean ¼

0
1

2

0
1

2

2
64

3
75; hðGÞBean ¼

1

2
0

0
1

2

2
64

3
75;hðBÞBean ¼

1

2

1

2
1 0

2
4

3
5;

as M5 (R 1 B)/2, Y 5 (R 1 G)/2 and C 5 (G1 B)/2.

Let f(x,y) be the full color image of size (Nx,Ny) and the CFA

pattern hp(x,y) be of size (nx,ny). Then, the CFA filtered image is:

fCFAðx; yÞ ¼
X
C

f ðCÞðx; yÞ � hðCÞCFAðx; yÞ; ð4Þ

where f ðCÞðx; yÞ is the color C component of f and h
ðCÞ
CFAðx; yÞ is the

corresponding CFA of color C defined as the periodic replica of the

primary CFA pattern h
ðCÞ
p ðx; yÞ:

h
ðCÞ
CFAðx; yÞ ¼ hðCÞp ðx mod nx; y mod nyÞ:

Without loss of generality, we assume that Nx and Ny are multiples

of nx and ny, respectively. We first compute the spectrum of

h
ðCÞ
CFAðx; yÞ (Li et al., 2008):

H
ðCÞ
CFAðxx;xyÞ ¼ DFT½hðCÞCFAðx; yÞ�

¼ 1

NxNy

XNx�1

x¼0

XNy�1

y¼0

h
ðCÞ
CFAðx; yÞe�i2pðxxxþyxyÞ

¼ H
ðCÞ
p ðxx;xyÞ; if nxxx 2 Z and nyxy 2 Z;

0; otherwise;

(
ð5Þ

where H
ðCÞ
p ðxx;xyÞ is the DFT of the primary CFA pattern

h
ðCÞ
p ðx; yÞ. Note that here (xx,xy) takes discrete values in the square

[0,1)2 (at a stepsize of (1/Nx,1/Ny) for H
ðCÞ
CFA and (1/nx,1/ny) for H

ðCÞ
p ,

respectively) instead of discrete indices of the signals because we have

found that it is more convenient to normalize the frequencies. The above

equality shows that the spectrum of a CFA is a sampling of the spectrum

of its CFA pattern at frequencies (kx/nx,ky/ny), where (kx,ky) [ Z
2.

As multiplication in the spatial domain corresponds to the circu-

lar convolution in the frequency domain, the DFT of f
ðCÞ
CFA can be

found to be (Li et al., 2008):

F
ðCÞ
CFAðxx;xyÞ ¼ DFT½f ðCÞðx; yÞ � hðCÞCFAðx; yÞ�

¼
Xnx�1

kx¼0

Xny�1

ky¼0

HðCÞ
p

kx
nx

;
ky
ny

� �
� FðCÞ xx � kx

nx
;xy � ky

ny

� �
: ð6Þ

where FðCÞ xx � kx
nx
;xy � ky

ny

� �
has been circularly shifted. This

implies that in the frequency domain the spectrum F
ðCÞ
CFA is a multi-

plexing of nxny frequency components centered at (kx/nx,ky/ny),kx 5
0,1,...,nx 2 1;ky 5 0,1,...,ny 2 1, and each component is the original

spectrum FðCÞ weighted by H
ðCÞ
p ðkx=nx; ky=nyÞ, the spectral value of

the CFA pattern at the corresponding frequency. Figure 2b shows

an example of the spectrum.

B. The Frequency Structure. As exemplified in Section II and

shown by Li et al. (2008), it will be more intuitive and useful to

arrange the identified frequency components in a matrix form.

Therefore, we use a matrix S
ðCÞ
CFA to represent the spectrum F

ðCÞ
CFA in

Eq. (6):

Figure 2. The Bean CFA pattern (Bean, 2003) and the spectra of the ‘‘window’’ image filtered with it. (a) The Bean CFA pattern, (b) the spectrum

F(B)Bean of the blue channel of the Bean CFA filtered image, represented by the frequency structure (8), (c) the spectrum FBean of the Bean CFA fil-

tered image, represented by the frequency structure (11) or (13). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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S
ðCÞ
CFA ¼ HðCÞ

p

kx
nx

;
ky
ny

� �
� FðCÞðxÞ

� �
kx ¼ 0; 1; :::; nx � 1;

ky ¼ 0; 1; :::; ny � 1: ð7Þ

It records all the information about the frequency components of

F
ðCÞ
CFA: the (kx, ky)-th entry S

ðCÞ
CFAðkx; kyÞ is the frequency component

centered at (kx/nx, ky/ny). We call this matrix the frequency structure

of the primary CFA h
ðCÞ
CFA of color C.

For example, for the primary Bean CFA pattern of color blue

[Eq. (3)], its DFT is DFT[hBean
(B) ] 5 [1/2 1/4; 0 2 1/4] and thus its

frequency structure is

S
ðBÞ
Bean ¼

1

2
FðBÞ 1

4
FðBÞ

0 � 1

4
FðBÞ

2
64

3
75; ð8Þ

where F(B) denotes the spectrum of the blue channel of f. SBean
(B)

shows that FBean
(B) has three nonzero spectra: one is F(B)/2, at the

baseband, one is F(B)/4, modulated at frequency (1/2, 0) and another

is 2F(B)/4, at (1/2, 1/2). Figure 2b shows the spectrum FBean
(B) .

Now we are equipped to define the frequency structure matrix of

a CFA pattern. According to (4), we may define the frequency

structure of a CFA pattern as the following matrix:

SCFA¼
P
C
S
ðCÞ
CFA: ð9Þ

The entries of the matrix SCFA are actually:

SCFAðkx; kyÞ ¼
X
C

HðCÞ
p

kx
nx

;
ky
ny

� �
� FðCÞðxx;xyÞ; ð10Þ

kx 5 0, 1,...,nx 2 1; ky 5 0, 1,..., ny21. The entry SCFA(kx, ky)
denotes the frequency component of the spectrum FCFA centered

(or modulated) at frequency (kx/nx, ky/ny). Thus the spectrum of

FCFA is a multiplexing of nx . ny components SCFA(kx, ky) centered
at grid points (kx/nx, ky/ny) (kx 5 0, 1,...,nx 2 1; ky 5 0,1,...,ny 2 1).

For this reason, we refer to the entries (10) in SCFA as the multiplex

components, which are sums of the spectra FðCÞ weighted by H
ðCÞ
p .

For example, the frequency structure of the Bean CFA pattern,

as the sum of S
ðCÞ
Bean; C ¼ R;G;B, is:

SBean¼
X

C¼R;G;B

S
ðCÞ
Bean ¼

1

4
FðRÞ � 1

4
FðRÞ

0 0

2
4

3
5

þ
1

4
FðGÞ 0

0
1

4
FðGÞ

2
64

3
75þ

1

2
FðBÞ 1

4
FðBÞ

0 � 1
4
FðBÞ

2
4

3
5

¼ 1

4

FðRÞ þ FðGÞ þ 2FðBÞ �FðRÞ þ FðBÞ

0 FðGÞ � FðBÞ

" #
ð11Þ

Figure 3. Some existing CFA patterns. The second row are the spectra of image ‘‘window’’ sampled with the corresponding CFAs in the first

row. (a) Yamanaka (1977), (b) Diagonal Stripe (Lukac and Plataniotis, 2005), (c) Dillon (1977). [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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This shows that the spectrum FCFA of the Bean CFA filtered image

has three nonzero multiplex components: (F(R) 1 F(G) 1 2F(B))/4 at

the baseband, (2F(R) 1 F(B))/4 at (1/2,0), and (F(G) 2 F(B))/4 at (1/

2, 1/2). Figure 2c shows the spectrum of the ‘‘window’’ image fil-

tered by the Bean CFA.

By applying DFT to both sides of Eq. (2), we have that:

X
C

HðCÞ
p

kx
nx

;
ky
ny

� �
¼ dðkxÞdðkyÞ; ð12Þ

which means that the sums of the coefficients for all multiplex com-

ponents (10) are zero, except the one at the baseband (frequency

(0,0)), which is 1. As shown by Alleysson et al. (2005) and Dubois

(2005), we shall call the multiplex component at the baseband the

luminance component (luma) and the others the chrominance com-

ponents (chromas).

IV. SYMBOLIC DFT TO COMPUTE THE
FREQUENCY STRUCTURE

By the definition in Eq. (10), it seems a little tedious to compute the

frequency structure as we may have to compute the DFT of all the

primary CFA patterns. However, we have found that there is a sim-

ple way to compute the frequency structure of a CFA. To proceed,

we introduce the symbolic DFT of a sequence of symbols. For a

string s 5 s0s1...sN21, its symbolic DFT is a sequence of order 1

polynomials S5 S0S1...SN21, where

Sk ¼ 1

N

XN�1

l¼0

sle
�2pikl=N :

For the 2D case, the symbolic DFT can be defined in an analogous

way. With this definition, we can claim that:

Theorem 1. If we rewrite ‘‘FðCÞðxÞ’’ as ‘‘C’’, then the frequency

structure SCFA is the symbolic DFT of the CFA pattern hp.

Proof. The symbolic DFT of the CFA pattern hp is Hp 5
DFT[hp], where

Hpðkx; kyÞ ¼ 1

nxny

Xnx�1

x¼0

Xny�1

y¼0

hpðx; yÞe�2piðxkx=nxþyky=nyÞ

¼ 1

nxny

X
C

C
Xnx�1

x¼0

Xny�1

y¼0

hðCÞp ðx; yÞe�2piðxkx=nxþyky=nyÞ

¼ P
C
H

ðCÞ
p ðkx=nx; ky=nyÞ � C:

where
P

C denotes summation among all primary colors C. Hence,
the claim is true by comparing the above with (10). n

From this theorem, in the sequel, we also use C to represent the

spectrum of the color channel C of the original image.

Similarly, for the frequency structure of the primary CFA pat-

terns, we also have S
ðCÞ
CFA ¼ DFT½hðCÞp � � C.

V. EXAMPLES OF FREQUENCY STRUCTURES

Thanks to Theorem 1, the frequency structures of any CFAs can be

easily computed. For example, the frequency structure of the Bean

CFA (Bean, 2003) can be found to be:

SBean ¼ DFT

Gþ B

2

Rþ B

2

B
Rþ G

2

2
64

3
75

¼ 1

4

Rþ Gþ 2B �Rþ B

0 G� B

� �
:

ð13Þ

As proven by Theorem 1, this representation is the same as that of

Eq. (11), if ‘‘FðCÞðxÞ’’ is rewritten as ‘‘C’’.
Now we show more examples. The frequency structures of the CFA

(Yamanaka, 1977), the Diagonal CFA (Lukac and Plataniotis, 2005),

and the Dillon CFA (Dillion, 1977) are, respectively, as follows:

SYam ¼ DFT
G R G B

G B G R

� �

¼ FL 0 FC1 0

0 FC2 0 �FC2

� �
;

where FL 5 (R 1 2G 1 B)/4, FC1 5 (2R 1 2G 2 B)/4 and FC2 5
(2R 1 B)/4;

SDiag ¼ DFT
R B G
G R B
B G R

2
4

3
5 ¼

FL 0 0

0 0 FC1

0 FC2 0

2
4

3
5;

where FL 5 (R 1 G 1 B)/3, FC1 ¼ ð2R� ð1þ i
ffiffiffi
3

p ÞG�
ð1� i

ffiffiffi
3

p ÞBÞ=6 and FC2 ¼ ð2R� ð1� i
ffiffiffi
3

p ÞG� ð1þ i
ffiffiffi
3

p ÞBÞ=6;
and

SDillon ¼ DFT

W R W B

B W R W

W B W R

R W B W

2
6664

3
7775

¼

FL 0 0 0

0 0 0 FC2

0 0 FC1 0

0 FC2 0 0

2
6664

3
7775;

where W 5 (R 1 G 1 B)/3, FL 5 (5R 1 2G 1 5B)/12, FC1 5 (2R
1 2G 2 B)/12, and FC2 5 2i(R 2 B)/4. To illustrate, the spectra of

the ‘‘window’’ image filtered by the Yamanaka CFA, the Diagonal

CFA, and the Dillon CFA are shown in Figure 3.

VI. CONCLUSIONS

A matrix, named the frequency structure, is introduced to represent

a CFA filtered image in the frequency domain. The frequency struc-

ture not only records the frequency components of the CFA filtered

image, but also their arrangement in the frequency domain. It is

also proven that the frequency structure is just the symbolic DFT of

the CFA pattern. With this simple relationship between the fre-

quency structure and the CFA pattern, one can easily formulate the

CFA design as an optimization problem (Li et al, 2008b), satisfying

some constraints in both the spatial and the frequency domains.

One may refer to (Li et al, 2008b) for more details to see the effec-

tiveness of this new representation.

Although in this article, we only consider CFAs replicated

on rectangular lattices, the above results can be easily extended to

non-rectangular (e.g., hexagonal) lattices.
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