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Abstract—A color filter array (CFA) used in a digital camera is
a mosaic of spectrally selective filters, which allows only one color
component to be sensed at each pixel. The missing two components
of each pixel have to be estimated by methods known as demo-
saicking. The demosaicking algorithm and the CFA design are cru-
cial for the quality of the output images. In this paper, we present a
CFA design methodology in the frequency domain. The frequency
structure, which is shown to be just the symbolic DFT of the CFA
pattern (one period of the CFA), is introduced to represent im-
ages sampled with any rectangular CFAs in the frequency domain.
Based on the frequency structure, the CFA design involves the solu-
tion of a constrained optimization problem that aims at minimizing
the demosaicking error. To decrease the number of parameters and
speed up the parameter searching, the optimization problem is re-
formulated as the selection of geometric points on the boundary
of a convex polygon or the surface of a convex polyhedron. Using
our methodology, several new CFA patterns are found, which out-
perform the currently commercialized and published ones. Exper-
iments demonstrate the effectiveness of our CFA design method-
ology and the superiority of our new CFA patterns.

Index Terms—Color filter array (CFA), discrete fourier trans-
form (DFT), sampling, multiplexing, demosaicking.

I. INTRODUCTION

T ODAY, digital cameras have become widespread in daily
life. In theory, to capture a color image each pixel should

have at least three sensors, in order to simultaneously sense at
least three color components, e.g., red, green and blue (R, G and
B), or cyan, magenta and yellow (C, M and Y). However, to re-
duce the cost, size and complexity, a consumer digital camera
usually uses a single-chip sensor covered with a Color Filter
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Array (CFA) [1], [28]. A CFA is a mosaic of spectrally selective
filters, which is of the same size as the sensed image and allows
only one color component to be sensed at each pixel. There-
fore, the sensed image, i.e., the CFA filtered image, has only
one color value at each pixel. To recover the original full color
image, the missing two color components of each pixel have to
be estimated by methods called demosaicking. Numerous algo-
rithms have been proposed in the literature [12], [21], [25], [26].

Besides better demosaicking algorithms, an alternative way
to improve the quality of demosaicked images is to optimize
the configurations of CFAs. Since a CFA is usually a periodic
tiling of a much smaller array, which is called the CFA pat-
tern in this paper, the problem reduces to finding optimal CFA
patterns. Many CFA patterns have been proposed [22], among
which some have been used in commercial products [3], [27]
and the most commonly used one is the Bayer pattern [3].

The Bayer pattern was designed based on two facts of the
human visual system (HVS): relatively greater ability to discern
the luminance detail, and the closeness of green frequency to
the peak of the human luminance spectral response (Fig. 1(a))
[3], [11]. Thus, the sampling rates for green, red and blue (G,
R and B) are 1/2, 1/4 and 1/4, respectively. Based on the Bayer
pattern, some other patterns have been proposed for some other
considerations. For example, to overcome the problem of fast
saturation of green pixels by introducing a luminance channel
(W) (Fig. 1(b)) [31], to preserve spatial resolution while using
the luminance channel (Fig. 1(c)) [9], to deal with low light
conditions by using subtractive colors (Fig. 1(d)) [13], to be
close to the natural sight perception of the human eye by
introducing a light blue color emerald (E) (Fig. 1(e)) [27], and
to increase the overall sensitivity of the sensor by featuring one
‘panchromatic pixel’ (luminance) adjacent to every colored
pixel (Figs. 1(f)–(g)) [17]. Some pseudo-random (or random)
CFAs were also proposed in [33] (Fig. 1(h)) to eliminate the
aliased spectrum and were recommended by Fillfactory [22]
for being more immune to color Moiré artifacts (Fig. 1(i)). The
Fillfactory also proposed the well-known diagonal stripe CFA
(Fig. 1(j)). Fig. 1(k) was proposed in [22].

More systematic CFA design methods have also been pro-
posed. In [23] (Fig. 1(l)), CFA was obtained with quantitative
analysis to minimize the discrepancy between the reconstructed
and the original images when viewed through the HVS. In [24],
the same authors considered selecting spectral sensitivity func-
tions (visible spectrum sampled every 10 nm in 400–700 nm) to
minimize the reconstruction error under different illuminants in
the CIE space. In [2] CFA filtering was analyzed in the
Fourier domain to be represented with luminance and chromi-
nance, and the authors proposed to exchange color green with
red or blue in Bayer CFA for less aliasing between luminance

1057-7149/$26.00 © 2011 IEEE
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Fig. 1. Some published CFA patterns, i.e., a period of the corresponding CFAs. (a) Bayer [3], (b) Yamagami et al. [31], (c) Gindele & Gallagher [9], (d) Hamilton
et al. [13], (e) Sony [27], (f)–(g) Kodak [17], (h) Zhu et al. [33], (i)–(j) Fillfactory [22], (k) Lukac & Plataniotis [22], (l) Parmar & Reeves [23], (m) Hirakawa &
Wolfe [15], (n) Condat [5]. The colors used in (h), (i) and (l) are R, G, B and those in (m)–(n) are non-trivial mixture of primary colors. The patterns (h), (i) and
(l) are rescaled smaller to fit the space. Their pixels are of the same size as those in other CFA patterns.

and chrominance. Based on the spatio-spectral sampling proper-
ties of the corresponding lattices of CFA patterns, a CFA design
method in the Fourier domain was proposed in [15] (an extended
version of [16]). The CFA filtered image was represented by the
sum of a luminance at the baseband and some modulated dif-
ference signals, and CFA design was turned into a problem of
parameter selection in the Fourier domain in order to best sepa-
rate the modulated signals from the baseband spectrum. Several
new CFA patterns were proposed in the paper, and Fig. 1(m)
is the one that performed the best in their experiments. Based
on the paradigm in [15], several new CFA patterns were pro-
posed in [5], [4] which especially focused on maximizing the
energy of chrominance signal when given a luminance signal.
The one which performed the best in the experiments is shown
in Fig. 1(n). Based on the work in [15], the author also proposed
a random CFA pattern in [6].

In this paper, we propose another CFA design methodology.
The work presented here summarizes and extends our previous
work in [18]–[20]. Although both our methodology and that in
[16], [15] are based on analysis in the frequency domain, these
two frameworks differ drastically in the forms of representation
of CFA filtered images and therefore the formulations and solu-
tions of the CFA design problem:

1) Representation: The basic components in [16], [15] are a
green channel and two difference channels ( and

), while ours are three primary channels (e.g., R,
G and B, or C, M and Y); in our paper a simple relation-
ship (symbolic DFT) between a CFA pattern and a concise
frequency-domain representation is derived, which makes
it convenient to transform forward and backward, and to
express all the entities (such as constraints and the objec-
tive function) in either frequency or spatial domain with
the same parameters. It can also be used for CFA analysis
intuitively and visually, and can be extended to other peri-

odical CFA representations if a geometric transform matrix
is considered.

2) Problem Formulation: In [16], [15], a CFA is designed by
directly specifying the parameters of components in the
frequency domain, to satisfy some constraints and give the
CFA pattern some desirable characteristics, whereas in our
framework, we first set some components of undesirable
characteristics in the frequency domain to zero, and then
find the non-zero components by formulating it as a con-
strained optimization problem.

3) Problem Solving: A geometric method is proposed to solve
our optimization problem, i.e., to find a triangle for opti-
mization, which is intuitive and visual.

This paper is organized as follows. The following three sec-
tions deal with ‘Representation’, ‘Problem Formulation’ and
‘Problem Solving’, respectively. In Section II, the frequency
structure of a CFA (pattern) is defined to represent a CFA fil-
tered image in the frequency domain. It is also shown that the
frequency structure is just the symbolic DFT of the CFA pattern.
In Section III, we show how to formulate the CFA design as a
constrained optimization problem. In Section IV, the optimiza-
tion problem is solved by reformulating it as a geometric point
selection on the boundary of a convex polygon or the surface of a
convex polyhedron. Section V gives a simple design example in
detail, and also proposes two new CFA patterns. Experimental
results and comparisons between the Bayer CFA, the Sony CFA,
the diagonal stripe CFA, the first of the four CFAs proposed in
[15] which had the best performance in their paper, the CFA
proposed in [5] and our newly proposed ones are presented in
Section VI. Finally, we conclude our paper in Section VII.

II. FREQUENCY STRUCTURE AS A REPRESENTATION OF CFA
FILTERED IMAGES

The problem of representing CFA filtered images in the fre-
quency domain was first addressed in [2], [7], which considered
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mainly the Bayer CFA. In [8], [15], [16], general representations
were proposed, mainly based on the theory of sampling on lat-
tices. In this section, we also derive a general representation for
any rectangular CFA. CFA filtered images are represented by a
matrix called the frequency structure, which shows all the lumi-
nance/chrominance components at their corresponding frequen-
cies. The frequency structure can be easily obtained by com-
puting the symbolic DFT of the CFA pattern. Compared with
the representations in [8], [15], [16], ours is distinct in that it
is concise, easy to compute and intuitive for analysis. What is
more, with it the CFA design can be easily formulated as an op-
timization problem (Section IV). For more details, please refer
to our technical report [19].

A. Frequency Structure

Let be the full color image of size and
the CFA pattern be of size . Based on the
well established tri-primary color theory, both and

can be decomposed into three components
and , each corresponding to one primary color
(e.g., , or ). For example, the Bayer CFA
pattern (Fig. 1(a)) can be represented by a matrix

(1)

which can be decomposed into matrices of primary colors:

Accordingly, the color image is decomposed into
and . Then the CFA filtered

image can be represented as:

(2)

where is the corresponding CFA of color defined as the
periodic replica of the primary CFA pattern

. Note that in this equation,
and are different types of quantities. represents tri-
stimulus values of a color signal, whereas represents an
attenuation coefficient between 0 and 1.

With straightforward deduction, the DFT of can be
found to be [19]

(3)

where
, and

has been circularly shifted. Note that here takes
discrete values in the square region of (at a step-
size of for and , and

for , respectively). Equation (3) im-
plies that in the frequency domain the spectrum is
a multiplexing of frequency components centered at

,
and each component is the sum of the original spectra
weighted by , the value of the spectrum
of the CFA pattern at the corresponding frequency. Thus, the

components are called the multiplex
components in this paper.

If we define an matrix

(4)

and treat ‘ ’ as a representation of ‘ ’, then records
all the information of the multiplex components of : the

-th entry represents the multiplex compo-
nent modulated at . Therefore, we call the ma-
trix the frequency structure of the CFA (pattern). And in
the sequel, we also use ‘ ’ to represent the spectrum of the color
channel of the original image. If we further define symbolic
DFT as regular DFT which treats symbols as parameters [19],
then it can be proven that is just the symbolic DFT of the
CFA pattern [19]

(5)

Thus the frequency structure of any periodic CFAs can be easily
computed.

To ensure the same dynamic range of the sensed image at each
pixel, the sum of all primary CFA patterns should be an all-one
matrix: . By applying DFT to it, we
have that

(6)

which means that the sums of the co-
efficients for all multiplex components are zero, except the one
at the baseband (frequency ), which is 1. As in [2] and
[7], we shall call the multiplex component at the baseband the
luminance component (luma) and the others the chrominance
components (chromas).

B. Examples of Frequency Structures

The frequency structure of a CFA not only records all
the multiplex components, but also shows their arrangements
in the frequency domain (the position in the matrix shows the
modulated frequency). And thanks to (5), can be easily
computed.

For example, the frequency structure of the Bayer CFA [cf.
(1)) and Fig. 1(a)] is

(7)

It shows that the spectrum of any image sampled with the Bayer
CFA has a luma at the baseband, and three
chromas and cen-
tered (or modulated) at frequencies (1/2, 0), (0, 1/2) and (1/2,
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Fig. 2. Spectrum of the ‘window’ image filtered with the Bayer CFA [3]. Mul-
tiplex components are displayed in different colors: luma ��� ������� in
black and three chromas��������� ������� and����������� in
green, blue and red, respectively. The ‘window’ is a commonly used test image
from the Kodak dataset [12].

1/2), respectively. To illustrate, Fig. 2 shows the spectrum of
the ‘window’ image filtered with it. Note that due to the Fourier
transform, the coefficients of chromas may be complex. For
more examples, please refer to [19].

III. CFA DESIGN AS AN OPTIMIZATION PROBLEM

Frequency structure offers a simple universal frequency do-
main demosaicking algorithm for all rectangular CFAs. Aiming
at minimizing the demosaicking error, some desired characteris-
tics of an optimal CFA can be obtained, which are the principles
that guide our CFA design. With the help of frequency structure,
we can easily follow the design principles and turn the CFA de-
sign into an optimization problem.

A. Associated Demosaicking and CFA Design Principles

Given the frequency structure of a CFA, demosaicking can be
easily achieved by: 1) obtaining all multiplexed components, 2)
transforming them back to the primary color channels (e.g., R,
G and B), and 3) applying the inverse DFT to the spectra of the
primary color components to recover the original image. This
method is named the associated demosaicking algorithm in [8].
Take the Bayer CFA for example, (7) shows that a luma

, and two chromas and
(denoted by and , respectively), can

be obtained by bandpass filtering. The components of primary
colors can be recovered from the multiplex components with a
linear transform

(8)

where the 3 3 transform matrix is called the demosaicking ma-
trix, denoted by . Applying the inverse DFT to the spectra
of the primary color components R, G and B leads to the three
channels of the reconstructed image.

A good CFA should minimize the demosaicking error. The
above analysis shows that for the associated demosaicking
method to perform well, the CFA should enable the following
procedures to work well:

1) to estimate the multiplex components accurately;

2) to estimate the primary color components from the multi-
plex components accurately.

To achieve the first goal, we have two principles for CFA
design.

(P1) The crosstalk among the multiplex components
should be as small as possible.
(P2) The correlation among some multiplex components
should be as high as possible.

With the first principle (P1), bandpass filtering will result in little
aliasing from other multiplex components. The same principle
was used in [15], [16] for the CFA design. And by the second
principle (P2), if there is high correlation among some multiplex
components, we can fuse them adaptively to obtain a more ac-
curate and robust estimate of those multiplex components. For
example, for the Bayer CFA (7), a great performance margin
was achieved by exploiting the correlation between two chromas

and [7]. If a chroma has more than one
replica multiplexed into a spectrum, they can be at least aver-
aged to reduce the filtering error, and an adaptive method can
give even more accurate estimates of the chroma.

To achieve the second goal, we have to control the error in
the estimated multiplex components such that the error will not
be amplified. Note that there is a linear relationship between the
multiplex components and the primary color components (e.g.,
(8) for the Bayer CFA)

(9)

So if the estimated multiplex components have error
and respectively and we denote the

the error of the primary color components as
and , then from matrix analysis [10] we have

, where ‘t’ denotes the
matrix transpose. depends on the
demosaicking method applied to the CFA pattern, but
should be minimized in CFA design in order to minimize the
error of primary colors. Hence, we have the third principle for
optimal CFA design:

(P3) The norm of the demosaicking matrix should be
minimized.

Our CFA design methodology is based on the above three
principles. It consists of two steps: choosing an appropriate form
of the frequency structure of a CFA, and determining op-
timal parameters of . The details of these two steps are
described in the following two subsections, respectively.

B. Choosing a Frequency Structure

To choose an appropriate frequency structure of the CFA
means to specify the positions of nonzero multiplex compo-
nents and to designate the relationship (e.g., equal, negative,
or conjugate) among the chromas. (P1) and (P2) should be
followed when making this choice.

There should be some constraints on the frequency structure.
As the DFT of CFA pattern must satisfy all the prop-
erties of DFT, including the ‘conjugate symmetry’. Besides,
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Fig. 3. Illustration of the spectra of images sampled with CFAs with corresponding frequency structures shown in Table I.

TABLE I
SOME EXAMPLES OF FREQUENCY STRUCTURES OF SIZE (A) 2� 2, (B) 4� 4, (C) 6� 6, (D) 4� 2, (E) 6� 2

(6) shows that the luma must exist. So the frequency point (0,
0) (i.e., ) must be nonzero. Furthermore, to recon-
struct three primary color components of an image, we need at
least three independent multiplex components. Since the luma
is already selected, two independent chromas must be selected.
Here, that two chromas and are independent
means that there does not exist a scalar (real or complex) such
that .

Now we are equipped to choose an appropriate frequency
structure. Some guidelines can be obtained following princi-
ples (P1) and (P2). As illustrated in [15], [16], to apply (P1), we
may choose as few nonzero chromas as possible and maximize
the distance among the nonzero multiplex components. And we
may further wish that the distance between luma and chromas
should be large enough (e.g., no less than 0.5), and the chromas
should not be centered on the horizontal or vertical axes of the
luma. We can only wish for the latter two guidelines because
they may not always be satisfied if the size of the CFA pattern is
too small, considering the constraints on the . For example,
for CFA patterns of size 3 3, the distance between luma and
chromas is no larger than ; and for CFA patterns of size
2 2, at least one chroma should be on the horizontal or ver-
tical axes of the luma.

To apply (P2), we may choose redundant nonzero chromas
and make them dependent. With redundant chromas, we can es-
timate each chroma more robustly by crosschecking with its re-
dundant replicas. In our current system, for simplicity we only
require that a chroma is equal to another replicated one, rather
than specifying a scalar between them. Note that ‘choosing re-
dundant nonzero chromas’ is in conflict with ‘choosing as few
nonzero chromas as possible’, and we have to make a tradeoff
between these two guidelines.

One should be reminded that our guidelines do not result in a
unique frequency structure. We cannot foresee which frequency
structure is optimal if we make a tradeoff among the guidelines.
So we have to test the obtained CFA patterns with differently
specified frequency structures using benchmark images to find
the best one. Nonetheless, using our guidelines one can easily
rule out a vast majority of bad frequency structures: one only has
to test a limited number of designs, which are possibly the op-
timal ones. This already saves a lot of effort in the CFA design.

We show some examples of frequency structures of various
sizes of CFA patterns in Fig. 3, whose corresponding frequency
structure matrices are shown in Table I. More examples can be
found in [20]. By convention we put the baseband at the center,
but all the DFT spectra are periodic in both horizontal and ver-
tical directions. Thus, in our frequency structure representation
of CFAs, we take the frequency origin (0, 0) as at the top-left
corner of the matrix.

C. Optimization Formulation for CFA Design

Once the form of the frequency structure is chosen to
follow principles (P1) and (P2), the parameters of (e.g.,
those of and in Table I), and thus the optimal CFA
pattern can be determined by applying (P3).

Note that due to physical laws and the condition that the
sensed image should have the same dynamic range, all three pri-
mary CFA patterns must be real and nonnegative, and their
sum must be an all-one matrix. The can be guaranteed to be
real, if is chosen to satisfy ‘conjugate symmetry’, which
we have imposed when choosing in Subsection III.B.
The nonnegativity of three leads to inequality con-
straints. That the sum of is an all-one matrix would im-
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pose another equality constraints. However, (thanks to the
property (5)) if we consider this “all-one matrix” constraint via
the DFT of the CFA pattern , equivalent constraints are
found to be (6). When has three independent multiplex
components (a luma and two chromas, as in Table I), there are at
most 5 such equality constraints (remember that the parameters
of luma are real numbers, and those of chromas may be complex
ones). Hence, the equality constraints are greatly simplified.

Now, by applying (P3), the search for the optimal be-
comes the following constrained optimization problem:

(10)

where is the demosaicking matrix and the norm can be any
matrix norm. Note that it is very tedious to write down all the
inequality constraints manually as they involve the inverse sym-
bolic DFT of , particularly when or is large. But this
can be done on the computer via symbolic computing.

IV. GEOMETRIC METHOD FOR OPTIMIZATION

The optimization problem (10) has many parameters (e.g., 15
for 3 multiplex components) and is the inverse of a param-
eterized matrix. To decrease the number of parameters for so-
lution searching and simplify the expression of , we rewrite
the parameters of multiplex components and explicitly present
the corresponding demosaicking matrix. Then the optimization
problem can be reformulated as a geometric point selection on
the boundary of a convex polygon or the surface of a convex
polyhedron.

A. Optimization Reformulated as Triangle Finding

We may parameterize the three multiplex components as

and (suppose ). In
matrix form, it is , where

and ‘t’ denotes the
matrix transpose. The matrix relating the multiplex compo-
nents to the primary color components is called the multiplexing
matrix in this paper, and by the definition of the demosaicking
matrix ((9), transforming from multiplex components to the
components of primary colors) we have .

Note that and should be positive real numbers,
and the other parameters in may be complex ones. Thus, has
15 free parameters, which makes the constrained optimization
problem (10) a bit difficult. Besides, may have a
complex expression. To overcome these problems, we rewrite

as follows:

(11)

Fig. 4. Illustration of the entries in the ��� (14) and (15).

where for , and
. With this form, we can give geometric

explanations for the constraints in (10) and express explicitly
with a much simpler form, and reformulate the constrained
optimization problem (10) as a geometric points selection.

Actually the demosaicking matrix is

(12)

This can be verified by trivial but tedious calculation. One may
first check that

, where is the
-th entry of . Then one may find that the right-hand side

is the identity matrix, by observing that is the
solution to

(13)

The above linear system is obtained from the 5 equality con-
straints in (10), or (6), which are equivalent to

, i.e., (13). (13) means that the weighted barycenter is
at the origin, and the origin should be a point inside the triangle.

Now we consider the objective function of (10). Owing
to the equivalence of matrix norms (
[10], where ), we may focus on the Frobenius norm
(F-norm)

(14)

Consider the last term of (14). When both and are real
numbers, the denominator is actually ,
i.e., the squared area of the parallelogram with
and the origin being three of its vertices. And the numerator
is the squared distance between and . Thus,
the last entry of (14) equals , where is the distance
from the origin to the line connecting and . To
illustrate, Fig. 4 shows this analysis. With and defined
similarly to , (14) becomes

(15)
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Therefore, to minimize in 2D, we have to minimize the
sum of the reciprocals of the squared distances from the origin
to the sides of the triangle with vertices .

Now let us look into the inequality constraints in (10).
Every group of inequalities ensures that the primary CFA
pattern of one color should be a nonnegative matrix, and this
group of inequalities is only related with one pair of parame-
ters that correspond to that color. Thus, we may choose
every from the feasible region resulting from the corre-
sponding inequality constraints. However, considering the
permutation symmetry among the three colors, the feasible re-
gions of the three colors are the same. Therefore, we may repre-
sent this identical feasible region with , choose three points
in it, and then designate them to . The 6 dif-
ferent designations correspond to the 6 permutations of three
primary colors. The advantage of this method is to reduce 2/3
of the total parameters from to . Be-
sides, since the primary CFA pattern is obtained by applying the
inverse DFT to its frequency structure and both the DFT and the
inverse DFT are linear transforms, all the inequality constraints
are linear. Therefore, the feasible region has a piecewise linear
boundary and is convex.

In summary, to solve the constrained optimization problem
(10), we may obtain the feasible region first and then choose
three points from it. The chosen three points should form a
triangle that contains the origin as its inner point and further
minimizes (15). Then the multiplexing matrix and the demo-
saicking matrix can be found via (12), which leads to the
frequency structure . Finally, by applying the inverse DFT
to , the optimized CFA pattern can be obtained.

B. An Example

To illustrate, we consider a special case of the frequency
structure as Table I(c). It has two pairs of different chromas,
and to simplify, we may further assume that the coefficients
of the chromas are real. That is, are real ,
and the quadruple is , or simply in 2-D
space. The feasible region resulting from the inequality
constraints in (10) is shown in Fig. 5(a). There are two triangles,
corresponding to vertices and ,
or and , which contains the
origin as an inner point and minimizes the criterion (15).
Differing only by a sign, these two triangles lead to the same

, and thus we may consider only the first one. Designating
and to and

respectively, the multiplexing matrix can be found via
(12)

Thus and
, and the corresponding frequency structure

(Table I(c)) is obtained. Applying the inverse DFT to the fre-
quency structure leads to an optimal CFA pattern.

Fig. 5. CFA feasible regions of the frequency structure as (a) Table I(c),
(b) Table I(a) (the 2� 2 CFA pattern design example in Section V).

Fig. 6. Flowchart of CFA pattern design.

V. A DESIGN EXAMPLE AND NEW CFA PATTERNS

In the following, we give a detailed example to design a 2 2
CFA pattern by using the proposed methodology. Then we also
present several new CFA patterns designed using our method.

A. CFA Pattern Design of Size 2 2

Our example follows the steps in Fig. 6.
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Step 1: We choose the frequency structure of the 2 2 CFA
pattern to be [Table I(a)]

(16)

where we specify the chroma at (0, 0.5) to be zero. Note that
and are both self-conjugate, so their coefficients must

all be real. As analyzed before, the multiplexing matrix can
be rewritten as (11), with all elements and being real num-
bers. The colors corresponding to the columns of matrix are
‘ ’, ‘ ’ and ‘ ’, respectively.

Step 2: As there are no redundant chromas, there is no rela-
tionship to prescribe between and .

Step 3: By applying the inverse symbolic DFT to the fre-
quency structure of primary color , the primary CFA
patterns are found to be

(17)

Step 4: The equality constraints are

(18)

which are for making the sum of primary CFA patterns an
all-one matrix. Note that now we only have 3 equality con-
straints because the zero sum constraints on the imaginary
parts of the parameters in are automatically fulfilled. The
inequality constraints are

(19)

which are for making the entries of the primary CFA patterns
(17) nonnegative.

Step 5: If we choose the Frobenius norm as the norm of ,
then the optimization problem (10) is

(20)

Step 6: According to the geometric method in Section IV,
we first find the feasible region imposed by the inequality con-
straints (19). As the feasible regions for three primary colors
are the same, we may represent the region with two parameters

without specifying the subscript ‘ ’. Since and are
real, the feasible region is a 2-D convex polygon, as shown in
Fig. 5(b). The four vertices are ( , 0), (0, 1), (1, 0) and (0, ).

Step 7: As analyzed in Section IV, to minimize the Frobenius
norm of the demosaicking matrix , we may find the triangle
in the feasible region which contains the origin and minimizes
(15). We find one with vertices at (0, ), ( , 0) and (1/2, 1/2).

Step 8: Without loss of generality, we may designate (0, ),
( , 0) and (1/2, 1/2) to , respectively, as the
colors associated with are not specified yet. Sub-
stituting into (12), the demosaicking can be easily

Fig. 7. Designed CFA pattern of size 2� 2 whose primary colors are (a) [R,
G, B], (b) [G, B, R] and (c) [R, B, G].

calculated and then the multiplexing matrix
, which leads to the frequency structure

(21)

By applying inverse symbolic DFT to , the CFA pattern can
be obtained

(22)

Step 9: Designating three primary colors to ‘ ’, ‘ ’ and
‘ ’, we can have 6 optimal CFA patterns in total. Suppose the
primary colors are R, G and B. Three designed CFA patterns
are shown in Figs. 7(a)–(c), where corresponds to

and , respectively.

B. New Patterns: CFA4a and CFA4b

Using our design methodology, we have found two 4 4 CFA
patterns, whose frequency structures are shown in Table I(b).
The chromas of the two CFA patterns have real coefficients and

, and the CFAs are different only in color designa-
tion, that is, one can be obtained from the other by permuting
primary colors. The multiplexing matrices, and ,
are respectively

and (23)

The new CFA patterns and the spectra of the image ‘window’
filtered with them are shown in Fig. 8. More new CFA patterns
can be found in [20].

VI. EXPERIMENTS

Now we test our new CFA patterns with the 24 widely-used
Kodak color images [7], [12] and compare them with the Bayer
pattern [3] [Fig. 1(a)], the Sony CFA [27] [Fig. 1(e)], the diag-
onal stripe CFA [22] [Fig. 1(j)], the CFA pattern A proposed by
Hirakawa and Wolfe [15] [Fig. 1(m)] and the pattern proposed
by Condat in [5] [Fig. 1(n)]. Four patterns, A, B, C and D, were
proposed by Hirakawa and Wolfe in [15], and the pattern com-
pared in this paper is pattern A, which had the best performance
in their experiments. It was denoted as ‘HWpA’.

The characteristics of these tested CFAs are summarized
in Table II. Based on the analysis and three principles in
Section III.A, we list for each CFA: “the minimum distance be-
tween luma and chroma” and “the minimum distance between
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TABLE II
SUMMARY OF THE CHARACTERISTICS OF THE TESTED CFAS: THE BAYER CFA [3], THE SONY CFA [27], THE DIAGONAL STRIPE CFA [22],

THE HWPA CFA [15], THE CONDAT CFA [5] AND TWO OF OUR NEWLY DESIGNED CFAS

Fig. 8. Proposed CFA patterns (a) CFA4a, (b) CFA4b, and the spectra of image
‘window’ filtered with them.

chromas”, which according to principle (P1) should prefer-
ably be larger to have less crosstalk; “the number of replicated
chromas”, which according to principle (P2) is preferably larger
for more accurate estimates; and 2-norm and Frobenius norm
of the demosaicking matrix , which according to principle
(P3) is preferably smaller for less error amplification. From
the Table II, we can see that CFA4a and CFA4b, as well as
HWpA and Condat CFA, increase the distance between the
luma and chromas, compared with Bayer, Sony and diagonal
stripe CFA. This is based on the observation that luma has
much higher energy than chromas and more energy distributed
along the vertical/horizontal axes in the frequency domain, and
thus chromas should be far from the luma and moved off the
axes. For the number of replicated chromas, Bayer and HWpA
have two and our new CFAs have four, aiming for more accu-
rate estimates. The norms show the minimization objectives
that have been achieved for the corresponding CFA patterns.
Actually, the norms can be smaller if the replicated chromas
are all considered for the formulation. To interpret the norm of
the demosaicking matrix , some care should be taken. The
norm of cannot be directly compared since it increases with
the size of pattern and the number of chroma.

As described above, we apply the associated demosaicking
method (Section III) [8] to the images sampled by the CFA
patterns to be tested. For Bayer, HWpA, CFA4a and CFA4b,
there may be identical or dependent chromas modulated at
different frequency points. There are many methods to combine
these replicas for more accurate estimation of the chromas.
One method is to naïvely average these replicas.1 The other
method is the locally adaptive weighting method proposed in
[7], which gives larger weights to the replicas with less aliasing.
The latter method respects the fact that these replicas suffer
different amount of aliasing. We shall call these two methods
the naïve and the Adaptive method, respectively. For diagonal
stripe CFA and Condat CFA, there are only two chromas,
which can only be estimated by direct bandpass filtering. So we
denote their associated demosaicking algorithm as Diag-Direct
and Condat-Direct, respectively. For the Sony CFA, we use
pseudo-inverse to reconstruct three primary channels from four
different multiplex components, and the algorithm is denoted
as Sony-Direct.

Table III gives the CPSNRs (color peak SNR, in dB) of the 24
images and the average CPSNR (computed as (average
MSE)). Clearly, the results with our new CFAs are much better
than those with the Bayer CFA, the Sony CFA and the diagonal
stripe CFA. Our new CFAs achieve the highest average CPSNR.
Among the Bayer CFA based algorithms, Bayer-Adapt gives
the best results. Though the adaptive technique used in Bayer-
Adapt greatly improves the performance with the Bayer CFA,
our simple and non-adaptive CFA4a-naïve and CFA4b-naïve al-
gorithms still outperform Bayer-Adapt on average and on most
of the 24 images. This demonstrates that using our new patterns,
CFA4a and CFA4b, the demosaicking quality can be improved
a lot. The pattern HWpA also gives very good results, although
it is a bit worse than the best (CFA4b) of our new CFA patterns,
in terms of average CPSNR. The Condat CFA performs better
than Bayer CFA, but has lower average CPSNR than HWpA and
our patterns.

For the Bayer CFA, CFA4a and CFA4b, the Adaptive method
outperforms the naïve method greatly, especially for the Bayer
CFA (1.31 dB gain on average), which is not the case for HWpA
(0.03 dB gain on average). We conjecture that the reason may
lie in the combination characteristics of the Adaptive method.
In general, the more difference several estimates have, the more

1If two chromas, ���� �� and ���� ��, are dependent, which means that there
exists a scalar � such that ���� �� � � ����� ��, then we can average ���� ����
and ���� �� for a better estimation of ���� ��.
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TABLE III
CPSNR OF DEMOSAICKING ALGORITHMS BASED ON THE BAYER CFA [3], THE SONY CFA [27], THE DIAGONAL STRIPE CFA [22], THE HWPA CFA [15],

THE CONDAT CFA [5] AND TWO OF OUR NEWLY DESIGNED CFAS. THE AVERAGE CPSNR IS CALCULATED AS �� ��� (AVERAGE MSE)

gain we can obtain by combining these estimates. For the Bayer
CFA, its two chromas ( and ) for combination
lie on the horizontal and vertical axes. So their aliasing suffered
from the luma is quite different. This results in the great gain of
the Adaptive method over the naïve one. Therefore, the gain of
the Adaptive method is closely related to the frequency structure
of a CFA.

The above evaluation with CPSNR shows that our CFAs are
better than state-of-the-art CFAs in terms of signal level re-
covery. We further compare the visual quality of CFAs by using
two exemplary images. The first image (Fig. 9(o)) has much en-
ergy along the horizontal/vertical axes in the frequency domain,
while the second one (Fig. 10(o)) has much energy off the hori-
zontal/vertical axes. So these two images are typical and repre-
sentative. We will show that our proposed CFAs outperform the
Bayer CFA, and its visual quality is indistinguishable from that
of state-of-the-art CFAs.

Fig. 9 shows the fence part of the images demosaicked from
the CFA images obtained by sampling the lighthouse image
(19th in Table III) with the test CFAs. Because of its structure,
this fence part has much energy along the horizontal/vertical
axes in the frequency domain. Thus, if there are any chromas
on the horizontal/vertical axes, then there is much cross-talk be-
tween luma and chromas. This is the case for Bayer and Sony
CFAs and as a result, the demosaicked images from these CFAs
have obvious artifacts (Figs. 9(a) and (c)). For the Bayer CFA,
by exploiting the redundant chroma information, the adaptive
method (Fig. 9(b)) can reduce the aliasing, but artifacts are still
visible. The other CFAs, the diagonal-stripe, HWpA, Condat,
CFA4a and CFA4b, do not suffer from this problem since they
do not have chromas on the horizontal/vertical axes. The demo-
saicked images Figs. 9(d)–(k) also show that all of them have
good visual quality, and are better than the Bayer and Sony
CFAs.
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Fig. 9. Blowups of the demosaicked Image 19 of the Kodak Dataset [12]. (o) original image. (a) Bayer-naïve. (b) Bayer-Adapt. (c) Sony-Direct. (d) Diag-Direct.
(e) HWpA-naïve. (f) HWpA-Adapt. (g) Condat-Direct. (h) CFA4a-naïve. (i) CFA4a-Adapt. (j) CFA4b-naïve. (k) CFA4b-Adapt. The visual quality of the demo-
saicked images using our CFAs ((h)–(k)) is indistinguishable from that of (d)–(g).

Fig. 10 provides the demosaicked images sampled by the test
CFAs, on the window part of image 08 in Table III. As the pres-
ence of wires in the image corresponds to high energy in the
area off the horizontal and vertical axes in the frequency space,
severe aliasing may result from our new CFAs. However, by ex-
ploiting the correlations [7] among the nonzero chromas (e.g., 4
replicas of for CFA4a, 4 replicas of for
CFA4b, which contain different amount of aliasing), our new
CFAs still perform well in terms of both CPSNR (Table III) and
subjective quality. One can see that the visual quality of our pro-
posed patterns CFA4a-Adapt and CFA4b-Adapt (Figs. 10(i) and
(k)) is indistinguishable from that of HWpA-Adapt and Bayer-
Adapt. Besides, the resulting images also show the great im-
provement with the adaptive method for redundant chromas, by
comparing Figs. 10(a) and (b) (Bayer CFA), (e) and (f) (HWpA
CFA), (h) and (i) (CFA4a), and (j) and (k) (CFA4b). This shows
the effectiveness of the adaptive method [7], and it also implies
that we should better include some redundant or highly corre-
lated chromas when designing a CFA. Actually this is the main
reason why we propose the design principle (P2) (Section III.A).

For the Bayer, Sony, diagonal stripe, HWpA and Condat
CFAs, we have also tested their alternative CFAs obtained by
permuting the colors R, G and B, and compared them with our
CFAs in terms of average CPSNR. For the Bayer CFA, if we
exchange R and G, the average CPSNR is the highest (38.76
dB) for demosaicking with the Adaptive method. For the Sony
CFA, the average CPSNR is the highest when R and G is ex-
changed (37.46 dB). For the diagonal stripe CFA, permutations
of colors have little influence on the performance. (Note the
equivalence of R, G and B.) For HWpA, its alternatives do
not produce better results. For Condat CFA, permuting colors
results in similar CPSNR. Thus, it can be concluded that our
proposed CFA4b outperforms all other tested CFAs and their
alternatives by permuting colors.

VII. CONCLUSIONS, DISCUSSIONS AND FUTURE WORK

Based on the frequency structure, which is a frequency-do-
main representation of CFAs, a CFA design methodology is
proposed in this paper. It aims at minimizing the demosaicking
error by better arranging multiplex components in the frequency
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Fig. 10. Blowups of the demosaicked Image 08 of the Kodak Dataset [12]. (o) original image. (a) Bayer-naïve. (b) Bayer-Adapt. (c) Sony-Direct. (d) Diag-Direct.
(e) HWpA-naïve. (f) HWpA-Adapt. (g) Condat-Direct. (h) CFA4a-naïve. (i) CFA4a-Adapt. (j) CFA4b-naïve. (k) CFA4b-Adapt.

structure and finding the optimal demosaicking matrix. After re-
formulation, the optimization problem is solved by a geometric
method. Our experiments show that using our new CFA patterns,
the simple associated demosaicking algorithm can achieve ex-
cellent demosaicking quality.

With principle (P3) (Section III.A), our CFA design aims at
CFAs whose demosaicked images have the least mean square
errors (MSE) in the RGB color space. However, MSE is not re-
ally a good visual metric for images [30] and the optimal CFA
should aim at images with the highest visual quality. One pos-
sible solution is to transform the image form RGB space to per-
ceptually uniform spaces such as CIELAB and its spatial ex-
tension S-CIELAB [32] and optimize the CFA coefficients for
minimum error in that space. Besides, we can also benefit from
the research on image quality assessment [29], which provides
quantitative measure of perceived image quality.

The demosaicking method was not investigated extensively
in this paper. However, it is one of the key factors influencing
image quality and should be investigated more in the future. On
the one hand, a good demosaicking algorithm leads to better per-
formance. Although the adaptive method [7] performs very well

in the experiments, we still believe more gain can be obtained
for our new patterns CFA4a and CFA4b. That is because we
have four replicated chromas and it is highly possible that even
more accurate chromas can be estimated from the four chromas.
On the other hand, different demosaicking algorithms may work
better for CFAs with different characteristics. Thus, it would
also be beneficial to design an optimal CFA for a specific de-
mosaicking algorithm. One possible way is to analyze the fea-
tures of the demosaicking method first, and incorporating the
features as constraints (e.g., more or less replicated chromas)
into the CFA design.

By using lattice transform and reciprocal lattices, we can
apply the proposed methodology to design CFAs over other
periodical lattices, such as quincunx and hexagonal lattices,
but the corresponding optimization principles still need further
investigation. This will be our research in the future.
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