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A Generalized Accelerated Proximal Gradient
Approach for Total Variation-Based
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Abstract—This paper proposes a generalized accelerated prox-
imal gradient (GAPG) approach for solving total variation
(TV) based image restoration problems. The GAPG algorithm
generalizes the original APG algorithm by replacing the Lipschitz
constant with an appropriate positive definite matrix, resulting
in faster convergence. For TV-based image restoration problems,
we further introduce two auxiliary variables that approximate
the partial derivatives. Constraints on the variables can be
easily imposed without modifying the algorithm much, and
the TV regularization can be either isotropic or anisotropic.
Compared with the recently developed APG-based methods for
TV-based image restoration, i.e., monotone version of the two-
step iterative shrinkage/thresholding algorithm (MTwIST) and
monotone version of the fast iterative shrinkage/thresholding
algorithm (MFISTA), our GAPG is much simpler as it does not
require to solve an image denoising subproblem. Moreover, the
convergence rate of O(k−2) is maintained by our GAPG, where
k is the number of iterations; the cost of each iteration in GAPG
is also lower. As a result, in our experiments our GAPG approach
can be much faster than MTwIST and MFISTA. The experiments
also verify that our GAPG converges faster than the original APG
and MTwIST when they solve identical problems.

Index Terms—Image restoration, total variation, regulariza-
tion, proximal gradient algorithm, convex optimization.

I. INTRODUCTION

MANY image processing problems can be formalized
as estimating the original image x from a corrupted

observation b produced by first applying a linear operator A
to x and then adding noise. Subsampling may also follow, re-
sulting in missing values. A typical linear operatorA is usually
ill-conditioned or even singular. Thus image restoration is a
classical linear inverse problem [1].

To solve the linear inverse problem, one needs to involve a
regularization term in the objective function to utilize the prior
knowledge to recover the original image. Image restoration
is usually formulated as the following convex minimization
problem:

min
x∈Bl,u

F (x) =
1

2
∥A(x)− b∥2F + λΦ(x), (1)
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where Φ(x) is a convex regularizer, λ is a regularization
parameter [2], and Bl,u are the boundedness constraints on
the restored image x:

Bl,u =
{
x ∈ Rm×n|l ≤ xi,j ≤ u,∀i, j

}
, (2)

in which l and u are the lower and upper bounds, respectively,
and m× n is the size of the image.

Several regularizers, e.g., total variation (TV) [3], wavelet-
based sparsity [4] [5], and non-local graph regularization [6]
[7], have been proposed for image restoration. In this paper,
we focus on TV-based image restoration. The TV model was
first introduced in [3] as an effective regularizer. To date, this
model has been widely adopted in many image processing
problems, such as image denoising [8], blind deconvolution
[9], compressed MR imaging [10], and microarray processing
[11].

Because of the non-smooth and non-differentiable prop-
erty of the TV regularizer, it is difficult to solve TV-
based image restoration by conventional optimization meth-
ods. To date numerous methods, e.g., gradient-based meth-
ods [12][13][14][15], dual methods [8], graph cut [16], and
second-order cone programming [17], have been developed in
different contexts.

Nowadays images acquired by digital cameras usually con-
tain tens of megapixels, which makes TV-based image restora-
tion inherently a large scale optimization problem. Recently
continuous efforts have been spent on designing effective
algorithms with less requirements on computational load and
memory. One gradient-based method, the iterative shrink-
age/thresholding algorithm (IST), is developed for wavelet-
based deconvolution [15]. Other researchers have also inde-
pendently proposed IST in different contexts. Rigorous proofs
of the convergence of IST have been provided in [18] and
[19]. Subsequently, a generalized expectation maximization al-
gorithm [13], also named as the iterative reweighted shrinkage
method in [14], was proposed for image deconvolution.

Although simple and effective, IST has been known as
a slow method, especially under some assumptions on the
operator A [20]. Recently, a number of accelerated IST
algorithms [14] [12] [21] have been proposed, and several
of them, e.g., the two-step iterative shrinkage/thresholding
(TwIST) algorithm and the fast iterative shrinkage/thresholding
algorithm (FISTA), have been successfully applied to image
restoration. FISTA is also known as the accelerated proximal
gradient (APG) based method [22][23], which has an attractive
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convergence rate of O(k−2), where k is the number of iter-
ations. APG has also been applied to matrix completion [24]
and robust principal component analysis (RPCA) [22]. In this
paper, we extend the original APG method to a more general
and efficient class, called the generalized accelerated proximal
gradient (GAPG) method, which maintains the convergence
rate of O(k−2).

When applied to TV-based image restoration, the TwIST
[14] and FISTA [21] algorithms involve both outer and inner
iterations, where the inner iteration is to approximately solve
an image denoising subproblem. Recently, several image de-
noising methods, e.g., the dual approach by Chambolle [8] and
the maximum flow algorithm by Goldfarb and Yin [25], have
been proposed for solving the TV-based denoising problem.
We expect that the efficiency of image restoration would be
further improved if the image denoising subproblem could be
avoided.

In this paper, by generalizing the FISTA method with a
constant step size [12], we propose a GAPG method with
a proven O(k−2) convergence rate. Motivated by the vari-
able splitting method [26][27][28], we further introduce two
auxiliary variables to approximate the partial derivatives and
reformulate the TV-based image restoration problem as an
unconstrained convex optimization problem. Moreover, the
problem reformulation is more suitable for improving the
efficiency of GAPG, and we can also avoid solving the image
denoising subproblem. Finally the GAPG framework is com-
bined with the continuation technique [22][24][27][29][30] to
solve the resulting optimization problem. Our method works
for both anisotropic and isotropic discrete TV-based image
restoration. Numerical results demonstrate the efficiency of
the proposed method: our algorithms are much faster than
the monotone version of TwIST (MTwIST) and the monotone
version of FISTA (MFISTA) for TV-based image restoration.
Further, our GAPG converges faster than the original APG and
MTwIST when solving the same optimization problem.

The remainder of this paper is organized as follows. Section
II introduces some background knowledge that is necessary
for our paper, including the TV-based image restoration mod-
els, the original APG method, and a brief sketch of recent
fast gradient-based methods for TV-based image restoration.
Section III presents our GAPG method. Sections IV and
V introduce the problem formalizations and algorithms for
anisotropic and isotropic discrete TV-based image restoration,
respectively. Then Section VI presents the experimental result-
s. Finally Section VII concludes the paper.

II. PREREQUISITES AND RELATED WORK

In this section, we first describe the discrete TV-based
image restoration models. Then we introduce the original APG
method and the shrinkage operators which will be used in
our TV-based image restoration algorithm. Finally, we briefly
survey the recent APG-based methods for image restoration.

A. The Discrete TV-based Image Restoration Model

In the TV-based image restoration model, the linear operator
A is an affine mapping and the regularization term in (1) is

chosen as the total variation of the image x:

Φ(x) = TV(x) ≡
∫
Ω

∥∇x∥dΩ, (3)

where Ω is the region that the image x occupies. When
applying the model to discrete images, we have to discretize
TV(x).

In the literature there are two kinds of discrete total varia-
tion: l2-based isotropic TV and l1-based anisotropic TV. Given
a discrete image x ∈ Rm×n, isotropic TV [21] is defined by

TViso(x) =
m∑
i=1

n∑
j=1

√
(xi+1,j−xi,j)2+(xi,j+1−xi,j)2 , (4)

and anisotropic TV [21] is defined by

TVaniso(x) =
m∑
i=1

n∑
j=1

(|xi+1,j− xi,j |+ |xi,j+1− xi,j |) ,

(5)
where we assume the reflexive boundary condition for x:

xm+1,j = xm,j , j = 1, · · · , n;
xi,n+1 = xi,n, i = 1, · · · ,m.

(6)

If we define the vertical and horizontal forward difference
operators Dv and Dh as:

p = Dv(x) : Rm×n → R(m−1)×n :

pi,j = xi+1,j − xi,j , i = 1, · · · ,m− 1, j = 1, · · · , n, (7)

and
q = Dh(x) : Rm×n → Rm×(n−1) :

qi,j = xi,j+1 − xi,j , i = 1, · · · ,m, j = 1, · · · , n− 1, (8)

respectively, and isotropic TV induced norm as:

∥(p q)∥iT =
m∑
i=1

n∑
j=1

√
p2i,j+q2i,j , (9)

we may rewrite anisotropic and isotropic TVs as:

TViso(x) = ∥(Dv(x) Dh(x))∥iT , (10)

and
TVaniso(x) = ∥Dv(x)∥l1 + ∥Dh(x)∥l1 , (11)

respectively, where the matrix l1-norm here refers to the sum
of the absolute values.

The adjoint operators D∗
v and D∗

h of Dv and Dh can be
found as:

z = D∗
v(p) : R(m−1)×n → Rm×n :

zi,j = pi−1,j − pi,j , i = 1, · · · ,m, j = 1, · · · , n, (12)

and
z = D∗

h(q) : Rm×(n−1) → Rm×n :

zi,j = qi,j−1 − qi,j , i = 1, · · · ,m, j = 1, · · · , n, (13)

respectively, where we assume a zero boundary condition for
p and q:

p0,j = pm,j = 0, j = 1, · · · , n;
qi,0 = qi,n = 0, i = 1, · · · ,m.

(14)
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If we rearrange x, p and q row by row into vectors, still
written as x, p and q in order to save notations1, respectively,
then there are matrices Dv and Dh such that p = Dvx and
q = Dhx. Accordingly, the adjoint operators D∗

v and D∗
h are

associated with matrices DT
v and DT

h , respectively, where the
superscript T denotes the transpose.

B. The Original APG Method

While the traditional first-order methods for differentiable
objective functions can only achieve a convergence rate of
O(k−1), Nesterov [31] showed that for convex objective
functions with Lipschitz continuous gradients:

∥∇f(x1)−∇f(x2)∥F ≤ Lf ∥x1 − x2∥F , (15)

where ∥·∥F denotes the Frobenius norm, the convergence rate
can be dramatically improved to O(k−2). Beck and Teboulle
[12] further generalized Nesterov’s method to the following
type of objective functions:

F (x) = f(x) + g(x), (16)

where g is a convex function, which may not be differentiable,
and f is a smooth and convex function with Lipschitz contin-
uous gradients. The method, called APG, can be described as
follows.

Instead of directly minimizing F (x), APG finds the optimal
solution by minimizing a sequence of quadratic approxima-
tions, denoted as Q(x,y), of F (x) at specially chosen points
y:

Q(x,y) = f(y) + ⟨∇f(y),x− y⟩+ Lf

2
∥x− y∥2F + g(x).

(17)
For any y, Q(x,y) upper bounds F (x) [12]. Then x can be
updated as the unique minimizer of Q(x,y):

xk = argmin
x

Q(x,yk)

= argmin
x

{
g(x) +

Lf

2 ∥x− zk∥2F
}
,

(18)

where zk = yk − 1
Lf
∇f(yk).

One natural choice of the point yk is xk, which is adopted
in the iterative shrinkage/thresholding (IST) algorithm [15].
The convergence rate of such an update scheme is no worse
than O(k−1) [20] but no theoretical analysis can guarantee
that higher convergence can be achieved.

In the smooth case, i.e., g(x) ≡ 0, Nesterov [31] showed
that the convergence rate can be improved to O(k−2) by
choosing

yk+1 = xk +
tk − 1

tk+1
(xk − xk−1), (19)

for a sequence {tk} satisfying t2k+1 − tk+1 = t2k. In the
nonsmooth case, i.e., g(x) ̸≡ 0, Beck and Teboulle [12] proved
that the updating schemes (18) and (19) are still valid to ensure
the O(k−2) convergence rate. More precisely, they proved the
following theorem.

1In this paper, we use the same bold face small letter to denote an image and
its vectorization. We believe that this should not cause ambiguity by referring
to the context.

Theorem 1: Let {xk} be generated by the APG method and
x∗ be any optimal solution, then

F (xk)− F (x∗) ≤ 2Lf∥x0 − x∗∥2F
(k + 1)2

, ∀k ≥ 1. (20)

Algorithm 1 summarizes the APG method.

Algorithm 1 The Original Accelerated Proximal Gradient
Algorithm

1: while not converged do
2: zk ← yk − 1

Lf
∇f(yk),

3: xk ← argminx

{
g(x) +

Lf

2 ∥x− zk∥2F
}

,

4: tk+1 ←
1+
√

1+4t2k
2 ,

5: yk+1 ← xk + tk−1
tk+1

(xk − xk−1),
6: k ← k + 1.
7: end while

C. Solving the Subproblem in APG

One may notice that when g ̸≡ 0 the APG method involves
a subproblem like

min
x

{
εg(x) +

1

2
∥x−w∥2F

}
. (21)

For a general convex g, such a subproblem may not be simpler
than the original problem. Fortunately, for many problems,
e.g., our image restoration problems, g is often special (usually
a norm or a characteristic function) and there may exist a
closed-form solution to this subproblem, enabling the APG
method to be practical.

When g is a norm, as in this paper we will only use the l1-
norm and the l2,1-norm, below we only give the closed-form
solutions to subproblems with such special g’s.

Proposition 1: When g(x) = ∥x∥1, then the solution to
problem (21) is:

x = Tε(w), (22)

where Tε(w) = max(|w| − ε, 0) sgn(w) is the shrinkage
operator and Tε(w) applies the shrinkage operator to w
entrywise.

This result is well known in the literature, e.g., [4], [5].
Proposition 2: When g(x) = ∥x∥2,1 =

∑n
j=1 ∥xj∥2, then

the j-th column of the solution is:

xj = Tε(∥wj∥2)
wj

∥wj∥2
. (23)

This result can be found as Lemma 3.3 in [29].
When g is a characteristic function χC(x) of a convex set

C:

χC(x) =

{
0, if x ∈ C,
+∞, otherwise,

the closed-form solution to the subproblem is simply project-
ing w onto C:

x = PC(w), (24)

where P is the projection operator.
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D. Previous Work

In this section, we review some related work on TV-based
image restoration.

1) TV-based Image Denoising: TV-based image denoising
is a special case of image restoration where the linear operator
A is an identity matrix. Denote Ψλ(b) as the image denoising
operator:

Ψλ(b) = argmin
x∈Bl,u

1

2
∥x− b∥2F + λTV(x), (25)

where the TV regularizer can be either isotropic or anisotropic.
The nonsmoothness of the TV regularizer makes it very diffi-
cult to solve the image denoising problem directly. Chambolle
[8] showed that the dual problem of TV-based image denoising
is a convex quadric programming problem and proposed
a gradient-based method for solving the dual problem. By
incorporating the boundedness constraints into the model Beck
and Tebouble [21] proposed a fast gradient projection method
to solve the dual problem. Goldfarb and Yin [25] also reported
a parametric maximum flow algorithm to solve the image
denoising problem with anisotropic TV.

The image denoising operator Ψλ(b) is essential for several
algorithms for general TV-based image restoration problems.
For example, the iterative shrinkage/thresholding (IST) algo-
rithm [15] for image restoration has the form

xk+1 = Ψλ {xk −A∗(A(xk)− b)} , (26)

where A∗ is the adjoint operator of A and the denoising
problem is usually solved by Chambolle’s dual approach [8].

2) Two-Step Iterative Shrinkage/Thresholding: The con-
vergence of IST is known to be very slow [20]. Bioucas-
Dias and Figueredo [14] proposed a two-step iterative shrink-
age/thresholding (TwIST) method to improve the convergence
rate of IST, where xk+1 is updated by involving both xk and
xk−1:

xk+1 = (1− α)xk−1 + (α− β)xk

+Ψλ {xk −A∗(A(xk)− b)} , (27)

where α and β are two parameters. Bioucas-Dias and Figuere-
do [14] also proved the convergence of TwIST. From (27),
a TV-based denoising problem should be solved for each
iteration of TwIST. In real applications, this subproblem can
be solved only approximately, resulting in non-monotonic
decrease of the objective function value. To remedy this
issue, Bioucas-Dias and Figueredo [14] further suggested a
monotone version of TwIST (MTwIST). Let z be given by the
right hand side of (27), then MTwIST updates xk+1 as

xk+1=

{
z, ifF (z)≤F (xk),
Ψλ{xk−A∗(A(xk)−b)}, ifF (z)>F (xk).

(28)
3) Fast Iterative Shrinkage/Thresholding Algorithm: Most

recently, Beck and Teboulle [21] proposed another fast two-
step method, called FISTA, for TV-based image restoration.
It applies the APG method to solve both the outer and
inner iterations, where the inner iterations solve an image
denoising subproblem via duality. Analogous to TwIST [14],
FISTA also has the non-monotonicity problem when the image

denoising subproblem is solved only approximately. So Beck
and Teboulle [21] also suggested a monotone version of
FISTA (MFISTA) to guarantee the monotonicity property of
the minimization algorithm.

III. THE GENERALIZED ACCELERATED PROXIMAL
GRADIENT METHOD

In this section, we propose a generalized accelerated prox-
imal gradient (GAPG) method to solve the minimization
problem with an objective function in (16). We notice that
the following inequality ((2.7) of [12])

f(x) ≤ f(y)+ ⟨x−y,∇f(y)⟩+ Lf

2
∥x− y∥2F , ∀x,y, (29)

is the key to proving the O(k−2) convergence rate of the
original APG method, and the Lipschitz gradient condition
(15) is just to ensure that (29) holds.

Given a positive definite matrix L, we may introduce the
L-inner product: ⟨x,y⟩L = xTLy and the L-norm ∥x∥L =√
⟨x,x⟩L. Then the inequality (29) can be generalized as

f(x) ≤ f(y) + ⟨x−y,∇f(y)⟩+ 1

2
∥x− y∥2Lf

, ∀x,y, (30)

where Lf is a positive definite matrix. Such Lf exists for
a broad class of f . For example, if f satisfies the Lipschitz
gradient condition (15), then Lf can be chosen as LfI, where
I is the identity matrix. We will give other choices of Lf in
our image restoration problems. The motivation to replace the
inequality (29) with (30) is that a smaller Lipschitz constant
may lead to faster convergence (c.f. (20)).

Analogously, GAPG updates x by minimizing a quadratic
approximation QLf

(x,y) of F (x) at specially chosen points
y, where

QLf
(x,y) = f(y) + ⟨∇f(y),x− y⟩+ 1

2
∥x− y∥2Lf

+ g(x)

(31)
and yk is still chosen as (19). For the subproblem pLf

(yk) =
argminx QLf

(x,yk) to be easy to solve, we usually choose a
diagonal Lf . Then we straightforwardly generalize the original
APG method with a constant step size [12] by the GAPG
algorithm as in Algorithm 2.

Algorithm 2 The Generalized Accelerated Proximal Gradient
Algorithm

1: while not converged do
2: xk ← pLf

(yk),

3: tk+1 ←
1+
√

1+4t2k
2 ,

4: yk+1 ← xk + tk−1
tk+1

(xk − xk−1),
5: k ← k + 1.
6: end while

By replacing Lf ⟨·, ·⟩ and Lf∥ · ∥2F in the proofs in [12]
with ⟨·, ·⟩Lf

and ∥ · ∥2Lf
, respectively, we can easily prove the

O(k−2) convergence rate of GAPG as stated in the following
theorem.
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Theorem 2: Let {xk} and {yk} be generated by GAPG.
Then for any k ≥ 1,

F (xk)− F (x∗) ≤
2 ∥x0 − x∗∥2Lf

(k + 1)2
, (32)

where x∗ is any optimal solution.
One can easily see that if Lf = LfI, then GAPG reduces

to the original APG. However, as one will see Lf can have
other choices such that (30) holds and ∥x∥Lf

≤ Lf∥x∥F for
any x, resulting in faster convergence.

IV. ANISOTROPIC TV-BASED IMAGE RESTORATION

As anisotropic TV-based image restoration is simpler than
the isotropic case, we introduce our algorithm for it first. In
this section, we first formulate the problem such that it can be
easily solved by GAPG, then present the details of the solution
by GAPG, and finally summarize the algorithm.

A. Problem Formalization

The anisotropic TV-based image restoration problem is
formalized as

min
x∈Bl,u

1

2
∥Ax− b∥2F + λTVaniso(x), (33)

where A is associated with the linear mapping A when x and
b are treated as vectors, and TVaniso(x) is defined as (5). By
introducing two auxiliary variables dv and dh [27], [28], [29],
and using (11), the problem can be written as

min
x∈Bl,u,dv,dh

1

2
∥Ax− b∥2F + λ (∥dv∥1 + ∥dh∥1) ,

s.t. dv = Dvx and dh = Dhx.
(34)

Like [27], [28], [29], [22], we further relax the equality
constraint by changing (34) to

min
x∈Bl,u,dv,dh

µ

2
∥Ax−b∥2F +

1

2
∥dv−Dvx∥2F

+
1

2
∥dh−Dhx∥2F+λµ (∥dv∥1+∥dh∥1) .

(35)

The above can be further rewritten as

min
x,dv,dh

µ

2
∥Ax−b∥2F +

1

2
∥dv−Dvx∥2F +

1

2
∥dh−Dhx∥2F

+λµ(∥dv∥1 + ∥dh∥1 + χBl,u
(x)),

(36)
and be solved by using the GAPG approach. When the
relaxation parameter µ → 0, the solution to (36) approaches
the solution to (33). Compared with the original problem for-
malization (33), the formalization (36) is more suitable to be
solved by GAPG-based methods. With the formalization (36),
the TV-based image denoising subproblem (25) in MTwIST
and MFISTA is now unnecessary.

B. Anisotropic TV-based Image Restoration via GAPG

To utilize GAPG for anisotropic TV-based image restora-
tion, we readily see that the decomposition in (16) should be
chosen as

f(x̂)

=
µ

2
∥Ax−b∥2F +

1

2
∥dv−Dvx∥2F +

1

2
∥dh−Dhx∥2F ,

g(x̂)
= λµ

(
χBl,u

(x) + ∥dv∥1 + ∥dh∥1
)
,

(37)
where x̂ = (xT ,dT

v ,d
T
h )

T .
1) Choosing Lf : Note that as f is a quadratic function,

(30) can be an identity (the x therein should be replaced with
x̂) with Lf = H(f), where H(f) is the Hessian of f :

H(f)=

µATA+DT
v Dv+DT

hDh −DT
v −DT

h

−Dv I 0
−Dh 0 I

. (38)

As H(f) is not diagonal, which may result in expensive
computation to solve the subproblem like (21) in GAPG, we
had better seek a diagonal Lf such that (30) still holds.

Observe that

x̂TH(f)x̂
= µ∥Ax∥2 + ∥Dhx− dh∥2 + ∥Dvx− dv∥2
≤ µ∥Ax∥2 + η

(
∥Dhx∥2 + ∥Dvx∥2 + ∥dv∥2 + ∥dh∥2

)
≤ λmax∥x∥2F + η∥dv∥2 + η∥dh∥2,

(39)
where λmax is the largest eigenvalue of µATA+ ηDT

v Dv +
ηDT

hDh and the above inequality is always true if η ≥ 2.
Then we see that a diagonal Lf can be chosen as:

Lf = diag (λmaxI, ηI, ηI) . (40)

λmax can be conveniently estimated as ∥µATA+ ηDT
v Dv +

ηDT
hDh∥F due to the fact that λmax(X) ≤ ∥X∥F holds for

any nonnegative definite matrix X. However, this is a severe
overestimate when the size of image is large. So we provide
a sharper estimate below.

Note that λmax is actually the square of the largest singular
value of

W =

 √
µA√
ηDv√
ηDh

 .

And we have the following inequalities.
Proposition 3:∥∥∥∥( X
Y

)∥∥∥∥
2

≤ ∥X∥2+∥Y∥2, where ∥·∥2 is the spectral norm.

Proof:∥∥∥∥( X
Y

)∥∥∥∥
2

=

∥∥∥∥( X
0

)
+

(
0
Y

)∥∥∥∥
2

≤
∥∥∥∥( X

0

)∥∥∥∥
2

+

∥∥∥∥( 0
Y

)∥∥∥∥
2

= ∥X∥2 + ∥Y∥2.
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Proposition 4: If matrix K is associated with a shift-
invariant convolution operator K that applies a convolution
kernel k, then

∥K∥2 ≤ ∥k∥l1 . (41)

Proof: It is well known in matrix analysis [32] that

∥X∥2 ≤
√
∥X∥1∥X∥∞, (42)

where ∥ · ∥1 and ∥ · ∥∞ are the largest l1-norm of the columns
and rows of X, respectively.

Suppose Y = K(X). Then

Yij =
∑
p,q

Xpqki−p,j−q,

where the indices (i − p, j − q) of k should be understood
as modulo the size of kernel. So the l1-norm of the row of
matrix K that corresponds to the (i, j)-th entry of Y is∑

p,q

|ki−p,j−q| = ∥k∥l1 .

Hence ∥K∥∞ = ∥k∥l1 .
On the other hand, the adjoint operator K∗ : Y 7→ X is as

follows:
Xij =

∑
p,q

Ypqkp−i,q−j .

So the l1-norm of the row of matrix KT , which is the same
as the l1-norm of the corresponding column of matrix K, that
corresponds to the (i, j)-th entry of X is∑

p,q

|kp−i,q−j | = ∥k∥l1 .

Hence ∥K∥1 = ∥k∥l1 .
Thus the inequality is proven.
In particular, we have
Corollary 1:

∥Dv∥2 ≤ 2 and ∥Dh∥2 ≤ 2,

and if a nonnegative convolution kernel satisfies
∑

ij kij = 1,
then

∥K∥2 ≤ 1.

Based on the above analysis we can estimate λmax more
precisely as:

λmax ≤ (
√
µ∥A∥2 +

√
η∥Dv∥2 +

√
η∥Dh∥2)2, (43)

where ∥A∥2 can be estimated as

∥A∥2 ≤ min(∥A∥F ,
√
∥A∥1∥A∥∞), (44)

due to the fact that ∥X∥2 ≤ ∥X∥F [32] and inequality (42).
If A is associated with a shift-invariant blurring kernel, the
estimate on ∥A∥2 can be dramatically improved as ∥A∥2 ≤ 1
thank to the second part of Corollary 1. Moreover, since the
auxiliary variables dv and dh approximate Dvx and Dhx, in
our image restoration problems, we may also choose η = 1. By
using smaller λmax and η, which are the “Lipschitz constants”,
our GAPG will converge faster.

Here we would like to highlight the difference between the
original APG and our GAPG. The original APG chooses a

single “Lipschitz constant” Lf for all variables of the function
f , while GAPG allows different “Lipschitz constants” for
different variables. In the original APG, for the inequality
(29) to be true, Lf has to be chosen as the largest “Lipschitz
constant” of all variables. In our GAPG, this is unnecessary.
So by comparing (32) and (20) GAPG is expected to converge
faster than the original APG.

2) Solving the Subproblem: Then the subproblem of GAPG
for anisotropic TV-based image restoration is:

min
x̂

λµ(χBl,u
(x) + ∥dv∥1 + ∥dh∥1)

+f(ŷk) + ⟨x− yk
x,A

T (Ayk
x − b)

+DT
v (Dvy

k
x − yk

dv
) +DT

h (Dhy
k
x − yk

dh
)⟩

+⟨dv − yk
dv
,yk

dv
−Dvy

k
x⟩

+⟨dh − yk
dh

,yk
dh
−Dhy

k
x⟩

+
λmax

2
∥x− yk

x∥2F
+
η

2
∥dv − yk

dv
∥2F +

η

2
∥dh − yk

dh
∥2F ,

(45)

where ŷk = ((yk
x)

T , (yk
dv
)T , (yk

dh
)T )T .

With a little algebra we can see that problem (45) can be
decomposed into three independent smaller subproblems:

min
x

λµχBl,u
(x)

+
λmax

2
∥x− {yk

x − λ−1
max[A

T (Ayk
x − b)

+DT
v (Dvy

k
x − yk

dv
) +DT

h (Dhy
k
x − yk

dh
)]}∥2F ,

(46)
min
dv

λµ∥dv∥1

+
η

2
∥dv − [yk

dv
− η−1(yk

dv
−Dvy

k
x)]∥2F ,

(47)

min
dh

λµ∥dh∥1

+
η

2
∥dh − [yk

dh
− η−1(yk

dh
−Dvy

k
x)]∥2F .

(48)

Moreover, in every subproblem, the unknowns can be solved
independently due to the separable nature of the subproblems.
This property makes our GAPG algorithm highly paralleliz-
able. Using the results in Section II-C, we can easily have

(xk)i,j =

 l, if (x̃k)i,j < l,
(x̃k)i,j , if l ≤ (x̃k)i,j ≤ u,
u, if (x̃k)i,j > u,

(49)

(dk
v)i,j = Tλµ/η((d̃k

v)i,j),

(dk
h)i,j = Tλµ/η((d̃k

h)i,j),
(50)

where

x̃k = yk
x − λ−1

max[A
T (Ayk

x − b)
+DT

v (Dvy
k
x − yk

dv
) +DT

h (Dhy
k
x − yk

dh
)],

d̃k
v = yk

dv
− η−1(yk

dv
−Dvy

k
x),

d̃k
h = yk

dh
− η−1(yk

dh
−Dhy

k
x).

(51)
3) Continuation Technique: The relaxation parameter µ

has to be chosen very small so that the solution to (36) is
close enough to that to (33). However, a small µ will yield
bad-conditioned problems and make the convergence slow2.
To remedy this issue, the continuation technique has been

2This is because the thresholding operators in (50) will be ineffective.
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adopted in [27][29][30] by setting a much larger initial value
µ0 of µ and gradually decreasing its value when the iteration
goes on. The continuation technique has also been applied
to other optimization problems, e.g., matrix completion [24]
and robust principal component analysis [22]. Another way
to tackle this issue is to jointly use the variable splitting and
augmented Lagrangian method (ALM), specifically the alter-
nating direction method of multipliers (ADMM) [26] [33] [34].
Other splitting methods, e.g., split-Bregman [28] and Douglas-
Rachford Splitting (DRS) [35], have also been developed to
address this difficulty. Actually, split-Bregman with a single
inner iteration is equivalent to ADMM [36]. Please see [36]
and [37] for more discussions on the relationship between
ALM, split-Bregman, and DRS.

In our implementation, we adopt the continuation technique
because it can be naturally integrated with the GAPG algo-
rithm. We set µ0 = ∥b∥F and let it decrease gradually until
the target value µ̄ = δµ0 is reached. We empirically choose
δ = 10−3 and decrease µ by

µk+1 = max

((
0.9 + 0.1

(
2k − 2

2k − 1

) 1
8

)
µk, µ̄

)
.

When µ decreases, λmax may also be reduced according to
(43). Our numerical results show that such heuristic rules are
sufficient for most applications.

C. Algorithm
We now summarize our GAPG-based anisotropic TV-based

image restoration algorithm as Algorithm 3 3. Note that in real
computation the matrix-vector products in Algorithm 3 should
be replaced by operators acting on images. For example,
AT (Ayk

x − b) is actually computed as A∗(A(yk
x)− b).

Compared with MTwIST [14] and MFISTA [21], the pro-
posed algorithm is significantly faster with better or at least
comparable restoration quality. The proposed algorithm is
more suitable for fast image restoration thanks to three tech-
niques. The first is the problem formalization (36) that involves
auxiliary variables to decouple the problem, with which we
need not solve the TV-based denoising problem (25) in each
iteration. The second is the GAPG method, which is expected
to be more efficient than the original APG by choosing an
appropriate matrix Lf such that different variables can have
different “Lipschitz constants”. The third is the continuation
technique to provide good initial solutions for our GAPG
method.

It is also worth noting that both MFISTA and MTwIST need
to evaluate the objective function values during the iterations
in order to ensure that the objective function values decrease
with iterations (c.f. (28)). In contrast, our GAPG algorithm
does not require such extra computation.

V. ISOTROPIC TV-BASED IMAGE RESTORATION

In this section, we introduce our algorithm for isotropic TV-
based image restoration. As it is very similar to the case of
anisotropic TV, we only sketch some key differences in the
problem formulation and the subproblems.

3To terminate the iteration, one may check whether the difference in the
objective function value or the iterative solution is below a threshold.

Algorithm 3 Anisotropic TV-based Image Restoration via
GAPG
Input: Observed image b, λ, µ0, A, Dv, and Dh

Output: x← xk.

1: x0 ← PBl,u
(b), d0

v ← Dvx0, d0
h ← Dhx0, t0 ← 1,

µ̄← δµ0, y1
x ← x0, y1

dv
← d0

v , y1
dh
← d0

h, k ← 1.
2: while not converged do
3: // Line 4 solves subproblem (46).
4: xk ← PBl,u

{yk
x−λ−1

max[A
T (Ayk

x−b)+DT
v (Dvy

k
x−

yk
dv
) +DT

h (Dhy
k
x − yk

dh
)]},

5: // Lines 6-7 solve subproblems (47) and (48).
6: dk

v ← Tλµk/η(y
k
dv
− 1

η (y
k
dv
−Dvy

k
x)),

7: dk
h ← Tλµk/η(y

k
dh
− 1

η (y
k
dh
−Dhy

k
x)),

8: tk+1 ←
1+
√

1+4(tk)2

2 ,
9: // Lines 10-12 update yk+1

x ,yk+1
dv

,yk+1
dh

.
10: yk+1

x ← xk + tk−1
tk+1

(xk − xk−1),
11: yk+1

dv
← dk

v + tk−1
tk+1

(dk
v − dk−1

v ),
12: yk+1

dh
← dk

h + tk−1
tk+1

(dk
h − dk−1

h ),
13: Update µk to µk+1,
14: k ← k + 1
15: end while

A. Problem Formalization
The isotropic TV-based image restoration problem is for-

malized as

min
x∈Bl,u

1

2
∥Ax− b∥2F + λTViso(x), (52)

where TViso(x) is defined as (4). Like the anisotropic case,
by introducing two new variables dv and dh [28], imposing
the boundedness constraints on dv and dh and using isotropic
TV induced norm (9), the problem can be rewritten as:

min
x,dv,dh

µ

2
∥Ax− b∥2F

+
1

2
∥dv −Dvx∥2F +

1

2
∥dh −Dhx∥2F

+λµ
(
∥(dv dh)∥iT + χBl,u

(x)
)
.

(53)

B. Isotropic TV-based Image Restoration via GAPG
We may still choose f(x̂) as the one in (37) and the rest

in (53) as g(x̂), so the matrix Lf is still chosen as (40).
Similarly, problem (53) can be decomposed into two smaller
subproblems. The first one is still (46), hence x is still updated
as (49). The second subproblem is:

min
dv,dh

λµ ∥(dv dh)∥iT
+
η

2
∥dv − [yk

dv
− η−1(yk

dv
−Dvy

k
x)]∥2F

+
η

2
∥dh − [yk

dh
− η−1(yk

dh
−Dvy

k
x)]∥2F ,

(54)

which can be further separated into mn independent subprob-
lems:

min
(dv)i,j ,(dh)i,j

λµ
√
(dv)2i,j + (dh)2i,j

+
η

2
[((dv)i,j − (d̃k

v)i,j)
2

+((dh)i,j − (d̃k
h)i,j)

2],

(55)
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                       Blurred and noisy            MTwIST 

  

MFISTA               GAPG 

 Fig. 1. Isotropic TV-based image restoration from a blurred and noisy
Lena image. top left: blurred and noisy Lena; top right: restored image using
MTwIST; bottom left: restored image using MFISTA; bottom right: restored
image using GAPG.

where the definitions of d̃k
v and d̃k

h can be found in (51).
Then by Proposition 2, dk

v and dk
h are updated by:

(dk
v)i,j = Tλµ/η

(√
(̃d

k

v)
2
i,j + (d̃k

h)
2
i,j

)
× (d̃k

v)i,j√
(d̃k

v)
2
i,j + (d̃k

h)
2
i,j

,

(dk
h)i,j = Tλµ/η

(√
(̃d

k

v)
2
i,j + (d̃k

h)
2
i,j

)
× (d̃k

h)i,j√
(d̃k

v)
2
i,j + (d̃k

h)
2
i,j

,

(56)

Finally, by combining the continuation technique, our
GAPG-based algorithm for isotropic TV-based image restora-
tion is almost the same as that in Algorithm 3, except that the
updating rules for dk

v and dk
h are changed to (56). So we omit

the pseudo codes.

VI. EXPERIMENTAL RESULTS

In this section, we present the results of the proposed
method for image restoration from blurred and noisy images
and from incomplete samples (inpainting). In our experiments,
we only test the algorithms for solving isotropic TV-based
image restoration problems. Then we compare the computa-
tional time and the peak signal-to-noise ratio (PSNR) of the
proposed method with two recent methods, MTwIST [14] and
MFISTA [21]. In order to verify the efficiency of GAPG, we
also compare the convergence speed of GAPG, the original

  

                       Blurred and noisy            MTwIST 

  

MFISTA               GAPG 

 Fig. 2. Isotropic TV-based image restoration from a blurred and noisy
Cameraman image. top left: blurred and noisy Cameraman; top right: restored
image using MTwIST; bottom left: restored image using MFISTA; bottom
right: restored image using GAPG.

APG, and MTwIST using the same image restoration problem
formulation (53).

All the methods are implemented in MATLAB and are
tested on a computer with a Core 2 Quad Q6600 processor
running at 2.40GHz. The source codes of MTwIST (ver-
sion 2) and MFISTA are downloaded from http://www.lx.
it.pt/∼bioucas/code/TwIST v2.zip and http://ie.technion.ac.il/
∼becka/papers/tv fista.zip, respectively4. When approximately
solving the TV-based denoising subproblem that these two
algorithms require (see Section II-D), we use the default
number kinner = 10 of the inner iterations.

A. Image Restoration

In this subsection, we present the numerical results of
recovering image x from the blurred and noisy observed image
b given by

b = x ∗ k+ ϵ, (57)

where k is a blurring kernel, ϵ is an additive normally
distributed noise, and ∗ is the convolution operator.

In our experiments, two 256 × 256 images, Lena and
Cameraman, are used to test the effectiveness and efficiency of
the GAPG method for isotropic TV-based image restoration.
To obtain the blurred and noisy images, the original images are
first blurred with a 9× 9 Gaussian blurring kernel with mean
zero and standard deviation 4 and then added with normally
distributed noise with mean zero and standard deviation 10−3

4We will also make our source code available online if the paper is accepted.
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TABLE I
IMAGE RESTORATION: CPU TIMES AND PSNR VALUES OBTAINED USING

MTWIST, MFISTA, AND GAPG FOR THE LENA IMAGE

PSNR (dB) CPU times (s)

MTwIST (k=100) [14] 29.00 20.21

MFISTA (k=100) [21] 29.13 30.79

GAPG (k=150) 29.23 4.86

TABLE II
IMAGE RESTORATION: CPU TIMES AND PSNR VALUES OBTAINED USING

MTWIST, MFISTA, AND GAPG FOR THE CAMERAMAN IMAGE

PSNR (dB) CPU times (s)

MTwIST (k=100) [14] 27.33 20.83

MFISTA (k=100) [21] 27.56 31.38

GAPG (k=150) 27.66 4.91
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Fig. 3. The speedup of GAPG against MTwIST for image restoration with
different image sizes.
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Fig. 4. Function values of GAPG, MTwIST, and the original APG in solving
problem (53), where the image is the blurred and noisy Lena image and µ is
fixed at ∥b∥F .

(the graylevels are normalized to [0, 1]). Like [21], the regu-
larization parameter λ = 10−4 is chosen, which corresponds
to the best PSNR value.

One may be interested in verifying whether the proposed

GAPG method would achieve competitive restoration perfor-
mance and better computational efficiency while compared
with other solutions, e.g., MTwIST [14] and MFISTA [21].
Fig. 1 shows the blurred and noisy Lena image and the
restoration results obtained by MTwIST (100 iterations) [14],
MFISTA (100 iterations) [21], and GAPG (150 iterations)5.
Fig. 2 shows the results on the Cameraman image. Tables
I and II list the CPU times and the PSNR values obtained
using MTwIST, MFISTA, and GAPG. The PSNR values of
the three methods are similar, and that of GAPG is slightly
higher. Although the number of iterations of GAPG (k = 150)
is larger than those of MTwIST and MFISTA, thanks to the
simpler problem formalization (53) and the GAPG method,
the proposed algorithm can be about four times faster than
MTwIST and MFISTA.

For the problem of recovering an image from blurred
and noisy observation, we further evaluate the speedup of
GAPG against MTwIST for Lena images with different sizes,
as shown in Fig. 3. We adopt the simple nearest neighbor
interpolation to generate the Lena images in sizes other than
256× 256, and apply the same configurations of the blurring
kernel and regularization parameters used in the previous
experiments. From Fig. 3, GAPG can be at least two times
faster than MTwIST for images of different sizes. Moreover,
if the image size is not less than 256× 256, GAPG can be at
least four times faster than MTwIST.

It is informative to compare the convergence rates of
GAPG, MTwIST, and the original APG in solving the same
optimization problem. We do this by testing them on the
same problem (53) with fixed µ = ∥b∥F . Fig. 4 shows their
objective function values on the blurred and noisy Lena image.
The minimum objective function value F ∗ is approximated by
F (xk) with k = 2000 using GAPG. At the 150th iteration,
the function value of GAPG is 22.51 while those of the
original APG and MTwiST are 23.17 and 24.18, respectively.
Experiments on the Cameraman image also show similar
results. Thus GAPG indeed converges faster than MTwIST
and the original APG.

B. Image Inpainting

The target of image inpainting is to fill in missing pixels in
a damaged image, which can be defined as

A(x)(i, j) =
{

x(i, j), if (i, j) ∈ Ω,
0, if (i, j) ̸∈ Ω,

(58)

where Ω is the index set of known pixels. We only consider
one special class of inpainting, where the missing pixels
form small holes. In our experiments, we uniformly randomly
sample 20% of pixels from two 256 × 256 images, Lena
and Cameraman, to evaluate the inpainting methods using
MTwIST, MFISTA, and GAPG. For this problem, it is easy
to prove that ∥A∥2 = 1. So we also have a tight estimate
of λmax. In our experiments, the regularization parameter is
chosen as λ = 10−2, which corresponds to the best PSNR
value.

5Here we run different methods with fixed number of iterations in order to
obtain solutions with similar PSNRs, so that the convergence speed can be
correctly compared.
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                          Damaged                MTwIST 

  

MFISTA               GAPG 

 Fig. 5. The restoration results of image inpainting. top left: damaged Lena
image; top right: restored image using MTwIST; bottom left: restored image
using MFISTA; bottom right: restored image using GAPG.

  

                           Damaged               MTwIST 

  

MFISTA               GAPG 

 Fig. 6. The restoration results of image inpainting. top left: damaged
Cameraman image; top right: restored image using MTwIST; bottom left:
restored image using MFISTA; bottom right: restored image using GAPG.

First, using the Lena and Cameraman images, we compare
the performance and efficiency of GAPG, MTwIST, and M-
FISTA. Figures 5 and 6 show the inpainting results obtained
using MTwIST (k = 100), MFISTA (k = 100), and GAPG

TABLE III
IMAGE INPAINTING: CPU TIMES AND PSNR VALUES OBTAINED USING

MTWIST, MFISTA, AND GAPG FOR THE LENA IMAGE

PSNR (dB) CPU times (s)

MTwIST (k=100) [14] 25.17 12.41

MFISTA (k=100) [21] 24.98 33.51

GAPG (k=150) 25.35 2.85

TABLE IV
IMAGE INPAINTING: CPU TIMES AND PSNR VALUES OBTAINED USING

MTWIST, MFISTA, AND GAPG FOR THE CAMERAMAN IMAGE

PSNR (dB) CPU times (s)

MTwIST (k=100) [14] 22.94 12.44

MFISTA (k=100) [21] 22.88 35.54

GAPG (k=150) 23.38 2.86
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Fig. 7. The speedup of GAPG against MTwIST for inpainting with different
image sizes.

(k = 150). Tables III and IV list the CPU times and the
PSNR values obtained using MTwIST, MFISTA, and GAPG.
As shown in Table III, for the Lena image, the PSNR of
GAPG is 25.35 dB, which is slightly higher than those of
MTwIST (25.17 dB) and MFISTA (24.98 dB). The CPU time
of GAPG is 2.85s, which is also much less than those of
MTwIST (12.41s) and MFISTA (33.51s). As shown in Table
IV, similar results are also obtained on the Cameraman image.
Thus, for image inpainting, GAPG is also much more efficient
than MTwIST and MFISTA.

Fig. 7 shows the speedup of GAPG against MTwIST in
inpainting the Lena images with different sizes. One can see
that GAPG is more than three times faster than MTwIST for
the sizes of images tested.

Finally, we compare the objective function values of GAPG,
MTwIST, and the original APG on the damaged Lena image.
The experimental setting are the same as before. The results
are shown in Fig. 8. At the 150th iteration, the function
value of GAPG is 86.39 while those of the original APG and
MTwIST are 87.93 and 88.51, respectively. Experiments on
the Cameraman image also show similar results. So GAPG
also converges faster than MTwIST and the original APG on
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Fig. 8. Function values of GAPG, MTwIST, and the original APG in solving
problem (53), where the image is the Lena image with missing pixels and µ
is fixed at ∥b∥F .

the same inpainting problem.

VII. CONCLUSIONS

In this paper, we propose a novel approach to solve
anisotropic and isotropic TV-based image restoration. First,
we extend the original APG method with a constant step
size to propose a generalized accelerated proximal gradient
method, such that different variables can have different “Lip-
schitz constants”. The appealing convergence rate O(k−2) is
maintained by the GAPG method and our numerical results
show that GAPG converges faster than the original APG.
Second, by introducing two auxiliary variables, we are able
to decompose the problem into much smaller problems that
can be solved with high parallelism. Finally, we also adopt
the common continuation technique to gradually reduce the
relaxation parameter in order to provide good initial so-
lutions. As a result, the proposed method is much faster
than two recently developed APG-based methods, MTwIST
[14] and MFISTA [21], with at least comparable restoration
performance. Compared with the mathematical deductions of
MTwIST and MFISTA, which require approximately solving
image denoising subproblems, the deductions of GAPG are
also much simpler.
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