1370

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO.7, JULY 2011

Penrose Pixels for Super-Resolution
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Bennett Wilburn, Member, IEEE, and Wei Zhang

Abstract—We present a novel approach to reconstruction-based super-resolution that uses aperiodic pixel tilings, such as a Penrose
tiling or a biological retina, for improved performance. To this aim, we develop a new variant of the well-known error back projection
super-resolution algorithm that makes use of the exact detector model in its back projection operator for better accuracy. Pixels in our
model can vary in shape and size, and there may be gaps between adjacent pixels. The algorithm applies equally well to periodic or
aperiodic pixel tilings. We present analysis and extensive tests using synthetic and real images to show that our approach using
aperiodic layouts substantially outperforms existing reconstruction-based algorithms for regular pixel arrays. We close with a
discussion of the feasibility of manufacturing CMOS or CCD chips with pixels arranged in Penrose tilings.

Index Terms—Super-resolution, Penrose tiling, CMOS sensor, CCD sensor.

1 INTRODUCTION

RECENT research in super-resolution (SR) has raised
significant concerns regarding the usability of recon-
struction-based super-resolution algorithms (RBA [7]) in the
real world. Baker and Kanade [7] showed that the condition
number of the linear system used in RBA and the volume of
solutions grow quickly with increasing magnification. Lin
and Shum [25] showed that the effective magnification factor
can be at most 5.7. Zhao and Sawhney [35] showed that even
properly aligning local patches for SR is difficult. More recent
RBA algorithms using statistical models and image priors
[34],[30], [20] are more robust and accurate, but the maximum
magnification factor remains relatively low (2x to 4x).

Overcoming these limitations requires a new approach to
RBA. As noted by Baker and Kanade [7], RBA can be
divided into two steps: deblurring optical blur and
enhancing resolution. Multiple images taken at small
camera displacements provide little or no additional
information with respect to the optical blur, so the first
step is mostly a blind image deblurring. Moreover, real
optical blur is rarely or never shift invariant (and therefore
cannot be expressed by a single point spread function) and
changes with focus and aperture. This makes the problem
of optical deblurring nontrivial at best.

This paper focuses on the second aspect of RBA: detector
resolution enhancement using multiple images. Optical
deblurring can be applied to the result later, provided that
the lens properties are known. There is a significant
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technological gap, however, between the theoretical optical
resolution limits and current sensor resolutions, particularly
for short wavelengths (380-400 pm). This is true for high-
quality sensors with large pixels (9 to 15u) as well as ones
with very small pixels (2¢ to 4p). Moreover, sensor
technology advances more slowly than may be expected
[12], while physics is already exploring the feasibility of a
“perfect lens” using materials with negative indexes of
refraction [29]. Therefore, there is a clear need for resolution
enhancement at the sensor level.

1.1 Related Work

Roughly speaking, SR algorithms can be categorized into
four classes [11], [27], [15]. Interpolation-based algorithms
register low-resolution images (LRIs) with the high-resolu-
tion image (HRI), then apply nonuniform interpolation to
produce an improved-resolution image, which is then
deblurred. Frequency-based algorithms try to de-alias the
LRIs using the phase differences between the LRIs.
Learning-based algorithms (e.g., [17], [7]) incorporate
application-dependent priors to infer the unknown HRL
Reconstruction-based algorithms rely on the relationship
between the LRIs and the HRI and assume various kinds of
priors on the HRI in order to regularize this ill-posed
inverse problem. Among these four categories of algo-
rithms, RBAs are the most commonly used SR algorithms.
RBAs usually first form a linear system

L=PH+E, (1)

where L is the column vector of the irradiances of all the
low-resolution pixels (LRPs), H is the vector of the
irradiances of the HRI, P gives the weights of the high-
resolution pixels (HRPs) in order to obtain the irradiance of
the corresponding LRPs, and E is the noise. Past methods to
solve (1) for the HRI include maximum a posteriori (MAP)
[21], [14], regularized maximum likelihood (ML) [14],
projection onto convex sets (POCS) [28], and iterative back
projection [23].

In all previous work, the LRPs appear on the left hand
side of the system (1) and the LRI pixel layouts are all
regular grids, with square pixels. Based on such a
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configuration, both the practical and theoretical analyses
[7], [25] have shown that the magnification factor is limited
to a relatively small number.

Nonrectangular pixel layouts, mostly hexagonal, have
been studied [1] for a range of imaging tasks, such as edge
detection [26]. Nonrectangular layouts have also been used
to increase pixel density, as in the new Fujifilm super CCD.
However, these sensors all use periodic tiling and suffer
from the same limitations as rectangular tiling with respect
to super-resolution. Random sampling was used in the
context of compressive sensing [33], [16]. Although Penrose
tiling is quasi-random, the compressive sensing framework
is very different because RBA is not compressive, and
random sampling (tiling) is not considered an aperiodic
tiling since the set of tiles is not finite.

1.2 Our Contributions

We increase the RBA magnification factor by breaking the
two aforementioned conventions. Rather than using a
regular pixel grid for the LRIs, we use aperiodic layouts for
the detector, resulting in LRIs with an irregular pixel layout.
The irregular layout leads to a much more independent
equation set. Most importantly, since our layout has no
translational symmetry, we can use larger displacements
(multiples of half a pixel) between LRIs without having the
grid repeat itself. This enables computation of the HRI with
larger magnifications. For regular grids, by contrast, the
effective displacement is modulo pixel size, which limits the
number of different displacements that are at least € apart.
We argue that manufacturing a Penrose pixel image sensor
is feasible given current technologies and also discuss the
potential benefits of such sensors that are not directly
related to super-resolution.

To recover a high-resolution image from the raw data
captured by the aperiodic pixel layouts, we propose a
variant of the traditional error back projection algorithm.
Rather than using the LRPs directly for the left-hand side of
(1), we upsample the LRIs to the high-resolution grid to
match the detector’s actual layout (for example, nonsquare
pixels with small gaps between them), as shown in Figs. 1a
and 1d. For a perfectly square pixel layout, this is identical
to a nearest neighbor interpolation. In theory, this is
equivalent to multiplying a matrix involving the upsam-
pling to both sides of (1). This treatment results in very
different behavior in the presence of noise. This is
analogous to preconditioning techniques [18] for solving
linear systems. Our model does not require that the LRPs
fill the whole detector plane, for either regular or irregular
layouts. We specifically model the gaps between physical
pixels as null values, which better matches the information
that is actually acquired by the sensor. Our novel error back
projection algorithm iteratively recovers the super-resolved
image for arbitrary pixel layouts, either regular or irregular.

2 OpTICcS AND DETECTOR PROPERTIES

Super-resolution has been addressed mostly from a compu-
tational point of view, focusing on the conditioning of the
reconstruction problem with respect to noise and quantiza-
tion errors [7], [25]. Little attention is paid to the blur
functions of real lenses and the sampling properties of real
sensors. These are often approximated by a Gaussian blur for
the lens and a box function for the sensor. In this section, we
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Fig. 1. A regular pixel layout and a Penrose pixel layout on the detector
plane. (a) A microscopic view of a Sony 1/3” sensor (part). Our method
models the nonsquare shape of the pixels as well as the gaps between
them. (b) A hypothetical aperiodic Penrose pixel layout. (c) An example
image at the sensor surface (irradiance). (d) Spatial integration for the
conventional layout. (e) Spatial integration for the Penrose layout.

discuss lens blur and spatial integration, and their impact on
the performance of super-resolution of real images.

2.1 Modulation Transfer Function and

Super-Resolution
The modulation transfer function MTF()) of a lens system
describes how sharp a spatial sine wave will appear on the
image plane prior to being sampled by the sensor. The MTF
drops as the spatial frequency increases and limits
the achievable magnification factor for super-resolution.
To see this, consider a 1D case in which a perfect [0,1]
vertical edge passes through a pixel. For a quantization
level of € and a pixel size of 1, the minimum displacement
that produces a detectable change (above the quantization
level) in the measured pixel intensity would be d;, = e
This implies that 1 different values are obtained as the edge
moves across the pixel. If the contrast level drops to
[0.25,0.75], however, then the minimum detectable displa-
cement would be d,,;, = 2¢, thereby halving the number of
possible different values.

For periodic tiling such as square pixel tiling, the
maximum displacement before the complete image repeats
is the tiling period length (one pixel for square pixel tiling).
To collect more images, one must use shorter and shorter
displacements. As the contrast level drops, however, small
displacements will cause fewer and fewer pixels to change
value (above noise level and quantization error). This is a
fundamental limit for super-resolution using periodic tiling.
By contrast, one can collect many measurements with
aperiodic tilings using a series of half-pixel displacements
in any given direction. Later, we will show that this leads to
a much better conditioned system of equations for super-
resolution.

2.2 Modeling Real Lens Blur

The MTFs of real lenses vary with distance from the optical
center, orientation, focus, and of course aperture changes.
Figs. 2a and 2b show the measured MTF of a Carl Zeiss
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Fig. 2. MTF of the Carl Zeiss Planar T*1.4/50 standard lens. The plot
shows the MTF value for 10 (top), 20, and 40 Ip/mm at two different
orientations as a function of distance from the optical center. Clearly, the
MTF is not uniform and is neither shift invariant nor orientation invariant.
Therefore, it is not well modeled by a Gaussian.

standard lens (Planar T*1, 4/50) for a specific focal distance,
two different apertures and three spatial frequencies, as a
function of the distance from the optical center. The solid
and dashed lines refer to different orientations. The value of
the MTF clearly varies for different image locations and
orientations. Therefore, the blur of a real lens cannot be
expected to be shift-invariant or Gaussian. Image deblur-
ring assuming a Gaussian blur function results, in the best
case, in a sharpening operator similar to the Photoshop
unsharp mask. In other cases, it can lead to unwanted
artifacts. For this reason, we do not attempt to account for
lens blur. Instead, we only recover the super-resolved
image at the sensor plane.

2.3 Modeling the Pixel Blur

Modeling the pixels of a sensor is an easier task than
modeling the lens. Usually the pixel integration blur
function is modeled as a 2D box function. This model
assumes that pixels are uniform, perfectly square in shape,
and that there are no gaps between pixels. Real sensors,
however, are not perfectly square and abutting. When
microlenses are used, the shape of the microlens, usually
circular, determines the effective area (see Fig. 1a). When
microlenses are not used, the shape of the pixels can vary
significantly. Full frame and interline CCD sensors usually
have square or rectangular pixels, but with different fill
factors. The FujiFilm Super CCD has octagonal pixels and a
diagonal layout. The shape of the active area of CMOS sensor
pixels can vary from a small square to an “L” shape [31].

The shape of real pixels is therefore not modeled exactly
by a regular grid of square pixels. In some cases, such as a
sensor with low fill factor, the conventional modeling can
be misleading; one example occurs when a strong but sharp
feature falls in the gap between pixels. We want to model
exactly what each pixel measures, and nothing more.
Provided that we know the layout of the sensor, we can
represent this knowledge in an image such as Fig. 1b. This is
a high-resolution image, but it represents the information
obtained by a lower resolution sensor as well as the layout
of this sensor. In the next sections, we use this representa-
tion to model an aperiodic layout that cannot be approxi-
mated by a simple shift invariant kernel.

3 PENROSE TILING

Penrose tiling is an aperiodic tiling of the plane presented
by R. Penrose in 1973 [19]. Figs. 1b and 3a show the
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Fig. 3. Rhombus Penrose tiling is an aperiodic tiling consisting of two
rhombi in five different orientations. This layout is neither regular nor
amorphous as seen in its frequency domain image* that clearly shows its
five fold rotational symmetry.

rhombus Penrose tiling, which consists of two rhombi, each
placed at one of the five different orientations according to
specific rules [19]. The ratio of the number of thick to thin
rhombi is the Golden Number #, which is also the ratio
of their areas. Unlike regular tiling, Penrose tiling has no
translational symmetry—on an infinite plane, it never
repeats itself exactly." For the purpose of super-resolution,
this means that it is theoretically possible to integrate and
sample the infinite plane indefinitely without repeating the
same pixel structure. In practice, this allows the capture of a
significantly larger number of different images than is
possible with a regular grid. Moreover, all images can be
optimally displaced approximately half a pixel apart and
still be different. By contrast, a regular square tiling forces
the maximal delta between equally spaced displacements in
x and y to be at most §;, where M is the linear magnification
factor. As mentioned in the previous section, this is very
harmful to super-resolution. The rhombus Penrose tiling
shown in Fig. 1b is a good candidate for a hardware color
sensor implementation because it is 3-colorable [32] and has
only two simple tiles. This is the primary reason that we
selected this particular aperiodic tiling. By contrast, using
random tessellation, such as a Voronoi tessellation over a
random set of centers, results in numerous different tiles
with different electric and photometric properties and will
be very difficult to make.

4 OuRr MoODEL AND ALGORITHM FOR SR

This section describes our model and algorithm, which aims
to obtain the best possible results for real photographic
systems. Similarly to the Jitter-Camera [10], we assume the
motion of the camera to be translational on a plane parallel
to the detector plane. We also assume that the images are
captured (or otherwise selected) in a controlled manner such
that the displacements are equal in both the horizontal and
the vertical directions and are exactly {; apart (for regular
grid), where M is the linear magnification factor. The
meaning of the magnification factor for irregular pixel
layouts is somewhat ambiguous. We therefore refer to the
resolution (and hence the magnification factor) as the
number of pixels in a given area. Two different layouts
are considered to have the same resolution if they have the

1. The Penrose tiling never repeats itself on an infinite plane, but any
finite portion of the Penrose tiling can repeat infinitely many times [19].
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Fig. 4. Upsampling and resampling. Upsampling is done by placing a
regular high-resolution pixel (HRP) grid over the actual shape of the low
resolution pixels (LRP), shown as white areas, then assigning the value
of the LRP to each of the HRPs covering it. HRPs that (mostly) cover
black areas (non-photo-sensitive areas) are assigned the value null.
Downsampling is an inverse procedure that integrates the nonnull HRP
values to form the value of its underlying LRP. Resampling is the
composition of downsampling and upsampling.

same number of pixels within a given area (up to a
rounding error).

The shape of LRPs can also be different from each other,
and gaps between pixels are allowed. As in [8], [7], [25], we
also assume that the pixels of the sensor have uniform
photosensitivity, which implies that the contribution of an
HRP to an LRP is proportional to its area inside the LRP and
vice versa. These assumptions greatly simplify our model
and implementation, but, as we show later in this section,
they can easily be relaxed.

4.1 Upsampling and Resampling

In our approach, the LRPs in each LRI may not be aligned on
aregular grid. Nonetheless, we can still index each LRP in an
LRI because we have full knowledge of the pixel layout. As
soon as an LRI is captured, we immediately upsample it to
the high-resolution grid to create an intermediate HRI. This
intermediate HRI, not the original LRI, is involved in the
computations that follow. As shown in Fig. 4, upsampling is
done by placing a regular high-resolution pixel grid over the
actual shape of the low-resolution pixels and then mapping
HRPs to LRPs. HRPs that are not associated with any LRP are
assigned the value null to differentiate them from the value
zero. The assumption of pixel uniformity can be relaxed at
this stage by multiplying the intermediate HRI with a weight
mask to compensate for any intrapixel nonuniformities. For
fronto-parallel translational motion with image displace-
ments equal to ﬁ, it turns out that the registration of the
intermediate HRI is simply an integer shift of the origin. If
the motion assumptions do not hold, an additional warping
step is required after the upsampling. We denote the
upsampling operator by 1. ; , where Tj is the transformation
for registration and G is the sensor layout map.

Our algorithm also includes an error back projection
procedure. It requires a resampling operator (Fig. 4),
denoted by [, which simulates the image formation
process to produce new intermediate HRIs given an
estimate of the super-resolved image. The resampling
operator can be viewed as a downsampling operator
followed by an upsampling operator. An alternative way
to view the upsampling and resampling operators is to view
the downsampling operator as filling each LRP with the
average value of the HRPs inside it, and the upsampling/
resampling operator as filling the HRPs inside the same LRP
with their average value. In practice, the computation is
done “in-place” and no actual downsizing takes place. The
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resulting images are hypotheses of the intermediate HRIs,
assuming that the super-resolved image is the correct one.

4.2 Error Back Projection Algorithm

Our super-resolution algorithm is a variant of the well-
known error back projection super-resolution algorithm
[23]. Unlike the traditional algorithm, which downsamples
the images into a low resolution array, our algorithm is
performed entirely on the high-resolution grid. Using the
concepts in the previous section, we summarize our
algorithm as follows:

Algorithm 1
Inputs:
e Ly,...,Lyp: Low resolution images (with roughly
N? pixels).
e Ti,...,T)p: Transformations for registering the LRIs.
e M € N : Magnification factor.
e G Sensor layout map.
Output:
e S: Super-Resolved image (NM x NM).
Processing:
1) Upsample: H; = L; T1, ¢
.1 M2
2) Initialize: S° = W; H,.

i€l,...,M?.

3) Iterate until convergence:

ﬂ . 1 &
o Gkt _ gb + 5 ) (Hi - S¥1p ).
1=1

b.  Limit: 0 < S*(z,y) < MaxVal.

Note that null elements are ignored when computing the
average values. Step 3)b represents the prior knowledge
about a physically plausible image, where MaxVal is
determined by the optical blur and the A/D unit. The
difference between our algorithm and the conventional
back projection algorithm (with a rect kernel) lies in the
upsample stage. Our upsampling operator 1, preserves
sharp edges between pixels at the high-resolution grid,
whereas the conventional algorithm applies the blur kernel
globally. If warping is required, it is performed on the
intermediate HRI after the upsampling.

5 ANALYSIS

In this section, we analyze our super-resolution algorithm
(Algorithm 1) and the irregular Penrose pixel layout. We
begin by analyzing the error bounds for our algorithm and
showing that it converges more closely to the ground truth
for an appropriately chosen aperiodic pixel layout than for a
periodic one. We also discuss the condition number of the
RBA system of equations and show that the Penrose pixel
tiling leads to a better conditioned system, which is thus
more robust to noise. Finally, we look at the information
content of Penrose Pixel and regular pixel layout LRIs and
present experimental results suggesting that sets of Penrose
Pixel LRIs contain more information.

5.1 Convergence of the Algorithm

For the jth LRP of the ith LRI, its downsampling and
upsampling operators can be represented by Njfl(pj.)T and
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Fig. 5. Comparison of (a) the condition number and (b) the numerical rank for Penrose pixel and square pixel layouts. Fixed threshold (0.05) and
different magnification factors. (c) Numerical rank for the Penrose pixel and square pixel layouts. Fixed magnification factor (x8) and different
thresholds. The Perose layout is more numerically stable with respect to both the condition number and the numerical rank.

P/, respectively, where N; is the number of HRPs inside the
jth LRP and p; is a binary vector: p(k) = 1 indicates that the
kth HRP is inside the jth LRP of the ith LRI, and p)(k) = 0 if
not. The superscript 7 denotes transpose. Then the resam-
pling operator, as the composition of downsampling and
upsampling, associated with the jth LRP of the ith LRI is
Njflp;ﬁ(p;l)T. Hence, the resampling matrix representing the
resampling operator | , in Algorithm 1 can be written as

Ri=) N;'p(p)" (2)

So, every intermediate HRI H; aligned to the high-
resolution grid is connected to the ground truth image S
via the following linear system:

H =R -S+n;, =12, ..., M, (3)

where n; are the noise from L,. As the pixel shape and
layout of LRPs is irregular, it is difficult to write down
exactly how R; looks. Also, as mentioned in the previous
section, in practice we do not explicitly compute the down/
up resampling matrices.

The iteration 3)a in Algorithm 1 can be written as

1
Skt :SkJFW,ﬂ (R;-S+n;—R; - S*), (4)
which can be rewritten as
Sk _ 8§ = (I — R)(S* - S) +, (5)

p__ 1 M? | M?
where R =35> 0 Ry and 72 = 3> i ni. So,
k=1

> (I-Ry

=0

SF—§=(I-R"S"—5)+ . (6)

We can prove that the spectral radius of I — R is usually
less than one (see the Appendix), then limy .. (I — R)k =0
and R is nonsingular with R~' = > (I — R)’. Then, from
(6), we have that

Jim Sk =S+ R 'n, (7)

which means that iteration 3)a in Algorithm 1 converges to
an HRI which deviates from the ground truth by R~17.

5.2 Error Analysis and Numerical Stability

From (7), we may expect that the iterations result in a super-
resolved image which deviates from the ground truth by
R~'n. Note that 72 can be viewed as the empirical estimation
of the mean of the noise. Therefore, when the noise in the
LRIs is of zero mean (and so is n;, as there is a linear
transform between them), we can expect that a high-fidelity
super-resolved image is computed. If we choose an
appropriate pixel layout so that the norm of R~ is small,
then the deviation can be effectively controlled regardless of
the mean of the noise (note that ||lim;_ .. S*— 9| =
|R~1al| < |R7Y||n]). As ||[R7Y| is large when R is close to
singular, we should choose an appropriate detector pixel
layout such that R is far from singular.

According to the above analysis, we should choose pixel
layouts that result in more linearly independent equations
in the system (3). The traditional regular tiling repeats itself
after a translation of one LRP (two LRPs if we account for
the Bayer pattern in color sensors). Lin and Shum [25] also
showed that if five LRPs cover the same set of HRPs, then
their equation set must be linearly dependent. Thus, using
regular (and square) tilings usually results in an insufficient
number of independent equations. To overcome this
difficulty, we try to change the regular tiling to other kinds
of tilings. An intuition is to use aperiodic tilings.

In an attempt to quantify the difference between the
Penrose LRIs and the regular LRIs, we empirically
computed the condition number as well as the numerical
rank (the number of singular values larger than a threshold)
of P from (1) for different magnification factors. Figs. 5a, 5b,
and 5c show the condition numbers and the numerical
ranks with respect to different thresholds for Penrose pixels
and periodic square pixels as a function of the magnifica-
tion factor. We can see for the same magnification factor, the
condition numbers for the Penrose layout are up to an order
of magnitude lower than those for the square pixels, and the
numerical ranks for the Penrose layout are larger than those
for the square pixels. We can also see that the condition
number for the Penrose layout is much more stable than
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that for the square pixels in that it does not suffer from
numerical instability at integer magnification factors [7],
[25]. The numerical rank is similar. These plots show that
the linear system for the Penrose layout is much more stable
than that for the regular square layout.

5.3 Improved Conditioning Using the Resampling
Operator

The previous section presented empirical evidence of the
superior conditioning of Penrose Pixel RBA. We now
explain why the resampling operator can result in better
SR performance than traditional reconstruction-based
methods. Equation (3) leads to the following overdeter-
mined linear system:

H=R-S+n, (8)

where H = (H!,H],....HT,)", R=(RI,R},....RL.)",
and n=(n{,ni,...,nl,)". By contrast, the traditional
formulation for reconstruction-based SR is

Li=D; - S+4e, i=12,..., M. (9)

Here, ¢; is the noise from L; and the matrix D; is the
representation of the downsampling operator in Fig. 4,
leading to the following overdetermined linear system:

L=D-S+e, (10)

where L = (LT, L],....L7)", D= (DT, D},...,D¥,)", and
e=(el,el,...,el,)". The major difference between (3) and
(9) is that D; is roughly a submatrix of R; (R, has many
more rows than D;). So, D is also roughly a submatrix of R.
It is well known in matrix theory [22] that, in this case, the
minimum singular value of R, defined by oum(R) =
ming || Rz||/||z|, will be no smaller than that of D. This
increase of the minimum singular value can greatly reduce
the condition number of the corresponding linear system,
particularly when the original system (10) is ill-conditioned.
Although the maximum singular value of R is also larger
than that of D, our numerical simulation shows that with
very high probability, the condition number, defined as the
ratio of the maximum singular value to the minimum one,
is reduced by adding rows to a matrix. When the original
matrix is very well conditioned, it happens occasionally that
the condition number increases slightly, so the robustness of
the system is virtually unchanged. Generally speaking,
using the resampling operator instead of the traditional
downsampling operator can result in a much better
conditioned system. As a consequence, better SR results
are possible.

5.4 Information Content for Penrose Pixel LRI's

Intuition suggests that because Penrose pixel views can all
be displaced by half LRP intervals, the differences between
adjacent views would be larger than for regular pixels,
which must be displaced by +; (M > 2). When subject to
quantization error, this should provide an advantage to the
Penrose pixels over the regular one. How can we verify this
quantitatively? Here, we present a rough empirical estimate
of the relative information content of regular and Penrose
pixel layouts. We do this using gzip to compress images
captured using both layouts. Gzip uses LZ77, which for
large file sizes converges to optimal compression.
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Fig. 6. File sizes of sample (low resolution) image sets for Penrose and
regular tiling compressed by gzip. The compressed size of the Penrose
tiling set is consistently larger than the size of the compressed regular
set. The compressed size of x8 (64 images) and x16 (256 images) for
the same quantization level is very similar. This indicates (but does not
prove) that the Penrose tiling possesses more information than the
regular tiling for the same number of pixels.

We assume that, for real images (in contrast to special
cases like pseudo-random data), lossless compression is
monotonic, i.e., a larger compressed file implies larger data
complexity. We assume neither optimality nor linearity of the
complexity with respect to the file size. We also ignore the
layout description of both the Penrose and regular pixel tiling
because Penrose and regular tillings of the infinite plane can
be described by a finite (and relatively small) set of rules.
Because the layouts do not match, it is not clear in which
order to serialize the pixels, as this may introduce a bias. We
solve this problem by using the nonoptimal, but nonbiased,
LRI representation in the high-resolution grid and simply
compressing the views in the high-resolution grid.

For our comparison we used the regular and Penrose
layouts shown in Figs. 1d and le. Both are nonsquare pixels,
both have gaps between pixels, and both have the same
average area. We did the following:

1. Create 64 images for x8 magnification factor for
Penrose and regular pixel layouts. The displacement
step is 1 pixel for the regular tiling and 1 pixel for the
Penrose tiling.

2. Concatenate all views into a single file to allow the
compression algorithm to apply dictionary entries
obtained in one view to other views.

3. Compress the concatenated file using gzip and
record the absolute file size.

4. Repeat steps 1-3 for quantization levels of 8, 6, 4, and
2 bits.

5. Repeat steps 1-4 for magnification factor of 16x, and
256 images.

Fig. 6 displays the compressed file size (in K-bytes) for
different quantization levels and magnification factors. The
first thing to notice is that although the number of images
for the magnification factor of 16x was four times larger
than those for 8x magnification, the compressed file size is
very similar, even slightly smaller. This indicates that the
amount of information in these sets did not change
significantly (slight variations are expected due to conver-
gence properties of the algorithm and technical reasons
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Fig. 7. Effects of Quantization Error: Super-resolution results for the “clock” and “face” images using regular tiling. Top left corner: Original image.
Top row: LRIs with different magnification factors (scaled). Center and bottom rows: Super-resolution results for quantization levels of 8 and 5 bits,
respectively. The results gradually degrade as the quantization error and magnification increase. Parentheses are the RMS errors. M? input images

were used.

such as the dictionary size). We also see that the Penrose
tiling LRIs are consistently and quite significantly com-
pressed to a larger file size than the regular tiling LRIs, and
that the difference grows with the quantization level. This
suggests that the Penrose tiling LRIs do contain more
information than the regular ones. This is due to the
combined effect of the displacement size, the pixel aper-
iodicity, and the existence of two different pixel shapes.

6 TESTING AND EVALUATION

We evaluated our approach with simulations and real
image tests. For our first experiment, we simulated the
entire super-resolution process for square and Penrose
pixels. The integration of each pixel was approximated
using the sum of the pixels in the high-resolution grid that
are enclosed within the low-resolution grid pixel area. As
we do not have an actual Penrose pixel sensor, our second
experiment strives to be as close to real world conditions as
possible. We first captured a sequence of high-resolution
real images (each with its own unique noise values) and
then integrated pixel values to simulate a Penrose image.
The last experiment is a start-to-finish real image super-
resolution test.

To fully utilize the advantage of the aperiodic layout,
and to overcome noise, we usually used more images than
unknowns. The advantage of using an overdetermined
system is shown in Fig. 12. For the case of square pixels and
quantization error only, we used M? input images, where
M is the magnification factor. This is the maximum number
of different images we can obtain using a displacement of 4.
The number of input images used in each test appears in the
captions of the relevant figures.

6.1 Regular Pixels Quantization and Noise Tests

In our first simulation, we applied our algorithm to LRIs
synthesized from ground truth HRIs of a clock and a face.

We used regular grids with linear magnification factors of 1
to 16, and quantization levels of 8 and 5 bits. No additional
noise was added. Fig. 7 shows our super-resolution results
and RMS errors (compared to the original image). Though
there is a gradual degradation with increasing magnifica-
tion and quantization error, the super-resolution algorithm
performs very well. This matches our analysis for zero
mean (quantization) noise.

Next, we added Poisson noise (which better models real
noise) to the input images. Fig. 8 shows the super-resolution
result for the “face” image using additive Poisson noise
with mean = 5 and 10 gray levels, followed by 8-bit
quantization. Unlike the zero-mean quantization error, the
nonzero mean Poisson noise significantly degrades the
quality of the results. The results can be improved by using
many more images than the theoretical minimum require-
ment, as shown in the bottom row of Fig. 8.

6.2 Penrose Pixels Quantization and Noise Tests

We repeated the last two tests for two Penrose tiling pixel
layouts. The magnification factors were roughly equivalent
to 8 and 16, and the quantization level was 8-bit. Unlike for
regular pixels, we used displacements of approximately
0.5 pixels and were able to use more images than was
possible with the regular grid. The results shown in Fig. 9
are clearly better than the results obtained with the regular
grid, shown in Figs. 7 and 8.

To better quantify the results, we used a concentric test
target having variable spatial frequency contrast.> We added
low-level noise to each image to create quantization varia-
tions. Then, we applied our algorithm and the conventional
back projection algorithm under exactly the same conditions
and using the same number of input images. Fig. 10 shows
that our algorithm improves the linear magnification by

2. The contrast of real lenses decreases as the spatial frequency increases.
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x8, 256 x8, 625 x8, 900 x8, 1600

Fig. 8. Noise evaluation test using regular tiling. The top two rows show
the results of super-resolution with different magnification factors and
Poisson noise of mean 5 (top) and 10 (middle) gray levels. M2 LRls
were used and all computations were run for several thousand iterations
or until convergence. The amplification of noise is quite clear and the
results are very different from those with zero-mean quantization error
shown in Fig. 7. The bottom row shows the results of super-resolution
with magnification of x8 and noise mean of 10 running for 1,000
iterations, with different numbers of input images (256 to 1,600). The
results are much better than that obtained by using the minimum
64 input images (the boxed image).

roughly a factor of two (for the same RMS errors) compared to
the conventional back projection algorithm with regular
pixels, and by over a factor of four when Penrose pixels are
also used. In this test, we also compared to the RMS errors of
the conventional algorithm with a noninteger magnification
factor to rule out the possibility that the difference is due to
the integer magnification used in our algorithm [7]. As
shown in Fig. 10 the integer magnification factor did not
affect the results for the back projection algorithm.

Fig. 12 compares the RMS error as a function of the
number of images for regular and Penrose tiling, respec-
tively. The magnification factor was eight and the same
algorithm (Algorithm 1) was applied to both layouts. While
the regular layout improved slightly when overconstrained,
the Penrose layout improved by over four times. It is
interesting to see that the regular layout was actually better
when the system was severely underconstrained.

Fig. 13 shows different image types and the conver-
gence of the algorithm (RMS error) as a function of the
number of iterations.

For our last simulation example, we compared our
algorithm to an externally obtained result of [21], [7] using
an image from the FERET database [6]. In Fig. 11, the
improvement from our approach is clearly visible.

6.3 Real Images with Simulated Binning Test

In this test, we captured 576 real images with a Nikon D70
camera on a tripod. We computed the LRIs by integrating
each image with the map G, then quantizing the result.
Thus, the resulting LRIs had unique noise due to sensor
noise, quantization, and JPEG compression. This process is
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Fig. 9. Penrose Pixel super-resolution results. (Top) Input images for
magnification factors of 8 and 16. (Middle) 8-bit quantization result.
Compare to the corresponding images in Fig. 7. (Bottom) 8-bit
quantization, and Poisson noise results. Compare the image labeled
“X 10x8 625” to its corresponding image in Fig. 8. The overconstraint
number of different LRIs used was 625 for x8 and 1,600 for x16 in all
cases.

very similar (though noisier) to pixel binning done at the
analog level. As with pixel binning in real sensors, large
simulated pixels have lower noise than small integrated
pixels do. The LRIs were also subject to slight misalignment
due to shake by the flipping mirror in the camera.
Capturing more images than the required minimum
reduces the effect of slight misalignments. Fig. 14 shows
the results of applying our super-resolution algorithm to the
LRIs for regular and Penrose layouts. The advantage of the
Penrose layout is clear.

6.4 Real Scenario Test

For our real-world test, we captured a sequence of images
using a B/W version of the Sony 1/3” sensor shown in
Fig. 1a. Using the lens resolution and pixel size and shape,
we created a sensor model for x5 magnification (which is
above the nominal lens resolution). We model square pixels
with trimmed (null) corners to match the actual pixel shape,
including the microlens. We then moved a test image, in a
controlled manner, in front of the camera and captured 5 x 5
input images at 25 different displacements. To reduce noise,
we averaged 20 frames for each input image.’ Fig. 15a shows
one of the input images and a magnified insert. Fig. 15b
shows an actual intermediate HRI. The black dots are the
null values at the corners of each pixel. Fig. 15¢ shows the
super-resolution result. Note that even fine details such as
the dots above the letter “i” and in the exclamation marks
were resolved.

3. This is possible in a controlled environment such as the “Jitter
Camera” [10], and saves a lot of storage space and computation time. In
uncontrolled environments, all captured images should be fed directly into
the super-resolution algorithm to reduce noise and misalignments artifacts.
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Penrose Pixels

Square Pixels

RMS error: 2.9) (17.4)
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APPLICABLE APPLICABLE

RMS error: (9.6) (19.1) (25.5) (33.9)
WMS error: M + %: (9.4)(10.9) (18.0)(19.9) (25.1)(26.3) (33.5)(34.1)

Fig. 10. Test target comparison. Top: Input images for regular and Penrose pixel layouts, with magnification factors of 8 and 16, respectively. Middle:
Super-resolution results using our back projection algorithm for the regular and Penrose pixel layouts. Bottom: Super-resolution results using the
conventional back projection algorithm for the regular layout (with matched Gaussian kernel). Below are the RMS errors for noninteger magnification
factors of M +1. In all cases, the number of LRIs used was 1,600.

Square pixels Penrose pixels

x4 x8 x16

RMS error: (1.84) (4.47) (5.78) (8.28) (2.88) (7.83)

NOT NOT
APPLICABLE APPLICABLE

RMS error - unknown

Fig. 11. Comparison to external result (FERET DB image). Top: Low resolution images at different magnification factors. Middle: Our results for
square and Penrose pixel layouts. Bottom: Result of super-resolution using [21] (image taken from [7]). For the square pixels, M2 LRIs were used.
For the Penrose Pixels, overconstraint sets of 256 and 625 different images (due to the aperiodic tiling) were used for magnification of x8 and x16,

respectively.
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Fig. 12. RMS error versus number of images for x8 magnification factor.
(a) Regular layout with square pixels. (b) Penrose layout. The Penrose
layout clearly better utilizes the additional images.

7 DiSCUSSION

So far we have only addressed the super-resolution related
aspects of Penrose tiling. We have mentioned before that
Penrose rhombus tiling is 3-colorable, allowing the use of
RGB color filter arrays on the sensor. Which coloring to use
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and the best way to demosaic the image are open problems.
An interesting aspect of Penrose Pixels is their irregular
sampling. The acquired images are not subject to strong
moiré effects that can plague conventional digital photo-
graphy, particularly in video. Also, Penrose rhombus tiling
is only one possible aperiodic tiling, which we selected
mainly for its simplicity. Further research is needed to
determine which tiling, if any, performs best.

Before we conclude our paper, we briefly address the
plausibility of a hardware Penrose pixel implementation. At
first glance, manufacturing an image sensor that uses an
aperiodic pixel layout might seem implausible. In today’s
sensor technologies (CMOS and CCD chips), control signals
and power supplies are routed to each pixel using metal
wires. These wires are opaque and typically run on top of
the silicon substrate containing the photodetectors in each
pixel. On a regular grid, wires can be run between pixels to
minimize their negative impact on the pixels” light gather-
ing efficiency. This is not true for Penrose tiling.

Penrose pixel routing becomes much simpler if we
assume a back-illuminated CMOS sensor. In such devices,
the chip is thinned and mounted upside down in the
camera so light enters from the back of the chip. The metal
layers are now underneath the photodetectors, so they do
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Fig. 13. Super-resolution results and convergence plots for different image types. We can see that the algorithm converges very fast during the first
few iterations and then the convergence slows down (this is typical of error back projection algorithms). However, the initial error depends on the
image content and contrast and affects the rate of convergence. All images were subject to quantization error and low additive Poisson noise.
Magnification factor for all images is x8, and the number of LRIs was 256. Image source: Bee image—Wikimedia, Image by Jon Sullivan. Galaxy
image—Hubble heritage gallery. Finger print image—FVC2000 db, University of Bologna.
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Fig. 14. Our algorithm applied to real images (each with its own noise) with simulated pixel integration. Top: One of 576 input images for the regular
and Penrose pixel layout with magnifications of 1 to 16. Bottom: Results of our super-resolution algorithm applied to both regular and Penrose pixel

layouts. In all cases, all 576 LRIs were used.
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Fig. 15. Real image super-resolution results. (a) A real image captured by the camera (enlarged). (b) The input view for the super-resolution
algorithm using our CCD model. The little black dots are gaps between pixels and have null value. (c) Super-resolution result. Notice the details in

“

the magnified view, in particular the dots above the letter
(20 images were averaged at each displacement).

not block light. In the past, manufacturing backside
illumination (BSI) was relatively difficult and the technol-
ogy was used only for very high-performance applications
like astronomy. As pixel physical dimensions shrink,
however, BSI is becoming attractive for consumer devices.
Omnivision [2], one of the world’s leading manufacturers of
CMOS image sensors, introduced an 8MP backside-illumi-
nated sensor in 2008, and STMicroelectronics and Soitec
announced a partnership in May 2009 to develop backside-
illuminated image sensors for consumer products [3].
With no concerns about occluding pixels, Penrose pixel
routing becomes much simpler. In a conventional CMOS
image sensor, each row of pixels shares a “word line” and

and in the exclamation marks. A total of 500 LRIs were used at 25 displacements

each column shares a “bit line.” When the word line is
asserted, the corresponding row of pixels drives their data
(a voltage) onto their bit lines to be read out. Power supplies
and other control signals can run in parallel to the word
lines and bit lines. The wiring challenge for Penrose pixels
is to associate each pixel with a unique wordline/bitline
combination. Such a routing would be difficult for a
frontside-illuminated Penrose Pixel sensor layout, but,
using backside illumination, it becomes simpler.

Fig. 16 shows a simplified routing scheme for a Penrose
Pixel image sensor. In this diagram, the Penrose pixels,
drawn in black, are on the top of the sensor. The green and
red lines, representing word and bit lines, respectively, are
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Fig. 16. A Penrose pixel routing scheme. In this diagram, the Penrose
pixels, drawn in black, are on the top of the sensor. The word and bit
lines, represented by green and red lines, respectively, are on the
underside. The gray circle on each pixel represents the connection point
for signal wires. Each pixel must be connected to a unique word/bit line
pair. As the diagram shows, this is possible with a sufficiently dense
regular layout of word and bit lines, although some word/bit line pairs
may have no associated Penrose pixel. Power supplies and other
signals (not shown for clarity) would run parallel to the word or bit lines.

on the underside. The gray circle on each pixel represents
the connection point for signal wires. Each pixel must be
connected to a unique word/bit line pair. As the diagram
shows, this is possible with a sufficiently dense regular
layout of word and bit lines, although some word /bit line
pairs may have no associated Penrose pixel.

Using the properties of this Penrose tiling, we can
estimate the required density of routing wires. The ratio of
the number of thick to the number of thin tiles in an infinite
tiling is the Golden Ratio, (1 + /5)/2. The acute angles in
the rhombi are 36 degrees for the thin tiles and 72 degrees
for the thick ones. For Penrose tiles of unit edge length, this
implies a density of slightly over 1.23 tiles per unit area.
Thus, the horizontal or vertical pitch of the word and bit
lines must be at least 1/4/1.23 ~ 0.901. Because the
frequency of tiles varies locally, in practice we use a slightly
higher density to ensure that all pixels can be routed. The
bit line and word line pitch in Fig. 16 is 0.77. All pixels are
connected to different word/bit line pairs, although some
pairs are left unconnected.

Each of the two pixel shapes occur in five different
orientations, so a maximum of only 10 unique pixel designs
would be necessary. The finite number of neighboring pixel
pair layouts could all be checked to prevent integrated
circuit manufacturing design rule violations. Assuming that
we place the pixels with custom software, standard IC wire
routing tools could easily connect each pixel to the
necessary wires (e.g., power supplies, a unique wordline/
bitline combination, and so on) while ensuring other
desirable properties like small signal wire lengths.

One might ask if it is feasible to fabricate an image sensor
with two different diamond-shaped pixels. The irregular
size of the photodetector itself is not a problem. Fujifilm, for
example, has produced an image sensor with two oblong,
differently sized photodiodes under a single microlens in
each pixel [5]. We also require microlenses with shapes that
match the diamond-shaped pixels. Such microlens arrays
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can be produced using melting photoresist [13] in a similar
way to hexagonal microlens array production [24].

Given the existing proven technologies described above,
we are optimistic that it is possible to create an image sensor
with irregularly shaped pixels and aperiodic tiling. Creating
such an unconventional sensor will certainly involve some
challenges. For example, current sensor designs rely on the
similarity of periodic structures to reduce fixed pattern and
random noise. A Penrose Pixel sensor will most likely
exhibit more noise. Fortunately, for a high-end camera one
can afford to use more sophisticated methods to overcome
the noise, such as measuring the fixed pattern noise per
pixel. For high-performance applications requiring high
resolution and large pixels (for high sensitivity and
dynamic range), we believe the benefits of Penrose Pixels
will justify exploring a silicon implementation.

8 CONCLUSION

We present a novel approach to super-resolution based on an
aperiodic Penrose tiling and a novel back projection super-
resolution algorithm. Our tests show that our approach
significantly enhances the capability of reconstruction-based
super-resolution, as well as bringing it closer to bridging the
gap between the optical resolution limit and the sensor
resolution limit. We also argue that constructing a real
Penrose tiling sensor is feasible with current technology.
This could prove very beneficial for demanding imaging
applications such as microscopy and astronomy. Another
exciting possibility is to adapt current image stabilization
jitter mechanisms [4] for use with super-resolution. Even a
modest 4x linear magnification would turn an 8MP camera
into a 128MP one for stationary and possibly moving [10]
scenes, without changing the field of view.

APPENDIX

In this appendix, we prove that the spectral radius of I — R
is usually less than 1.

As R; can be written as (2), R; is symmetric and positive
semidefinite. Moreover, the sums of the rows of R; are
either 0 or 1. R, as the mean of R;s, is then also symmetric
and positive semidefinite, and the sums of its rows never
exceed 1, ie.,

> Rp.g) <1, Vp. (11)

Then, by the Gersgorin disk theorem [22] and the
nonnegativity of R, the eigenvalues of R lie in the union
of the following disks:

D, = {A] A= R(p,p)| <Y R(p, q)}-

a#p
Note that disk D, is inside

D, = {AI /\ISZR(nq)}
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we can see that the eigenvalues A(R) of R satisfy
)] <1 due to (11). Since Ris positive semidefinite, we

actually have 0 < A(R) < 1.

If 0 is an eigenvalue of R, then there exists a nonzero

vector v such that Rv = 0. Then, v Rv = 0, i.e.,

So,

> Z N ) = 0.

(P 'v=0, Vij.

This means that if the HRP values are chosen as those of v,
then for every displacement of the LRIs, the resampled HRI
is always a zero image. This is quite impossible thanks to
the irregularity of the shape and layout of the LRPs. So, we
actually have 0 < A(R) < 1. Then, we conclude that the

eigenvalues \(I — R) of I —

R, which is 1 — A(R), satisfies

0<ANI-R)<1.
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