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1. Proof of Theorem 1
1 — 2 frnd
Zm’ﬁ%\|z LR| %, st. X = XZ. (1)

Theorem 1 Let [Vx|1.m = [[Vx]1,[Vxl2,  , [Vx|m] Then for any fixed m < rx,
(Z*,L*,R*) := (Vx VX, [Vx]im, [Vx]Tm)
is a globally optimal solution to (1) and the minimum objective function value is (rx — m).
The proof of this theorem is based on the following lemma.
Lemma 1 (Courant-Fischer Minimax Theorem [3]) For any symmetric matrix A € R"*", we have that

Ai(A) = in_y"Ay/y"y, fori=1,2,..
i(A) B omin Y y/yTy, fori=1,2,....n,

where S C R"™ is some subspace and \;(A) is the i-th largest eigenvalue of A.

Proof First, by the well known Eckart-Young theorem [2], given Z, we have

d
1 — 2 = 2
minl|Z-LR|E =} ol(Z), 2)

i=m-+1
where 0;(Z) is the i-th largest singular value of Z. Now we prove that
if X = XZ then o, (Z) > 1. 3)

By X = XZ, we have that rank(Z) > rx. Then (2) and (3) imply that the minimum objective function value is no less than
rx — m. Indeed, by the compact SVD of X and X = XZ, we have

Vi = VxZ, @)
By Lemma 1, 0;(Z) = di;n(%};:i oglyhels |1Z%y|l2/l¥|l2, where || - ||2 is the I3 norm of a vector. So by choosing S = R(Vx)
and utilizing (4),
(@) = win 275/ Iyl
= gl;g]l |Z"V xb|l2/|[Vxb]2 &)

= min||Vxbll2/[Vxb]> =1.

Next, when Z = Vx VL, it can be easily checked that the objective function value is (rx — m). Again, by Eckart-Young
theorem, LR = [V x]1., [V x]%,,,,- Thus we have (Vx V%, [Vx]1.m, [Vx]?,,) is a globally optimal solution to (1), thereby
completing the proof of the theorem.



2. Proof of Corollary 2

Corollary 2 Under the assumption that subspaces are independent and data X is clean, there exits a globally optimal
solution (Z*,L*, R*) to problem (1) with the following structure:

Z* =diag(Z1,2Zs,...,Zy), (6)
where Z; is an n; X n; matrix with rank(Z;) = dc, and

L*R* € R(Z*) = R(XT). @)
The proof of this corollary is based on the following lemma.

Lemma2 [/]Let X = UxX XV§ be the compact SVD. Under the same assumption in Corollary 2, V XV§ is a block
diagonal matrix that has exactly k blocks. Moreover, the i-th block on its diagonal is an n; X n; matrix with rank dc,.

Proof By the proof of Theorem 1, we have that Z* = V x V% is a globally optimal solution to (1) and any globally optimal
L* and R* are in the range space R(Z*). So we have that L*R* € R(Z*) = R(XT). By Lemma 2, we achieve the block
diagonal structure (6) for Z*, which concludes the proof.

3. Proof of Corollary 3

Corollary 3 Assume that the columns of Z* are normalized (i.e. 11Z* = 17T) and fix m = k, then there exists globally
optimal L* and R* to problem (1) such that

L*R* = diag(n11,,1% ny1,,1% .. np1,, 17 ). ®)

ni1-ni n2-ng? Nk Ny

Proof By Corollary 2 and the normalization assumption, Z* = diag(Z7,Z3, ..., Z}), where Z} is an n; x n; for subspace
C; and 1,,, is an eigenvector of Z* with eigenvalue 1. Thus there exists a basis H = [hy, ho, ..., hy], each vector of which
with the form h; = [0, 12 0]7" is eigenvector of Z with eigenvalue 1. By the Eckart-Young theorem (similar to the proof of
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Theorem 1), we have that L* = H and R* = H” are globally optimal solutions to (1), which directly leads (8).

4. Proof of Corollary 4

Z{rﬂrﬁ |Z - LR||%, s.t. X = ZX, )
Let [Ux]1.m = [[Ux]1,[Ux]2, -, [Ux]m]. Then we have the following corollary
Corollary 4 For any fixed m < rx,
(z*,L*,R*) := (UxU%, [Ux]iim, [Ux]T.n)
is a globally optimal solution to (9) and the minimum objective function value is (rx — m).

Proof The proof of Theorem 1 directly leads to the above corollary.
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