Supplementary Material: Fixed-Rank Representation for Unsupervised Visual Learning

Risheng Liu^{†‡}, Zhouchen Lin^{b‡}, Fernando De la Torre[‡] and Zhixun Su[†]

[†]School of Mathematical Sciences, Dalian University of Technology
 [‡]Key Lab. of Machine Perception (MOE), Peking University
 [‡]Robotics Institute, Carnegie Mellon University
 ^bMicrosoft Research Asia

1. Proof of Theorem 1

$$\min_{\mathbf{Z},\mathbf{L},\mathbf{R}} \|\mathbf{Z} - \mathbf{L}\mathbf{R}\|_F^2, \ s.t. \ \mathbf{X} = \mathbf{X}\mathbf{Z}.$$
(1)

Theorem 1 Let $[\mathbf{V}_X]_{1:m} = [[\mathbf{V}_X]_1, [\mathbf{V}_X]_2, \cdots, [\mathbf{V}_X]_m]$. Then for any fixed $m \le r_X$, $(\mathbf{Z}^*, \mathbf{L}^*, \mathbf{R}^*) := (\mathbf{V}_X \mathbf{V}_X^T, [\mathbf{V}_X]_{1:m}, [\mathbf{V}_X]_{1:m}^T)$

is a globally optimal solution to (1) and the minimum objective function value is $(r_X - m)$.

The proof of this theorem is based on the following lemma.

Lemma 1 (*Courant-Fischer Minimax Theorem* [3]) For any symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we have that

$$\lambda_i(\mathbf{A}) = \max_{\dim(\mathcal{S})=i} \min_{\mathbf{0} \neq \mathbf{y} \in \mathcal{S}} \mathbf{y}^T \mathbf{A} \mathbf{y} / \mathbf{y}^T \mathbf{y}, \text{ for } i = 1, 2, ..., n,$$

where $S \subset \mathbb{R}^n$ is some subspace and $\lambda_i(\mathbf{A})$ is the *i*-th largest eigenvalue of \mathbf{A} .

Proof First, by the well known Eckart-Young theorem [2], given Z, we have

$$\min_{\mathbf{L},\mathbf{R}} \|\mathbf{Z} - \mathbf{L}\mathbf{R}\|_F^2 = \sum_{i=m+1}^d \sigma_i^2(\mathbf{Z}),$$
(2)

where $\sigma_i(\mathbf{Z})$ is the *i*-th largest singular value of \mathbf{Z} . Now we prove that

if
$$\mathbf{X} = \mathbf{X}\mathbf{Z}$$
 then $\sigma_{r_X}(\mathbf{Z}) \ge 1.$ (3)

By $\mathbf{X} = \mathbf{X}\mathbf{Z}$, we have that rank $(\mathbf{Z}) \ge r_X$. Then (2) and (3) imply that the minimum objective function value is no less than $r_X - m$. Indeed, by the compact SVD of \mathbf{X} and $\mathbf{X} = \mathbf{X}\mathbf{Z}$, we have

$$\mathbf{V}_X^T = \mathbf{V}_X^T \mathbf{Z},\tag{4}$$

By Lemma 1, $\sigma_i(\mathbf{Z}) = \max_{\dim(\mathcal{S})=i} \min_{\mathbf{0} \neq \mathbf{y} \in \mathcal{S}} \|\mathbf{Z}^T \mathbf{y}\|_2 / \|\mathbf{y}\|_2$, where $\|\cdot\|_2$ is the l_2 norm of a vector. So by choosing $\mathcal{S} = \mathcal{R}(\mathbf{V}_X)$ and utilizing (4),

$$\sigma_{r_{X}}(\mathbf{Z}) \geq \min_{\substack{\mathbf{0}\neq\mathbf{y}\in\mathcal{R}(\mathbf{V}_{X})\\ \mathbf{b}\neq\mathbf{0}}} \|\mathbf{Z}^{T}\mathbf{y}\|_{2}/\|\mathbf{y}\|_{2}}$$

$$= \min_{\substack{\mathbf{b}\neq\mathbf{0}\\ \mathbf{b}\neq\mathbf{0}}} \|\mathbf{Z}^{T}\mathbf{V}_{X}\mathbf{b}\|_{2}/\|\mathbf{V}_{X}\mathbf{b}\|_{2}$$

$$= \min_{\substack{\mathbf{b}\neq\mathbf{0}\\ \mathbf{b}\neq\mathbf{0}}} \|\mathbf{V}_{X}\mathbf{b}\|_{2}/\|\mathbf{V}_{X}\mathbf{b}\|_{2} = 1.$$
(5)

Next, when $\mathbf{Z} = \mathbf{V}_X \mathbf{V}_X^T$, it can be easily checked that the objective function value is $(r_X - m)$. Again, by Eckart-Young theorem, $\mathbf{LR} = [\mathbf{V}_X]_{1:m} [\mathbf{V}_X]_{1:m}^T$. Thus we have $(\mathbf{V}_X \mathbf{V}_X^T, [\mathbf{V}_X]_{1:m}, [\mathbf{V}_X]_{1:m}^T)$ is a globally optimal solution to (1), thereby completing the proof of the theorem.

2. Proof of Corollary 2

Corollary 2 Under the assumption that subspaces are independent and data \mathbf{X} is clean, there exits a globally optimal solution ($\mathbf{Z}^*, \mathbf{L}^*, \mathbf{R}^*$) to problem (1) with the following structure:

$$\mathbf{Z}^* = diag(\mathbf{Z}_1, \mathbf{Z}_2, ..., \mathbf{Z}_k),\tag{6}$$

where \mathbf{Z}_i is an $n_i \times n_i$ matrix with $rank(\mathbf{Z}_i) = d_{C_i}$ and

$$\mathbf{L}^* \mathbf{R}^* \in \mathcal{R}(\mathbf{Z}^*) = \mathcal{R}(\mathbf{X}^T).$$
(7)

The proof of this corollary is based on the following lemma.

Lemma 2 [1] Let $\mathbf{X} = \mathbf{U}_X \Sigma_X \mathbf{V}_X^T$ be the compact SVD. Under the same assumption in Corollary 2, $\mathbf{V}_X \mathbf{V}_X^T$ is a block diagonal matrix that has exactly k blocks. Moreover, the *i*-th block on its diagonal is an $n_i \times n_i$ matrix with rank d_{C_i} .

Proof By the proof of Theorem 1, we have that $\mathbf{Z}^* = \mathbf{V}_X \mathbf{V}_X^T$ is a globally optimal solution to (1) and any globally optimal \mathbf{L}^* and \mathbf{R}^* are in the range space $\mathcal{R}(\mathbf{Z}^*)$. So we have that $\mathbf{L}^* \mathbf{R}^* \in \mathcal{R}(\mathbf{Z}^*) = \mathcal{R}(\mathbf{X}^T)$. By Lemma 2, we achieve the block diagonal structure (6) for \mathbf{Z}^* , which concludes the proof.

3. Proof of Corollary 3

Corollary 3 Assume that the columns of \mathbf{Z}^* are normalized (i.e. $\mathbf{1}_n^T \mathbf{Z}^* = \mathbf{1}_n^T$) and fix m = k, then there exists globally optimal \mathbf{L}^* and \mathbf{R}^* to problem (1) such that

$$\mathbf{L}^* \mathbf{R}^* = diag(n_1 \mathbf{1}_{n_1} \mathbf{1}_{n_1}^T, n_2 \mathbf{1}_{n_2} \mathbf{1}_{n_2}^T, ..., n_k \mathbf{1}_{n_k} \mathbf{1}_{n_k}^T).$$
(8)

Proof By Corollary 2 and the normalization assumption, $\mathbf{Z}^* = \text{diag}(\mathbf{Z}_1^*, \mathbf{Z}_2^*, ..., \mathbf{Z}_k^*)$, where \mathbf{Z}_i^* is an $n_i \times n_i$ for subspace C_i and $\mathbf{1}_{n_i}$ is an eigenvector of \mathbf{Z}_i^* with eigenvalue 1. Thus there exists a basis $\mathbf{H} = [\mathbf{h}_1, \mathbf{h}_2, ..., \mathbf{h}_k]$, each vector of which with the form $\mathbf{h}_i = [\mathbf{0}, \mathbf{1}_{n_i}^T, \mathbf{0}]^T$ is eigenvector of \mathbf{Z} with eigenvalue 1. By the Eckart-Young theorem (similar to the proof of Theorem 1), we have that $\mathbf{L}^* = \mathbf{H}$ and $\mathbf{R}^* = \mathbf{H}^T$ are globally optimal solutions to (1), which directly leads (8).

4. Proof of Corollary 4

$$\min_{\mathbf{Z},\mathbf{L},\mathbf{R}} \|\mathbf{Z} - \mathbf{L}\mathbf{R}\|_F^2, \ s.t. \ \mathbf{X} = \mathbf{Z}\mathbf{X},\tag{9}$$

Let $[\mathbf{U}_X]_{1:m} = [[\mathbf{U}_X]_1, [\mathbf{U}_X]_2, \cdots, [\mathbf{U}_X]_m]$. Then we have the following corollary

Corollary 4 For any fixed $m \leq r_X$,

$$(\mathbf{Z}^*, \mathbf{L}^*, \mathbf{R}^*) := (\mathbf{U}_X \mathbf{U}_X^T, [\mathbf{U}_X]_{1:m}, [\mathbf{U}_X]_{1:m}^T)$$

is a globally optimal solution to (9) and the minimum objective function value is $(r_X - m)$.

Proof The proof of Theorem 1 directly leads to the above corollary.

References

- [1] J. Costeira and T. Kanade. A multibody factorization method for independently moving objects. IJCV, 29(3):159–179, 1998. 2
- [2] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1936. 1
- [3] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, 3rd edition, 1996. 1