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1. Proof of Theorem 1

min
Z,L,R

‖Z− LR‖2F , s.t.X = XZ. (1)

Theorem 1 Let [VX ]1:m = [[VX ]1, [VX ]2, · · · , [VX ]m]. Then for any fixed m ≤ rX ,

(Z∗,L∗,R∗) := (VXVT
X , [VX ]1:m, [VX ]T1:m)

is a globally optimal solution to (1) and the minimum objective function value is (rX −m).

The proof of this theorem is based on the following lemma.

Lemma 1 (Courant-Fischer Minimax Theorem [3]) For any symmetric matrix A ∈ Rn×n, we have that

λi(A) = max
dim(S)=i

min
06=y∈S

yTAy/yTy, for i = 1, 2, ..., n,

where S ⊂ Rn is some subspace and λi(A) is the i-th largest eigenvalue of A.

Proof First, by the well known Eckart-Young theorem [2], given Z, we have

min
L,R
‖Z− LR‖2F =

d∑
i=m+1

σ2
i (Z), (2)

where σi(Z) is the i-th largest singular value of Z. Now we prove that

if X = XZ then σrX (Z) ≥ 1. (3)

By X = XZ, we have that rank(Z) ≥ rX . Then (2) and (3) imply that the minimum objective function value is no less than
rX −m. Indeed, by the compact SVD of X and X = XZ, we have

VT
X = VT

XZ, (4)

By Lemma 1, σi(Z) = max
dim(S)=i

min
06=y∈S

‖ZTy‖2/‖y‖2, where ‖ · ‖2 is the l2 norm of a vector. So by choosing S = R(VX)

and utilizing (4),
σrX (Z) ≥ min

0 6=y∈R(VX)
‖ZTy‖2/‖y‖2

= min
b6=0
‖ZTVXb‖2/‖VXb‖2

= min
b6=0
‖VXb‖2/‖VXb‖2 = 1.

(5)

Next, when Z = VXVT
X , it can be easily checked that the objective function value is (rX −m). Again, by Eckart-Young

theorem, LR = [VX ]1:m[VX ]T1:m. Thus we have (VXVT
X , [VX ]1:m, [VX ]T1:m) is a globally optimal solution to (1), thereby

completing the proof of the theorem.
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2. Proof of Corollary 2
Corollary 2 Under the assumption that subspaces are independent and data X is clean, there exits a globally optimal
solution (Z∗,L∗,R∗) to problem (1) with the following structure:

Z∗ = diag(Z1,Z2, ...,Zk), (6)

where Zi is an ni × ni matrix with rank(Zi) = dCi
and

L∗R∗ ∈ R(Z∗) = R(XT ). (7)

The proof of this corollary is based on the following lemma.

Lemma 2 [1] Let X = UXΣXVT
X be the compact SVD. Under the same assumption in Corollary 2, VXVT

X is a block
diagonal matrix that has exactly k blocks. Moreover, the i-th block on its diagonal is an ni × ni matrix with rank dCi

.

Proof By the proof of Theorem 1, we have that Z∗ = VXVT
X is a globally optimal solution to (1) and any globally optimal

L∗ and R∗ are in the range space R(Z∗). So we have that L∗R∗ ∈ R(Z∗) = R(XT ). By Lemma 2, we achieve the block
diagonal structure (6) for Z∗, which concludes the proof.

3. Proof of Corollary 3
Corollary 3 Assume that the columns of Z∗ are normalized (i.e. 1T

nZ
∗ = 1T

n ) and fix m = k, then there exists globally
optimal L∗ and R∗ to problem (1) such that

L∗R∗ = diag(n11n11
T
n1
, n21n21

T
n2
, ..., nk1nk

1T
nk

). (8)

Proof By Corollary 2 and the normalization assumption, Z∗ = diag(Z∗1,Z
∗
2, ...,Z

∗
k), where Z∗i is an ni × ni for subspace

Ci and 1ni is an eigenvector of Z∗i with eigenvalue 1. Thus there exists a basis H = [h1,h2, ...,hk], each vector of which
with the form hi = [0,1T

ni
,0]T is eigenvector of Z with eigenvalue 1. By the Eckart-Young theorem (similar to the proof of

Theorem 1), we have that L∗ = H and R∗ = HT are globally optimal solutions to (1), which directly leads (8).

4. Proof of Corollary 4

min
Z,L,R

‖Z− LR‖2F , s.t.X = ZX, (9)

Let [UX ]1:m = [[UX ]1, [UX ]2, · · · , [UX ]m]. Then we have the following corollary

Corollary 4 For any fixed m ≤ rX ,

(Z∗,L∗,R∗) := (UXUT
X , [UX ]1:m, [UX ]T1:m)

is a globally optimal solution to (9) and the minimum objective function value is (rX −m).

Proof The proof of Theorem 1 directly leads to the above corollary.
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