
Fixed-Rank Representation for Unsupervised Visual Learning

Risheng Liu†‡, Zhouchen Lin[], Fernando De la Torre‡ and Zhixun Su†
†School of Mathematical Sciences, Dalian University of Technology

]Key Lab. of Machine Perception (MOE), Peking University
‡Robotics Institute, Carnegie Mellon Univesity

[Microsoft Research Asia

Abstract

Subspace clustering and feature extraction are two of
the most commonly used unsupervised learning techniques
in computer vision and pattern recognition. State-of-the-
art techniques for subspace clustering make use of recent
advances in sparsity and rank minimization. However, ex-
isting techniques are computationally expensive and may
result in degenerate solutions that degrade clustering per-
formance in the case of insufficient data sampling. To par-
tially solve these problems, and inspired by existing work
on matrix factorization, this paper proposes fixed-rank rep-
resentation (FRR) as a unified framework for unsupervised
visual learning. FRR is able to reveal the structure of mul-
tiple subspaces in closed-form when the data is noiseless.
Furthermore, we prove that under some suitable conditions,
even with insufficient observations, FRR can still reveal the
true subspace memberships. To achieve robustness to out-
liers and noise, a sparse regularizer is introduced into the
FRR framework. Beyond subspace clustering, FRR can be
used for unsupervised feature extraction. As a non-trivial
byproduct, a fast numerical solver is developed for FRR.
Experimental results on both synthetic data and real appli-
cations validate our theoretical analysis and demonstrate
the benefits of FRR for unsupervised visual learning.

1. Introduction

Clustering and embedding are two of the most impor-
tant techniques for visual data analysis. In the last decade,
inspired by the success of compressive sensing, there has
been a growing interest in incorporating sparsity to visual
learning, such as image/video processing [2], object classi-
fication [33, 1] and motion segmentation [27]. Early stud-
ies [5, 33] usually consider the 1D sparsity (i.e., the nonzero
entries of a vector, also known as the l0 norm) in their mod-
els. Recently, there has been a surge of methods [2, 18, 7]
which also consider the rank of a matrix as a 2D sparsity

measure. However, it is difficult to directly solve these mod-
els due to the discrete nature of the l0 norm and the rank
function. A common strategy to alleviate this problem has
been to use the l1 norm and the nuclear norm [28] as the
convex surrogates of the l0 norm and the rank function, re-
spectively.

An important problem in unsupervised learning of vi-
sual data is subspace clustering. Recent advances in sub-
space clustering make use of sparsity-based techniques. For
example, sparse subspace clustering (SSC) [5, 6, 31] uses
the 1D sparsest representation vectors produced by l1 norm
minimization to define the affinity matrix of an undirected
graph. Then subspace clustering is performed by spectral
clustering techniques, such as normalized cut (NCut) [30].
However, as SSC computes the sparsest representation of
each points individually, there is no global structural con-
straint on the affinity matrix. This characteristic can de-
grade the clustering performance when data is grossly cor-
rupted. Moreover, according to the theoretical work of [23],
the within subspace connectivity assumption for SSC holds
only for 2- and 3-dimensional subspaces. So SSC may
probably over-segment subspaces when the dimensions are
higher than 3.

Low-rank representation (LRR) [18, 7, 24] is another re-
cently proposed sparsity-based subspace clustering model.
The intuition behind LRR is to learn a low-rank repre-
sentation of the data. The work by [17] shows that LRR
is intrinsically equivalent to the shape interaction matrix
(SIM) [3] in absence of noise. In this case, LRR can re-
veal the true clustering when the subspaces are indepen-
dent and the data sampling is sufficient1. However, LRR
suffers from some limitations as well. First, the nuclear
norm minimization in LRR typically requires to calculate
the singular value decomposition (SVD) at each iteration,
which becomes computationally impractical as the scale of

1The subspaces are independent if and only if the dimension of their
direct sum is equal to the sum of their dimensions [17]. For each subspace,
the data sampling is sufficient if and only if the rank of the data matrix is
equal to the dimension of the subspace [20].
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the problem grows. By combining a linearized version of
alternating direction method (ADM) [15] with an accelera-
tion technique for SVD computation, the work in [16] pro-
posed a fast solver, which significantly improves the speed
for solving LRR. However, the SVD computation still can-
not be completely avoided. Second, and more importantly,
if the observations are insufficient, LRR (also SSC) may re-
sult in a degenerate solution that significantly degrades the
clustering performance. The work in [20] introduces “hid-
den effects” to overcome this drawback. However, it is un-
clear whether such “hidden effects” can recover the multiple
subspace structure for clustering. Moreover, introducing la-
tent variables makes the problem more complex and hard to
optimize.

The insufficient data sampling problem in SSC and LRR
is similar in spirit to the small sample size problem, that
is common in some subspace learning methods, such as
linear discriminant analysis [9] and canonical correlation
analysis [14]. In these methods, if the number of samples
is smaller than the dimension of the features, the covari-
ance matrices are rank deficient. Three are the common
approaches to solve this problem [4]: dimensionality reduc-
tion, regularization and factorization (i.e., explicitly param-
eterize the projection matrix as the product of low-rank ma-
trices). In this paper, we incorporate the factorization idea
into representation learning and propose fixed-rank repre-
sentation (FRR) to partially solve the problems in existing
unsupervised visual learning models. FRR has three main
benefits:

• Unlike SSC and LRR, which use the sparsest and low-
est rank representations, FRR explicitly parameterizes
the representation matrix as the product of two low-
rank matrices. When there is no noise and the data
sampling is sufficient, we prove that the FRR solution
is also the optimal solution to LRR. In this case, FRR
can reveal the multiple subspace structure. Further-
more, we prove that under some suitable conditions,
even when the data sampling is insufficient, the mem-
berships of samples to each subspace still can be iden-
tified by FRR. A sparse regularizer is introduced to
FRR to model both small noises and gross outliers,
which provides robustness to FRR in real applications.

• The most expensive computational component in LRR
is to perform SVD at each iteration. Even with some
acceleration techniques, the scalability of the nuclear
norm minimization is still limited by the computa-
tional complexity of SVD. In contrast, FRR avoids
SVD computation and can be efficiently applied to
large-scale problems.

• FRR can also be extended for unsupervised feature ex-
traction. By considering a transposed version of FRR

(TFRR), we show that FRR is related to existing fea-
ture extraction methods, such as principal component
analysis (PCA) [25, 13]. Indeed, our analysis provides
a unified framework to understand single subspace fea-
ture extraction and multiple subspace clustering by an-
alyzing the column and row spaces of the data.

2. A Review of Previous Work
Given a data set2 X = [X1,X2, · · · ,Xk] ∈ Rd×n

drawn from a union of k subspaces {Ci}ki=1, where Xi is
a collection of ni data points sampled from the subspace
Ci with an unknown dimension dCi , the goal of subspace
clustering is to cluster data points into their respective sub-
spaces. This section provides a review of SSC and LRR
for solving this problem. To clearly understand the mech-
anism of these methods, we first consider the case when
the data is noise-free. From now on, we always write
X = UXΣXVT

X and rX as the compact SVD and the rank
of X, respectively.

2.1. Sparse Subspace Clustering (SSC)

SSC [5, 6, 31] is based on the idea that each data point
in the subspace Ci should be represented as a linear com-
bination of other points that are also in Ci. Using this in-
tuition, SSC finds the sparsest representation coefficients
Z = [[Z]1, [Z]2, · · · , [Z]n] by considering the sequence of
optimization problems

min
[Z]i
‖[Z]i‖1, s.t. [X]i = X[Z]i, [Z]ii = 0, (1)

where i = 1, 2, · · · , n. Then one can use Z to define the
affinity matrix of an undirected graph as (|Z| + |ZT |) and
perform NCut on this graph, where |Z| denotes a matrix
whose entries are the absolute values of Z. The SSC model
can also be rewritten in matrix form as

min
Z
‖Z‖1, s.t.X = XZ, [Z]ii = 0. (2)

Note that both l1 norm minimization models (1) and (2) can
only be solved numerically.

2.2. Low-Rank Representation (LRR)

By extending the sparsity measure from 1D to 2D for the
representation, LRR [18, 7, 24] proposes a low-rank based

2Bold capital letters (e.g., M) denote matrices. The range and the null
spaces of M are defined asR(M) := {a|∃b,a = Mb} andN (M) :=
{a|Ma = 0}, respectively. [M]ij and [M]i denote the (i, j)-th entry
and the i-th column of M, respectively. M† denotes the Moore-Penrose
pseudoinverse of M. The block-diagonal matrix formed by a collection of
matrices M1,M2, ...,Mk is denoted by diag(M1,M2, ...,Mk). 1n is
the all-one column vector of length n. In is the n×n identity matrix. 〈·, ·〉
denotes the inner product of two matrices. A variety of norms on matrix
and vector will be used. ‖ · ‖F is the Frobenius norm, ‖ · ‖∗ is the nuclear
norm [28], ‖ · ‖2,1 is the l2,1 norm [21], ‖ · ‖ is the spectral norm, ‖ · ‖1,
‖ · ‖2 and ‖ · ‖∞ are the l1, l2 and l∞ norms, respectively.



criterion for subspace clustering. By utilizing the nuclear
norm as a surrogate for the rank function, LRR solves the
following nuclear norm minimization problem

min
Z
‖Z‖∗, s.t.X = XZ. (3)

Unlike SSC, which can only be solved numerically, VXVT
X

(also known as SIM [3]), which has a block-diagonal struc-
ture, is the closed-form solution to (3) [17]. Although [17]
has proved this, in the following section, we will provide a
simpler derivation, that provides new insights into LRR.

3. Fixed-Rank Representation
In this section, we propose a new model, named fixed-

rank representation (FRR), for subspace clustering. We start
with the following analysis on LRR.

3.1. Motivation

To better understand the mechanism of LRR and illus-
trate our motivation, we show that VXVT

X ∈ R(XT ) is
the optimal solution to LRR in a simple way3. By the
identity X = XX†X and the constraint in (3), we have
X = XZ = XX†XZ = XX†X. Thus X†X = VXVT

X is
a feasible solution to (3). So the general form of the so-
lution is Z = VXVT

X + Zn, where Zn ∈ N (X). As
R(XT ) ⊥ N (X), we have VT

XZn = 0. This together
with the duality definition of nuclear norm [28] leads the
following inequality

‖Z‖∗ = max
‖Y‖≤1

〈Z,Y〉 ≥ 〈Z,VXVT
X〉 = rX = ‖VXVT

X‖∗.

This concludes that VXVT
X is the minimizer to (3).

The first observation from the prevous analysis is that
LRR can successfully remove the effects fromN (X) to ob-
tain a block-diagonal matrix when the data sampling is suf-
ficient. However, it is also observed that the “lowest rank”
representation in LRR is actually the largest rank matrix
within the row space of X, namely the rank of this repre-
sentation is always equal to the dimension of the row space.
Therefore, the lack of observations for each subspace may
significantly degrade the clustering performance. For ex-
ample, due to insufficient data sampling, the dimension of
the row space may be equal to the number of samples (i.e.,
rX = n ≤ d). In this case, the optimal solution to (3) may
reduce to an identity matrix and thus LRR may fail. See
Fig. 1 as an example.

An obvious question is whether we can find a lower rank
representation in the row space of the data set to exactly re-
veal the subspace memberships for clustering, even when
the data sampling is insufficient. In the following subsec-
tion, we give a positive answer to this question.

3Note that here we only analyze the optimality of VXVT
X to (3), not

its uniqueness.

3.2. The Basic Model

The key idea of FRR is to minimize the Frobenius norm
of the representation Z instead of the nuclear norm as in
LRR. FRR simultaneously computes a fixed lower rank rep-
resentation Z̃ (hereafter we write rank(Z̃) = m). That is,
we jointly optimize Z and Z̃ as

min
Z,Z̃
‖Z− Z̃‖2F , s.t.X = XZ, rank(Z̃) = m. (4)

Obviously, Z̃ can be expressed, non-uniquely, as a matrix
product Z̃ = LR, where L ∈ Rn×m and R ∈ Rm×n.
Replacing Z̃ by LR, we arrive at our basic FRR model

min
Z,L,R

‖Z− LR‖2F , s.t.X = XZ. (5)

In the following sections, we will analyze the problem (5),
show properties of the solution to (5), and extend it for real
applications.

3.3. Analysis on the Basic Model

At first sight, the factorization of Z̃ leads to a non-convex
optimization problem which may prevent one from getting
a global solution. The difficulty results from the fact that
the minimizer is non-unique. Fortunately, in the following
theorem4, we prove that one can always obtain a globally
optimal solution to (5) in closed-form.

Theorem 1 Let [VX ]1:m = [[VX ]1, [VX ]2, · · · , [VX ]m].
Then for any fixed m ≤ rX , (Z∗,L∗,R∗) :=
(VXVT

X , [VX ]1:m, [VX ]T1:m) is a globally optimal solu-
tion to (5) and the minimum objective function value is
(rX −m).

Based on Theorem 1, we can derive the following corollary
to illustrate the structure of the optimal solution to (5).

Corollary 2 Under the assumption that subspaces are in-
dependent and data X is clean, there exists a globally opti-
mal solution (Z∗,L∗,R∗) to problem (5) with the following
structure:

Z∗ = diag(Z1,Z2, ...,Zk), (6)

where Zi is an ni × ni matrix with rank(Zi) = dCi
and

L∗R∗ ∈ R(Z∗) = R(XT ). (7)

However, such Z∗ suffers from the same limitation of LRR.
Namely, when the data sampling is insufficient, Z∗ will
probably degenerate and thus the clustering may fail.

Fortunately, as shown in (7), L∗R∗ can still be spanned
by the row space of X. This inspires us to consider this
lower rank representation for subspace clustering.

4Due to space limitation, we present proofs for the theorems, corollar-
ies and propositions in [22].



Corollary 3 Assuming that the columns of Z∗ are normal-
ized (i.e. 1TnZ

∗ = 1Tn ) and fix m = k, then there exists
globally optimal L∗ and R∗ to problem (5) such that

L∗R∗ = diag(n11n1
1Tn1

, n21n2
1Tn2

, ..., nk1nk
1Tnk

). (8)

Remark: Corollary 3 does not guarantee that an arbitrary
rank-k optimal solution has the block-diagonal structure (8)
due to the non-unique of the minimizer (L∗,R∗). How-
ever, in our experiments, we have observed that empirically
choosing the first k columns of VX works well on the tested
data (e.g., Fig. 1).

In principle, the normalization of Z∗ could be considered
as a strong assumption, hence it cannot always be guaran-
teed in real situations. Therefore, we explicitly enforce each
column of Z to sum to one

min
Z,L,R

‖Z− LR‖2F , s.t.X = XZ, 1TnZ = 1Tn . (9)

3.4. Sparse Regularization for Corruptions

In real applications, the data are often corrupted by both
small noises and gross outliers. In the following, we show
how to extend problem (9) to deal with corruptions. By
modeling corruptions as a new term E, we consider the fol-
lowing regularized optimization problem

min
Z,L,R,E

‖Z− LR‖2F + µ‖E‖s,

s.t.X = XZ + E, 1TnZ = 1Tn ,
(10)

where the parameter µ > 0 is used to balance the effects of
the two terms and ‖ · ‖s is a sparse norm corresponding to
our assumption on E. Here we adopt the l2,1 norm to char-
acterize the corruptions since it can successfully identify the
indices of the outliers and remove small noises [19]. Algo-
rithm 1 summarizes the whole FRR based subspace cluster-
ing framework.

Algorithm 1 FRR for Subspace Clustering
Input: Let X ∈ Rd×n be a set of data points sampled
from k subspaces.
Step 1: Solve (10) to obtain (Z∗, L∗, R∗).
Step 2: Construct a graph by using (|Z∗| + |(Z∗)T |) or
(|L∗R∗|+ |(L∗R∗)T |) as the affinity matrix.
Step 3: Apply NCut to this graph to obtain the clustering.

4. Extending FRR for Feature Extraction
Besides subspace clustering, the mechanism of FRR can

also be applied for feature extraction. That is, one can re-
cover the column space of the data set by solving the fol-
lowing transposed FRR (TFRR)

min
Z,L,R

‖Z− LR‖2F , s.t.X = ZX, (11)

where m ≤ rX , L ∈ Rd×m, R ∈ Rm×d and Z ∈ Rd×d.
For noisy data, by using similar techniques as in Section 3.4,
we introduce an explicit corruption term E into the objec-
tive function and the constraint. Hence we obtain the robust
version of TFRR for feature extraction

min
Z,L,R,E

‖Z− LR‖2F + µ‖E‖s, s.t.X = ZX + E. (12)

4.1. Relationship to Principal Component Analysis

Principal component analysis (PCA) is one of the
most popular dimensionality reduction techniques [25, 13].
The basic ideas behind PCA date back to Pearson in
1901 [25], and a more general procedure was described by
Hotelling [13] in 1933. There are several energy functions
which lead to subspace spanned by the principal compo-
nents [4]. For instance, PCA finds the matrix P ∈ Rd×m
that minimizes:

min
P
‖X−PPTX‖2F , s.t. PTP = Im. (13)

It can be shown that P∗ = [UX ]1:m is the optimal solution
to (13), where [UX ]1:m = [[UX ]1, [UX ]2, · · · , [UX ]m].
The following corollary shows that the mechanism of TFRR
can also be applied to formulate PCA.

Corollary 4 For any fixed m ≤ rX , (Z∗,L∗,R∗) :=
(UXUT

X , [UX ]1:m, [UX ]T1:m) is a globally optimal solu-
tion to (11) and the minimum objective function value is
(rX −m).

5. Optimization for FRR

In this section, we develop a fast numerical solver for
FRR related models by extending the classic alternating di-
rection method (ADM) [15] to non-convex problems. To
solve the problem (10)5, we introduce Lagrange multipliers
Λ and Π to remove the equality constraints. The resulting
augmented Lagrangian function is

LA(Z,L,R,Λ,Π) = ‖Z− LR‖2F + µ‖E‖2,1
+〈Λ,X−XZ−E〉+ 〈Π,1TnZ− 1T 〉
+β

2 (‖X−XZ−E‖2F + ‖1TnZ− 1n‖2F ),
(14)

where β > 0 is a penalty parameter. It is important to note
that although (14) is not jointly convex for all variables, it is
convex with respect to each variable while fixing the others.
This property allows the iteration scheme to be well defined.
So we minimize (14) with respect to L, R, Z, and E one at
a time while fixing the others at their latest values, and then

5As other FRR related models can be solved in similar way, we do not
further explore them in this section.



update the Lagrange multipliers Λ and Π:

L+ ← ZR† ≡ ZRT (RRT )†, (15)

R+ ← L†+Z ≡ (LT+L+)†LT+Z, (16)

Z+ ← (2In + β(XTX + 1n1
T
n ))−1B, (17)

E+ ← arg min
E

µ‖E‖2,1 +
β

2
‖C−E‖2F , (18)

Λ+ ← Λ + β(X−XZ+ −E+), (19)
Π+ ← Π + β(1TnZ+ − 1Tn ), (20)
β+ ← min(β̄, ρβ), (21)

where the subscript + denotes that the values are updated, β̄
is the upper bound of β, ρ > 1 is the step length parameter,
B = 2L+R++β(XTX−XT (E−Λ/β))+β1n1

T
n−1nΠ

and C = X −XZ+ + Λ/β. The subproblem (18) can be
solved by Lemma 3.2 in [18]. We then reduce the compu-
tational cost for solving (15) and (16). It follows from (16)
that

L+R+ = L+(LT+L+)†LT+Z = PL+
(Z). (22)

By considering the compact SVD: R = URr
ΣRr

VT
Rr

, we
have L+ = ZVRrΣ−1Rr

UT
Rr

and ZRT = ZVRr
ΣRr

UT
Rr

.
This implies thatR(L+) = R(ZRT ) = R(ZVRr

) and

L+R+ = PZRT (Z), (23)

where PZRT is the orthogonal projection into R(ZRT ).
Since the objective function of (10) depends on the prod-
uct L+R+, different values of L+ and R+ are essen-
tially equivalent as long as they give the same product.
The identity (23) shows that the inversion (RRT )† and
(LT+L+)† can be saved when the projection PZRT is com-
puted. Specifically, one can compute PZRT = QQT ,
where Q is the QR factorization of ZRT . Then we have
L+R+ = QQTZ and one can derive:

L+ ← Q, (24)
R+ ← QTZ. (25)

The schemes (24) and (25) are often preferred since com-
puting (25) by QR factorization is generally more stable
than solving the normal equations [29]. The complete al-
gorithm is summarized in Algorithm 2.

6. Experimental Results

This section compared the performance of FRR against
state-of-the-art algorithms on both subspace clustering and
feature extraction. All experiments are performed on a note-
book computer with an Intel Core i7 CPU at 2.00 GHz and
6GB of memory, running Windows 7 and Matlab version
7.10.

Algorithm 2 Solving (10) by ADM-type Algorithm
Input: Observation matrix X ∈ Rd×n, m > 0, ε1, ε2 >
0, parameters β > 0 and ρ > 1.
Initialization: Initialize Z0 ∈ Rn×n, L0 ∈ Rn×m,
R0 ∈ Rm×n, E0 ∈ Rd×n, Λ0 ∈ Rd×n and Π0 ∈ R1×n.
while not converged do

Step 1: Update (Z, L, R, E, Λ, Π) by (24), (25) and
(17)–(21).
Step 2: Check the convergence conditions:
‖X−XZ+−E+‖∞ ≤ ε1 and ‖1TnZ+−1Tn‖∞ ≤ ε2.

end while
Output: Z∗, L∗, R∗ and E∗.

6.1. Subspace Clustering

We first consider the subspace clustering problem, and
compare the clustering performance and computational
speed of FRR to existing state-of-the-art methods, such as
SIM, Random Sample Consensus (RANSAC) [8], Local
Subspace Analysis (LSA) [34], SSC and LRR. As shown
in Section 3, both Z and LR can be utilized for clustering,
we call these two strategies FRR1 and FRR2, respectively.

6.1.1 Synthetic Data

We performed subspace clustering on synthetic data to il-
lustrate the insufficient data sampling problem (to verify
the analysis in Section 3). Let k, p, dh and dl denote
the number of subspaces, the number of points in each
subspace, the features (i.e., observed dimension) and the
intrinsic dimension of the subspace, respectively. Then
the data set, parameterized as (k, p, dh, dl), is generated
by the same procedure in [18]: k independent subspaces
{Ci}ki=1 are constructed, whose basis {U}ki=1 are computed
by Ui+1 = TUi, 1 ≤ i ≤ k − 1, where T is a random
rotation and U1 is a random column orthogonal matrix of
dimension dh × dl. Then we construct a dh × kp data ma-
trix X = [X1,X2, ...,Xk] by sampling p data vectors from
each subspace by Xi = UiCi, 1 ≤ i ≤ k, with Ci be-
ing a dl × p matrix with uniform distribution. To generate
the point set for insufficient data sampling clustering, we fix
k = 10, dh = 100 and dl = 50 and vary p ∈ [10, 30]. In this
way, the number of samples in each subspace (at most 30)
is less than the intrinsic dimension (50 for each subspace).

Fig. 1 illustrated the structures of Z = VXVT
X and

LR = [VX ]1:k[VX ]T1:k when p = 10. Since the data sam-
pling is insufficient, the optimal Z for (3) and (5) reduces to
In (see Fig. 1 (a)). In contrast, LR can successfully reveal
the multiple subspace structure (see Fig. 1 (b)).

We also compared the clustering performances of Z and
LR on the generated data. Fig. 2 shows the clustering ac-
curacy as a function of the number of points. It can be
seen that the clustering accuracy of Z is very sensitive to



(a) Z (b) LR
Figure 1. The structures of Z and LR, where rank(Z) =
rank(X) = kp = 100 and rank(LR) = k = 10, respectively.

Figure 2. The mean and std. clustering accuracies (%) of Z and
LR over 20 runs. The x-axis represents the number of samples in
each subspace and the y-axis represents the clustering accuracy.

the particular sampling. Although it performs better when p
is increasing, the highest clustering accuracy is only around
80% (p = 30). In contrast, LR achieves almost perfect re-
sults on all data sets. This confirms that the affinity matrix
calculated from LR can successfully overcome the draw-
back of using Z in (5) and LRR (also SIM) when the data
sampling is insufficient.

6.1.2 Motion Segmentation

Motion segmentation refers to the problem of segmenting
tracked feature point trajectories of multiple moving objects
in a video sequence. As shown in [27], all the tracked points
from a single rigid motion lie in a four-dimensional linear
subspace. So this task can be regarded as a subspace clus-
tering problem. We perform the experiments on the Hop-
kins155 database [32], which is an extensive benchmark
for motion segmentation. This database consists of 156 se-
quences of two or three motions thus there are 156 cluster-
ing tasks in total. For a fair comparison, we apply all algo-
rithms to the raw data and the parameters of these methods
have been tuned to the best.

We reported the segmentation errors in Table 3 and pre-
sented the percentage of sequences for which the segmen-
tation error is less than or equal to a given percentage of
misclassification in Fig. 3. It can be noticed that the perfor-
mances of three sparsity-based models (i.e., SSC, LRR and
FRR) are better than other methods. SSC is worse than LRR
because the 1D l1 norm based criterion finds the representa-
tion coefficients of each vector individually, and there is no
global constrain. Although the basic forms of LRR (3) and
FRR (5) share the same optimal solution to Z, FRR1 per-
forms even better than LRR in real data set. This is because

(a) 2 Motions (b) 3 Motions
Figure 3. Percentage of sequences for which the segmentation er-
ror is less than or equal to a given percentage of misclassification.

enforcing the normalization constraint in (10) can improve
the performance for clustering. Overall, FRR2 outperforms
all other methods in this paper. This result, again, confirms
that LR in FRR2 is better than the general Z in LRR and
FRR1 for subspace clustering.

For three sparsity-based methods, Table 2 reports the
time in seconds. We can see that the computational time
of SSC is lower than the standard LRR. This is because the
l1 norm minimizations in SSC can be solved in parallel and
there is only a thresholding process needed at each itera-
tion. While LRR is solved with an SVD in each iteration,
and it does not scale well with large number of samples. By
combining linearized ADM with an acceleration technique
for SVD, the work in [16] proposed a fast solver for LRR.
The running time of this approach is even less than SSC.
Our FRR, again, achieves the highest efficiency because it
completely avoids SVD computation in the iterations.

Table 2. The average running time (seconds) per sequence for three
sparsity-based methods. LRR(A) denotes the accelerated LRR
proposed in [16].

Method 2 Motions 3 Motions All (156)
SSC 3.5445 7.8493 4.5057
LRR 38.5156 115.3140 55.6259

LRR(A) 1.9415 3.6788 2.3319
FRR 0.9990 2.2799 1.2847

6.2. Feature Extraction and Outlier Detection

This experiment tested the effectiveness of TFRR for
feature extraction in presence of occlusions. To simulate
sample-outliers, we created a dataset by combining images
with faces from the FRGC version 2 [26] and images non
containing faces from Caltech-256 [10]. We selected 20 im-
ages for the first 180 subjects of the FRGC database, having
a total of 3600 images. For Caltech-256 database, which
contains 257 image categories, we randomly selected 1 im-
age from each class (a total of 257 non-facial images). All
images are resized to 32 × 36 and the pixel values are nor-
malized to [0, 1]. As shown in Fig. 4, there are two types of
corruptions: small errors in the facial images (e.g., illumi-
nations and occlusions) and non-facial outliers.



Table 1. Segmentation errors (%) on Hopkins155 raw data.

Method 2 Motions 3 Motions All (156)
mean median std. max. mean median std. max. mean median std. max.

SIM 24.1 24.8 15.4 49.2 27.9 28.5 15.8 64.1 25.1 25.3 15.7 64.1
RANSAC 9.6 3.3 13.1 49.3 13.8 7.8 13.7 44.7 10.8 4.2 13.5 49.3

LSA 6.8 2.8 8.0 40.9 16.8 15.6 12.6 46.6 9.1 4.8 10.1 46.6
SSC 3.7 0.0 9.7 49.9 11.4 3.3 15.0 44.6 5.5 0.0 11.6 49.9
LRR 3.2 0.3 8.2 40.3 7.8 2.8 10.3 41.5 4.3 0.6 8.9 41.5
FRR1 2.5 0.0 7.4 40.8 5.9 1.4 10.9 39.4 3.5 0.0 8.9 41.8
FRR2 1.8 0.0 5.3 36.1 4.7 1.0 9.1 41.5 2.6 0.0 6.5 41.5

Figure 4. Examples of the FRGC-Caltech data set. The top two
rows correspond to face images and the bottom row non-face im-
ages.

The goal of this task is to robustly extract facial features
and use them for classification. That is, we learn a map-
ping P between high dimensional observations and low di-
mensional features using TFRR, and identify outliers in the
training set by E. Then for a new testing data x, the feature
vector y can be computed as y = Px. We selected the first
k (k = 40, 80) identities and 257 non-facial images as the
training set and the remaining (180− k) identities of facial
images for test. We compared two TFRR based strategies
(one is directly using P = Z, called TFRR1, and another
is computing the orthogonal basis P = orth(LR), called
TFRR2) with the “Raw data” baseline and other state-of-
the-art approaches, such as PCA, Locality Preserving Pro-
jection (LPP) [12] and Neighborhood Preserving Embed-
ding (NPE) [11]. The parameters and the feature dimen-
sions of all methods are tuned to the best for each training
set. Table 3 demonstrates that the performances of TFRR1

and TFRR2 are both significantly better than the baseline
and PCA. Moreover, TFRR2 outperforms all other methods
on these experiments.

As shown in Fig. 5, the main advantage of TFRR based
methods comes from their ability of extracting intrinsic fa-
cial features and removing outliers. One can see that most
of the intrinsic facial features can be projected into the range
space (modeled by ZX, see the middle row), while the
small errors of the facial images (e.g., illuminations and oc-
clusions) and non-facial outliers (modeled by E) can be au-
tomatically removed (see the bottom row).

Fig. 6 plotted the energies (in terms of l2 norm) for the
columns of E. One can see that the values of non-facial
samples (last 257 columns in E) are obviously larger than
that of facial samples. Therefore, the error term E can

X:

ZX:

E:
Figure 5. Some examples of using TFRR to recover the intrinsic
facial features and remove small errors and outliers (modeled by
X = ZX+E). The left two columns correspond to facial samples
and the right two are non-facial samples. The middle row shows
the features extracted by our algorithm (ZX) and the bottom row
shows the corruptions (E).

(a) 40× 20 + 257 (b) 80× 20 + 257
Figure 6. The l2 norm for the columns of E. The first 800 (a) and
1600 (b) columns are facial images and the last 257 columns are
outliers.

also be used to detect the non-facial outliers. Namely the
i-th sample in X is considered as outlier if and only if
‖[E]i‖2 ≥ γ. By setting the parameter γ = 2.2, the out-
lier detection accuracies6 are 98.68% on the 40× 20 + 257
data and 99.19% on 80× 20 + 257 data, respectively.

6These accuracies are obtained by computing the percentage of cor-
rectly identified outliers. One may also consider the receiver operator char-
acteristic (ROC) and compute its area under curve (AUC) [17] to evaluate
the performance.



Table 3. Classification accuracies (mean ± std.%) on FRGC-Caltech data set. “Gm/Pn” means in the testing data m images of each subject
are randomly selected as gallery set and the remaining n images as probe set. Such a trial is repeated 20 times. The feature dimensions
are: PCA (410D, 358D), LPP (170D, 200D), NPE(320D, 160D) and TFRR2 (190D, 100D). The dimension of the feature vector produced
by TFRR1 is the same as the observed data.

Train Test Raw PCA LPP NPE TFRR1 TFRR2

40× 20 + 257
G5/P15 71.1 ± 3.2 70.0 ± 3.2 85.2 ± 2.4 81.1 ± 2.7 81.5 ± 2.0 88.8 ± 2.7

G10/P10 82.8 ± 4.6 81.6 ± 4.6 92.2 ± 2.8 89.6 ± 3.6 89.9 ± 2.7 94.1 ± 2.1

80× 20 + 257
G5/P15 72.3 ± 4.1 71.4 ± 4.1 85.4 ± 2.9 83.7 ± 4.2 82.9 ± 3.3 90.8 ± 2.1

G10/P10 82.6 ± 3.2 81.6 ± 3.2 91.4 ± 3.2 90.4 ± 3.2 90.1 ± 2.1 94.9 ± 2.9

7. Conclusions
This paper proposed a novel framework, named fixed-

rank representation (FRR), for robust unsupervised visual
learning. We proved that FRR can reveal the multiple sub-
space structure for clustering, even with insufficient obser-
vations. We also demonstrated that the transposed FRR
(TFRR) can successfully recover the column space, and
thus can be applied for feature extraction. There remain
several directions for future work: 1) provide a deeper anal-
ysis on LR (e.g., the general strategy for choosing efficient
basis from R(Z) for subspace clustering and determining
dimension for feature extraction), 2) apply FRR to super-
vised and semi-supervised learning.
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