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Abstract—Manifold learning is an important feature extrac-
tion approach in data mining. This paper presents a new
semi-supervised manifold learning algorithm, called Multi-
Manifold Discriminative Analysis (Multi-MDA). The proposed
method is designed to explore the discriminative information
hidden in geodesic distances. The main contributions of the
proposed method are: 1) we propose a semi-supervised graph
construction method which can effectively capture the multiple
manifolds structure of the data; 2) each data point is replaced
with an associated feature vector whose elements are the graph
distances from it to the other data points. Information of
the nonlinear structure is contained in the feature vectors
which are helpful for classification; 3) we propose a new
semi-supervised linear dimension reduction method for feature
vectors which introduces the class information into the man-
ifold learning process and establishes an explicit dimension
reduction mapping. Experiments on benchmark data sets are
conducted to show the effectiveness of the proposed method.

Keywords-Feature extraction; manifold learning; geodesic
distance;

I. INTRODUCTION

Feature extraction plays an important role in data analysis
tasks. Classical linear methods, including Principal Com-
ponent Analysis (PCA) [2], Linear Discriminant Analysis
(LDA) [1] and Maximum Marginal Criterion (MMC) [3], are
computationally efficient, globally optimal and in addition,
converge asymptotically.

However, linear dimension reduction methods cannot dis-
cover the nonlinear structure hidden in the high dimensional
data. As a new approach to nonlinear feature extraction,
manifold learning becomes a hot topic. Two manifold learn-
ing algorithms, Isometric Feature Mapping (Isomap) [4] and
Locally Linear Embedding (LLE) [5], were introduced in
the same issue of SCIENCE in 2000. Since then, many new
manifold learning algorithms have been proposed based on
different motivations, such as Laplacian Eigenmaps (LE)
[6], Hessian LLE [7], and Local Tangent Space Alignment
(LTSA) [8]. To provide an explicit mapping from the input
manifold to output embedding, many linear projection based
algorithms have been proposed for
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manifold learning by assuming that there exists a linear
dimension reduction projection. Linear manifold learning
algorithms include the Locally Preserving Projections (LP-
P) [9], Orthogonal Neighborhood Preserving Projection-
s (ONPP) [10], Discriminative Orthogonal Neighborhood-
Preserving Projections (SDONPP) [11], and Graph embed-
ding [12].

Geodesic, as an essential measurement for data distances,
has been successfully used in manifold learning [4]. Howev-
er, there are still limitations for most of the existing geodesic
based manifold learning algorithms in classification. First,
class information is rarely used in computing the geodesic
distances between data points on manifolds. They are less ef-
fective when the data set is partially labeled or distributes on
multiple manifolds, as is common in classification. Second,
little efforts have been made to build an explicit dimension
reduction mapping for extracting the discriminative informa-
tion hidden in geodesic distances.

In view of this, we propose a new manifold learning
algorithm for image classification, which has three new
features.

1. A semi-supervised neighborhood graph construction
method is introduced for data distributed on multiple
manifolds.

2. We replace each data point with a feature vector whose
elements are graph distances from the data point to the
remaining data points.

3. To build robust explicit dimension reduction mappings,
we propose a new semi-supervised linear dimension
reduction method for the feature vectors.

Combining these three features, we propose a semi-
supervised manifold learning algorithm, called Multi-
Manifold Discriminative Analysis (Multi-MDA).

The rest of the paper is structured as follows. In Section
II, the related feature extraction algorithms are reviewed.
Our algorithm is described in Section III. In Section IV,
experiments are reported on real world data sets to show
the effectiveness of the proposed Multi-MDA algorithm.
Finally, in Section V, we provide concluding remarks and
suggestions for the future work.
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II. RELATED WORKS

There are a lot of successful supervised feature extraction
algorithms. LDA [1] is designed to find a linear projection
𝐴 which maximizes the distances among the means of the
classes and minimizes the distances among the points in the
same class using the Fisher’s criterion:

𝐴∗ = argmax
𝐴∈ℝ𝑁×𝑑

tr
(
𝐴𝑇𝑆𝑏𝐴

)

tr (𝐴𝑇𝑆𝑤𝐴)
, (1)

where 𝑆𝑤, 𝑆𝑏 denote the within-class scatter matrix and
the between-class scatter matrix, respectively. Despite the
success of LDA [1], it has been found to have intrinsic
problems [13]: singularity of within-class scatter matrices
and limited available projection directions. MMC [3] is
based on the same intuition as LDA. The algorithm takes the
following approach to find a dimension reduction mapping:

𝐴∗ = argmax
𝐴∈ℝ𝑁×𝑑,𝐴𝑇𝐴=𝐼

𝑡𝑟
(
𝐴𝑇 (𝑆𝑏 − 𝑆𝑤)𝐴

)
. (2)

Cai et al. [14] proposed a Semi-Supervised Discriminant
Analysis (SSDA), which includes a manifold term which
preserves local information of the unlabeled data points to
improve the performance of the classification. Let 𝑋 =
[𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑁 ] be the data matrix, 𝐿 be the graph Laplacian
matrix and 𝑆𝑡 = 𝑆𝑏 + 𝑆𝑤 be the total scatter matrix, The
objective function for the algorithm is presented as

𝐴∗ = arg max
𝐴∈ℝ𝑁×𝑑

tr
(
𝐴𝑇𝑆𝑏𝐴

)

tr (𝐴𝑇 (𝑆𝑡 + 𝛼𝑋𝐿𝑋𝑇 )𝐴)
,

where 𝛼 > 0 is a given parameter. Independently, Song et al.
[15] proposed a similar semi-supervised dimension reduction
framework based on the LDA and the MMC algorithms.

By introducing the local metrics of semi-Reimannian
manifold to describe the structures of classes, Wang et al.
[16] proposed the Semi-Riemannian Discriminant Analy-
sis (SRDA) algorithm for supervised dimension reduction.
The Discriminative Multi-Manifold Analysis (DMMA) [17]
for face recognition first segments each image into non-
overlapping patches and then considers the patches of an
image as a data manifold. Discriminant Analysis then is
implemented on the data manifolds for feature extraction.

E-Isomap [20] is another supervised manifold learn-
ing algorithm which has three steps. The first and sec-
ond steps of E-Isomap are the same as the classical I-
somap algorithm. In the third step, a feature vector 𝑓𝑖 is
used to represent the original data point 𝑥𝑖, where 𝑓𝑖 =
(𝑑𝐺(𝑥𝑖, 𝑥1), ⋅ ⋅ ⋅ , 𝑑𝐺(𝑥𝑖, 𝑥𝑁 ))𝑇 , for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 , where
𝑑𝐺(𝑥𝑖, 𝑥𝑗) denotes the graph distances between data points
on the adjacent graph. The classical LDA [1] method is
then applied to reduce the dimension of the extracted feature
vectors {𝑓1, ⋅ ⋅ ⋅ , 𝑓𝑁}.

There are some related multi-manifold analysis methods,
such as [18], [19]. The projective mappings proposed in
these methods work either on the original data points or on

Table I
NOTATION

ℝ
𝐷 The input space, 𝐷-dimensional Euclidean space

ℝ
𝑑 The output space, 𝑑-dimensional Euclidean space

𝒳 𝒳 = {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑙, ⋅ ⋅ ⋅ , 𝑥𝑢+𝑙} with 𝑥𝑖 ∈ ℝ
𝐷 , the total data set.

{𝑥𝑖}𝑙𝑖=1 are labeled points, and {𝑥𝑖}𝑢+𝑙
𝑖=𝑙+1 are unlabeled points

𝑁 𝑁 = 𝑢+ 𝑙, the total number of data points in 𝒳
𝒴 𝒴 = {𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑙} is the label set. 𝑦𝑖 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝐶} is the

label of data point 𝑥𝑖

ℱ ℱ = {𝑓1, ⋅ ⋅ ⋅ , 𝑓𝑁}. 𝑓𝑖 = (𝑑𝐺(𝑥𝑖, 𝑥1), ⋅ ⋅ ⋅ , 𝑑𝐺(𝑥𝑖, 𝑥𝑁 ))𝑇 is
the feature vector of 𝑥𝑖. If 𝑥𝑖 is labeled as 𝑦𝑖, 𝑓𝑖 will be
labeled as 𝑦𝑖.

𝒳𝑚 𝒳𝑚 = {𝑥𝑚
1 , ⋅ ⋅ ⋅ , 𝑥𝑚

𝑁𝑚
} with 𝑥𝑚

𝑗 ∈ 𝒳 . Data points of the 𝑚-
th class, for 𝑚 = 1, ⋅ ⋅ ⋅ , 𝐶

𝑁𝑚 The number of data points in the 𝑚-th class
𝑋 𝑋 = [𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑁 ] ∈ ℝ

𝐷×𝑁 is the input data matrix
𝑍 𝑍 = [𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑁 ] ∈ ℝ

𝑑×𝑁 is the output matrix. 𝑧𝑖 ∈ ℝ
𝑑

is the low-dimensional representation of data point 𝑓𝑖 after di-
mension reduction

𝐶 The number of classes that the data points belong to
𝑥𝑚
𝑛(𝑖)

(𝑥𝑚
𝑛(𝑖)

, 𝑥𝑛
𝑚(𝑖)

) is the i-th shortest edge between 𝒳𝑚 and 𝒳𝑛,
and 𝑥𝑚

𝑛(𝑖)
is an ending vertex from 𝒳𝑚

the kernel vectors. None of them utilized the discriminative
information hidden in geodesic distances.

III. MULTI-MANIFOLD DISCRIMINANT ANALYSIS

In order to avoid confusion, we give a list of the main
notations used in this paper, as shown in Table I. Throughout
this paper, all data points and the corresponding feature
vectors are in the form of column vectors and denoted by
lowercase. All sets are represented by capital curlicue letters.
Matrices are denoted by normal capital letters.

In this section, we propose the Multi-MDA algorithm with
the following three new features for dimension reduction.

1. In Section III-A, a new neighborhood graph construc-
tion method is proposed and used in our algorithm.

2. In Section III-A, each data point is replaced with a
feature vector built by graph distances from it to the
remaining data points.

3. In Section III-B, a new semi-supervised linear dimen-
sion reduction method is proposed to provide explicit
dimension reduction mappings for feature vectors.

A. Multi-manifold modeling and feature vectors building

In this subsection, we consider the construction of a neigh-
borhood graph for multi-manifold data and the replacement
of the original data points with the feature vectors built from
the graph distances.

Data lying on multiple manifolds are natural in the real
world. For instance, in face recognition each person forms
his or her own manifold in the feature space; in object track-
ing, moving subjects trace different trajectories which are
low dimensional manifolds. Traditional graph construction
methods, 𝑘-NN and 𝜀-NN, cannot guarantee the connectivity
of the graph for multi-manifold data. In order to provide a
better graph, we propose a new graph construction method,
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the 𝑘-Connectivity Graph (𝑘-CG) method. The proposed
method first builds a 𝑘-NN graph over the whole data in
the semi-supervised manner, and then connects the adjacent
graph components by the 𝑘 shortest inter-edges. Details of
the method are presented as bellow:

The 𝑘-CG method:

Step 1. Construct the 𝑘-NN or 𝜀-NN neighborhood graph
in a semi-supervised manner. Given an appropriate
neighborhood size, define a graph 𝐺 with the data
points as the vertices by the means of 𝑘-NN or 𝜀-NN
method. For the training data with the class labels, each
data point is connected to its nearest neighbors in the
same class; for the training data without the class labels,
each data point is connected to its nearest neighbors
in the training set. Apparently, the nearest neighbor
approach cannot guarantee a connected graph. At this
step, several disconnected graph components may be
obtained and each graph component can be considered
as a data manifold. It is assumed that there are 𝑀
data manifolds and the 𝑚-th data manifold contains
𝒳𝑚 = {𝑥𝑚1 , ⋅ ⋅ ⋅ , 𝑥𝑚𝑁𝑚

}.
Step 2. Compute the average number of the neighbors. If

the 𝜀-NN method is applied to define the graph 𝐺 at
Step 1, the average number of the neighbors 𝑘 needs
to be computed. Let 𝑠𝑖 be the number of the neighbors
of 𝑥𝑖. The value of 𝑘 is set to be the nearest integer to∑𝑁

𝑖=1 𝑠𝑖/𝑁 .
Step 3. Connect the 𝑘 nearest inter-manifold data points

among manifolds. Identify the 𝑘 nearest inter-manifold
data pairs, {(𝑥𝑚𝑛(𝑖), 𝑥𝑛𝑚(𝑖)), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑘}, between 𝒳𝑚

and 𝒳𝑛, and connect these data pairs by edges, for
𝑚,𝑛 = 1, ⋅ ⋅ ⋅ ,𝑀 . Then the 𝑘-CG graph is constructed
on 𝒳 .

Remark 3.1: In Algorithm 3.1, we use the notion of
the 𝑚-th class 𝒳𝑚 = {𝑥𝑚1 , ⋅ ⋅ ⋅ , 𝑥𝑚𝑁𝑚

} interchangeably
to represent the 𝑚-th data manifold, although they are
not necessarily the same. The reason for this is that the
inconsistency between the discovered data manifolds and
the true classes/clusters of the data set does not degrade the
performance of the proposed Multi-MDA method.

Afterwards, the lengths of the shortest paths among
the data points can be computed by the classical Floyd-
Warshall’s or Dijkstra’s algorithm. Let 𝑑𝐺(𝑥𝑖, 𝑥𝑗) be the
graph distance between data points 𝑥𝑖 and 𝑥𝑗 in the
neighborhood graph and let the feature vector 𝑓𝑖 be 𝑓𝑖 =
(𝑑𝐺(𝑥𝑖, 𝑥1), ⋅ ⋅ ⋅ , 𝑑𝐺(𝑥𝑖, 𝑥𝑁 ))

𝑇 .
We propose an incremental graph construction procedure

for the new data points. When a new data point 𝑥 is obtained,
we first identify its 𝑘-nearest or 𝜀-nearest neighbors in 𝒳 ,
which are assumed to be {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘}. Then, we set the
edges between 𝑥 and these neighboring points. In this way,
the lengths of the shortest paths of 𝑥 to the data points in

𝒳 can be computed by

𝑑𝐺(𝑥, 𝑥𝑖) = min
𝑡=1,⋅⋅⋅ ,𝑘

{∥𝑥− 𝑥𝑡∥+ 𝑑𝐺(𝑥𝑡, 𝑥𝑖)}, (3)

for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁.
This procedure may be less accurate than implementing
Floyd-Warshall’s or Dijkstra’s algorithm on the new data set
𝒳 ∪ {𝑥}. But it has a low computational complexity. Only
𝑂((𝑘+ 1)𝑁) computational time is needed to include each
new data point. Then the feature vector of 𝑥 is obtained as
𝑓 = (𝑑𝐺(𝑥, 𝑥1), ⋅ ⋅ ⋅ , 𝑑𝐺(𝑥, 𝑥𝑁 ))

𝑇 .

B. Semi-supervised discriminant analysis for feature vectors

In this subsection, we propose the Semi-Supervised Dis-
criminant Analysis (SSDA) method for the feature vectors.
As the third step of the Multi-MDA algorithm, we apply it
to the set of the feature vectors ℱ instead of the original
data set 𝒳 .

Let the within-class scatter matrix 𝑆𝑤 and the new
between-class scatter matrix 𝑆𝑏 be

𝑆𝑤 =
𝐶∑

𝑚=1

𝑁𝑚∑

𝑗=1

(𝑓𝑚𝑗 − 𝑐𝑚)(𝑓𝑚𝑗 − 𝑐𝑚)𝑇 , and

𝑆𝑏 =

𝐶∑

𝑚=1

𝑁𝑚(𝑐𝑚 − 𝑐)(𝑐𝑚 − 𝑐)𝑇 +

𝐶∑

𝑚 ∕=𝑛=1

𝑘∑

𝑗=1

(𝑓𝑚𝑛(𝑗) − 𝑓𝑛𝑚(𝑗))(𝑓
𝑚
𝑛(𝑗) − 𝑓𝑛𝑚(𝑗))

𝑇 ,

where 𝑓𝑚𝑗 is the feature vector of 𝑥𝑚𝑗 , 𝑓𝑚𝑛(𝑗) is the 𝑗-th
nearest feature vector of the 𝑚-th class to the 𝑛-th class,
𝑐𝑚 is the mean vector of the feature vectors in the 𝑚-th
class, and 𝑐 is the mean vector of all the feature vectors.
In comparison with the 𝑆𝑏 used in LDA and MMC, the
new scatter matrix enhances the robustness by maximizing
distances among the margins of classes.

In the proposed SSDA algorithm, we include a term which
preserves the locally linear reconstruction coefficients from
the input data 𝑋 to improve the performance of semi-
supervised classification. Let the locally linear reconstruc-
tion coefficients be computed as

𝑀𝑖 = argmin ∥𝑥𝑖 −
∑

𝑗

𝑀𝑖𝑗𝑥𝑗∥22.

𝑠.𝑡.
∑

𝑗

𝑀𝑖𝑗 = 1, for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁.

It is required that 𝑀𝑖𝑗 = 0 if there is no edge between 𝑥𝑖
and 𝑥𝑗 in the 𝑘-CG graph. The new term is

𝐴∗ = arg min
𝐴∈ℝ𝑁×𝑑

𝑁∑

𝑖=1

∥𝐴𝑇 𝑓𝑖 −
𝑁∑

𝑗=1

𝑀𝑖𝑗𝐴
𝑇 𝑓𝑗∥2

= arg min
𝐴∈ℝ𝑁×𝑑

tr
(
𝐴𝑇𝐹𝐿𝐹𝑇𝐴

)
,
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where 𝐿 = (𝐼 − 𝑀)(𝐼 − 𝑀)𝑇 , 𝐹 = [𝑓1, ⋅ ⋅ ⋅ , 𝑓𝑁 ] is the
feature matrix, 𝑀 = {𝑀𝑖𝑗} is the reconstruction coefficient
matrix of order 𝑁 , and 𝐼 is the identity matrix. Then, let
0 ≤ 𝛽 ≤ 1, the SSDA algorithm is given as:

𝐴∗ = argmax
𝐴𝑇𝐴=𝐼

{
tr
(
𝐴𝑇

(
𝑆𝑏 − 𝑆𝑤 − 𝛽𝐹𝐿𝐹𝑇

)
𝐴
)}
. (4)

The optimization problem (4) can be solved by comput-
ing the eigenvalues and the eigenvectors of the matrix
𝑆𝑏 − 𝑆𝑤 − 𝛽𝐹𝐿𝐹𝑇 . More precisely, let {𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑑} be
the orthonormal eigenvectors corresponding to the top 𝑑
eigenvalues. Then the required feature mapping is given by
𝐴 = [𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑑] and the final low-dimensional embedding
is given as 𝑍 = 𝐴𝑇𝐹 .

C. The multi-manifold discriminant analysis algorithms

By combining the 𝑘-CG graph construction method, the
replacement of the original data with the feature vectors,
and the new SSDA method, our Multi-MDA algorithm has
three steps. It should be noted that the proposed algorithm
needs three parameters, 𝛽, neighborhood size 𝑘 or 𝜀, and
dimension 𝑑.

Algorithm 3.2. (Multi-MDA)

Step 1. Construct a connected graph. Construct a neigh-
borhood graph over 𝒳 using the 𝑘-CG method. A
weighted graph 𝐺 = {𝒳 , 𝐷} is constructed, where
(𝐷)𝑖𝑗 = ∥𝑥𝑖 − 𝑥𝑗∥ if 𝑥𝑖 and 𝑥𝑗 are connected by an
edge and (𝐷)𝑖𝑗 =∞ otherwise.

Step 2. Compute feature vectors. Compute the lengths
of pair-wise shortest paths on the graph by imple-
menting the Floyd-Warshall’s or Dijkstra’s algorithm,
and then replace 𝑥𝑖 with the feature vector 𝑓𝑖 =
[𝑑𝐺(𝑥𝑖, 𝑥1), ⋅ ⋅ ⋅ , 𝑑𝐺(𝑥𝑖, 𝑥𝑁 )]𝑇 , for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 . The
class label of 𝑓𝑖 is set to be 𝑦𝑖, for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙.

Step 3. Compute 𝑑-dimensional embedding. Apply the SSDA
algorithm on the feature vectors. Let the computed
feature mapping be 𝐴. Each data point 𝑥𝑖 is represented
by a low-dimensional vector 𝑧𝑖 = 𝐴𝑇 𝑓𝑖.

Algorithm 3.2 presents the multi-MDA algorithm, which
trains an explicit dimension reduction mapping for feature
vectors of both the labeled and unlabeled data. When the
low-dimensional representations of data points are obtained,
one can train a classifier using the labeled low-dimensional
representations.

In following, we propose the incremental multi-MDA
for test data. Given an unlabeled sample 𝑥, incremental
multi-MDA first maps it to low-dimensional space, and
then applies the trained classifier to its low-dimensional
representation.

Algorithm 3.3. (Online Multi-MDA)

Step 1. Compute pair-wise Euclidean distances ∥𝑥 − 𝑥𝑖∥,
for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 . Identify the 𝑘-nearest neighbors

Table II
BRIEF DESCRIPTIONS OF THE COMPARED ALGORITHMS

Name Description
PCA, LDA, SDONPP Linear algorithms
LDA, SDONPP Supervised linear algorithms
SS-KDA, E-Isomap, Multi-MDA Supervised nonlinear algorithms
SS-KDA, SDONPP, Multi-MDA Semi-supervised algorithms

or 𝜀-nearest-neighbors of 𝑥, which are assumed as
{𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘}.

Step 2. Compute the lengths of shortest paths for 𝑥 by
Eq. (3). Then, the feature vector of 𝑥 is given as
𝑓 = [𝑑𝐺(𝑥, 𝑥1), ⋅ ⋅ ⋅ , 𝑑𝐺(𝑥, 𝑥𝑁 )]𝑇 .

Step 3. Low dimensional representation of 𝑥 for classifica-
tion is computed as 𝑧 = 𝐴𝑇 𝑓 .

IV. EXPERIMENTS

In this section, we compare the proposed Multi-MDA al-
gorithm with representative dimension reduction algorithms,
PCA [2], LDA [1], SS-KDA [14], SDONPP [11] and E-
Isomap [20]. The properties of the compared algorithms are
summarized in Table II.

A. Data set description

USPS [21] is a benchmark handwritten digit database,
which contains 1100 samples for each class from ‘0’ to
‘1’. The data set used in our experiments consists of 1100
samples from classes ‘0’ and 1100 samples from class ‘1’,
which form a binary classification data set.

MIT CBCL [22] database contains 2429 face images and
4548 non-face images. In the experiment, we use a subset of
this database, which comprises 1000 face and 1000 non-face
images.

B. Experimental settings

For any data set 𝒳 , we randomly select 𝛼1 percents of
the data points in each class as the training set 𝒳𝑡𝑟𝑎𝑖𝑛 and
leave the remaining 100−𝛼1 percents of data points as the
test set 𝒳𝑡𝑒𝑠𝑡. Similarly, we randomly label 𝛼2 percents of
data points in 𝒳𝑡𝑟𝑎𝑖𝑛, where 0 ≤ 𝛼1, 𝛼2 ≤ 100. Therefore,
𝒳𝑡𝑟𝑎𝑖𝑛 is a partially labeled training set. Let the number of
data points in 𝒳𝑡𝑟𝑎𝑖𝑛 is 𝑁 and the number of labeled training
points is 𝑙.

In the Multi-MDA algorithm, we set 𝛽 = 0.01 throughout
all the experiments. On every data sets, the neighborhood
sizes for SDONPP, E-Isomap and Multi-MDA algorithms,
the kernel width for SS-KDA are chosen by cross-validation.

Classification on the unlabeled samples in 𝒳𝑡𝑟𝑎𝑖𝑛 is con-
ducted as follows:

Step 1. Train an explicit dimension reduction mapping us-
ing 𝒳𝑡𝑟𝑎𝑖𝑛 = {(𝑥1, 𝑦1), ⋅ ⋅ ⋅ , (𝑥𝑙, 𝑦𝑙), ⋅ ⋅ ⋅ , 𝑥𝑢+𝑙}. We
apply the algorithms on 𝒳𝑡𝑟𝑎𝑖𝑛, which provide low-
dimensional representations of 𝒳𝑡𝑟𝑎𝑖𝑛 and explicit di-
mension reduction mappings for test data points. As-
sume that 𝒵 = {(𝑧𝑖, 𝑦𝑖), 𝑧𝑙+𝑗 , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙, 𝑗 =
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1, ⋅ ⋅ ⋅ , 𝑢} be the low-dimensional representation of
𝒳𝑡𝑟𝑎𝑖𝑛.

Step 2. Considering {(𝑧𝑖, 𝑦𝑖), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙} as the training
set, we implement the nearest neighbor classifier on the
unlabeled set {𝑧𝑙+𝑗 , , 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑢}.

Classification on the test data set 𝒳𝑡𝑒𝑠𝑡 is conducted as
follows:

Step 1. Apply the trained dimension reduction mappings on
𝒳𝑡𝑒𝑠𝑡, where the computed low dimensional represen-
tations are assumed as {𝑧𝑡𝑒𝑠𝑡𝑗 , 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑇}.

Step 2. Considering {(𝑧𝑖, 𝑦𝑖), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙} as the training
set, we implement the nearest neighbor classifier on the
test set {𝑧𝑡𝑒𝑠𝑡𝑗 , 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑇}.

In the following, for each setting, we split the data sets
and conduct experiments five times. The averaged accuracy
of the compared algorithms are reported accordingly.

C. Experiments on the assessments of Multi-MDA algorithm

In this section, let 𝛼1 = 90 and 𝛼2 = 10, we compare the
performances of our Multi-MDA, Multi-MDA without the
𝑘-CG graph construction method (using the 𝑘-NN method),
SSDA and MMC on the USPS ‘0’ and ‘1’ classification
data set and an extended CBCL data set, where the extended
version of CBCL data set contains 1500 face samples and
1500 non-face samples.

The neighborhood size 𝑘 is set as 15 for both the multi-
MDA and 𝑘-NN based Multi-MDA. Recognition curves of
the compared algorithms are shown in Fig. 1. As can be seen
from Fig. 1, the feature vectors built by graph distances on
𝑘-CG graph are more discriminative than the feature vectors
built on the 𝑘-NN graph.

D. Classification with different dimensions

0 20 40 60 80 100 120 140 160 180
50

55

60

65

70

75

80

85

90

95

Dimension

A
cc

ur
ac

y 
(%

) Multi−MDA
E−Isomap
LDA
SDONPP
SS−KDA
PCA

0 20 40 60 80 100 120 140 160 180
60

65

70

75

80

85

90

Dimension

A
cc

ur
ac

y 
(%

)

Multi−MDA
E−Isomap
LDA
SDONPP
SS−KDA
PCA

(a) (b)
Figure 2. Recognition results of the compared algorithms with various
dimension 𝑑 on the unlabeled points of (a) USPS, (b) MIT CBCL.

Fixing 𝛼1 = 90 and 𝛼2 = 10, we evaluate the perfor-
mances of compared algorithms with different dimensions,
which varies from 2 to 200. In the experiments, the neighbor-
hood sizes for E-Isomap and Multi-MDA are set as 12; the
Gaussian kernel width for SS-KDA is tuned and chosen by
cross validation, and the parameters for SDONPP algorithm
we used are the same as used in their original paper. The
results of the compared algorithms on unlabeled points are
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Figure 3. Recognition results of the compared algorithms with various
dimension 𝑑 on test points of (a) USPS, (b) MIT CBCL.

Table III
CLASSIFICATION WITH DIFFERENT PERCENTAGES OF LABELED

TRAINING SAMPLES

USPS CBCL
Unlabeled 𝛼2= 10 𝛼2=30 𝛼2=50 𝛼2=10 𝛼2=30 𝛼2=50

PCA 87.9 90.0 91.7 83.2 89.6 93.4
LDA 72.3 84.1 89.5 83.1 86.0 89.2

SS-KDA 78.3 89.1 89.6 85.1 90.7 94.2
SDONPP 87.9 89.8 91.7 83.5 89.6 93.6
E-Isomap 86.2 87.7 89 74.6 86.8 90.7

Multi-MDA 88.7 90.3 91.2 85.6 91.2 95.1
Test 𝛼2= 10 𝛼2=30 𝛼2=50 𝛼2=10 𝛼2=30 𝛼2=50
PCA 86.5 87.5 87.5 85.0 92.5 95.5
LDA 75.0 86.5 89.0 84.0 82.0 92.5

SS-KDA 89.0 91.0 88.5 85.3 87.0 95.0
SDONPP 88.5 88.0 87.5 85.0 92 95.5
E-Isomap 84.5 91.0 90.0 75.0 88.0 90.0

Multi-MDA 87.5 87.5 90.0 86.0 91.5 96.0

reported in Fig. 2, and the results of on test points are
reported in Fig. 3.

In Fig. 2(a), we can see that on the USPS data set,
SDONPP has the best recognition rate. But there is not
significant improvement when SDONPP is compared with
Multi-MDA and SS-KDA methods. As can be seen from Fig.
2(b), Multi-MDA has significant advantages over compared
algorithms on different dimensions on unlabeled data points
from the CBCL data sets.

Fig. 3(a) indicates that Multi-MDA accomplishes the best
recognition rate on the test set of USPS data set. In Fig.
3(b), we can see that the recognition rates of Multi-MDA
algorithm are 2 or 3 percents higher than those of compared
algorithms.

E. Classification with different portion of labeled training
samples 𝛼2

Fixing the training set portion 𝛼1 = 90 and target
dimension 𝑑 = 100, we test the compared algorithms with
different percentages of labeled points in 𝒳𝑡𝑟𝑎𝑖𝑛, i.e., 𝛼2

changes from 10, 30, to 50. For each 𝛼2, experiments are
conducted five times and the averaged accuracy rates on both
the unlabeled and test points are reported in Table III.

F. Discussion

According to the experiments being performed on the data
sets, we make several observations:
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Figure 1. Recognition results of Multi-MDA, SSDA, MMC, and 𝑘-NN based Multi-MDA with various dimension 𝑑 on (a) the unlabeled set of USPS,
(b) the test set of USPS, (c) the unlabeled set of CBCL data set, (d) the test set of CBCL data set.

1. Kernel methods are sensitive to the number of training
points. When the number of training points changes or
the number of labeled points changes, the kernel width
needs to be updated accordingly. Otherwise, kernel
method gives poor results.

2. The results demonstrate that if the training set is large
enough to characterizes the data distribution (manifold
distribution), Multi-MDA outperforms the compared
algorithms. Otherwise, the linear algorithms such as
PCA and SDONPP are more effective than nonlinear
algorithms.

V. CONCLUSION

In this paper, we have proposed a new multi-manifold
learning algorithm. It combines semi-supervised multi-
manifold modeling, nonlinear feature extraction and a new
semi-supervised discriminant analysis method to achieve
better performance in geodesic feature extraction and classi-
fication tasks. Experiments show that the proposed algorithm
yields good results on projecting the data to a comparably
low-dimensional space. Future works will be concentrated
on exploring other nonlinear features from data.
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