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a b s t r a c t

Fukunaga–Koontz Transform (FKT) is a famous feature extraction method in statistical pattern

recognition, which aims to find a set of vectors that have the best representative power for one class

while the poorest representative power for the other class. Li and Savvides [1] propose a one-against-all

strategy to deal with multi-class problems, in which the two-class FKT method can be directly applied

to find the presentative vectors of each class. Motivated by the FKT method, in this paper we propose a

new discriminant subspace analysis (DSA) method for the multi-class feature extraction problems. To

solve DSA, we propose an iterative algorithm for the joint diagonalization (JD) problem. Finally, we

generalize the linear DSA method to handle nonlinear feature extraction problems via the kernel trick.

To demonstrate the effectiveness of the proposed method for pattern recognition problems, we conduct

extensive experiments on real data sets and show that the proposed method outperforms most

commonly used feature extraction methods.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Fukunaga–Koontz Transform (FKT) is a famous feature extrac-
tion method in statistical pattern recognition [2,3]. It was origin-
ally proposed by Fukunaga and Koontz for two-class feature
extraction problems. The basic idea of FKT is to find a set of
representative vectors that simultaneously represent two classes,
in which the vectors that best represent one class will be the least
representative ones for the other class. FKT has been widely used
in many applications during the past thirty years, including image
classification [4], face detection [5] and face recognition [6,7]. To
handle the multi-class feature extraction problem, Li and Savvides
[1] propose to use a one-against-all strategy such that the two-
class FKT method can be directly applied to find the presentative
vectors of each class. More specifically, they choose one class as
an independent class and use all the remaining classes as a new
class, and then apply the FKT method to find the most represen-
tative vectors for the chosen class. This procedure is repeated
until each class has its own representative vectors. However, it
should be noted that this approach works in a relative manner
rather than an absolute manner, i.e., the eigenvectors represent-
ing each class are solved independently rather than in a unified
manner [1]. Hence, the best representative vectors for one class
may not be the poor ones for other classes.
ll rights reserved.
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Motivated by the FKT method, in this paper we propose a new
discriminant subspace analysis (DSA) to deal with the multi-class
feature extraction problems. In this method, we firstly borrow the
FKT idea of whitening the summation of all the class covariance
matrices, and then find an orthogonal matrix that best simulta-
neously diagonalize all the transformed class covariance matrices
in the whitening space. Considering that there may not exist an
orthogonal matrix that can exactly and simultaneously diagona-
lize more than two-class covariance matrices [2], we can only
resort to the joint diagonalization (JD) technique of multiple
matrices [8,9] to achieve this goal. To this end, in this paper we
propose an iterative algorithm to solve the JD problem using the
conjugate gradient method on the Stiefel manifold (the set of all
orthogonal matrices) [10]. Compared with the original JD algo-
rithm proposed by Flury [8] that uses the maximal likelihood
method, the major advantage of our algorithm is that it can
remove the non-singularity constraint on the class covariance
matrices and therefore can still be applicable when the number of
samples of each class is relatively small. Moreover, to obtain a
discriminant subspace for each class, we adopt a method similar
to the FKT of choosing the vectors from the columns of the
transformation matrix that best represent one class while have
less representation power for other classes to span the discrimi-
nant subspace for that class.

Our DSA can be viewed as an extension of the common
principal component analysis (CPCA) method [8] for discrimina-
tion problems. The CPCA method, originally proposed by Flury [8],
aims to find a common orthogonal matrix for multiple class
covariance matrices. However, since the data samples may not
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Fig. 1. An example of JD of the class covariance matrices. The first row shows the

three 4�4 class covariance matrices. The second row shows the results of

simultaneous diagonalization after performing the JD procedure. The grayscale

corresponds to the magnitude of the matrix entries, where the darker pixels
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share the same metric, we cannot guarantee that the columns
of the orthogonal matrix of CPCA with the best representation
power for one class will be the poor representation vectors of
other classes. In contrast to CPCA, our DSA can overcome these
drawbacks of CPCA, by whitening the data samples such that they
share the same metric. Moreover, to make the DSA method able to
capture the nonlinear structure of the data samples, we also
generalize the linear DSA method by utilizing the kernel trick,
which has been successfully used in the nonlinear extensions of
PCA [11] and linear discriminant analysis (LDA) [12]. We call
the nonlinear DSA method as the kernel DSA or simply the KDSA
method for short.

This paper is organized as follows. In Section 2, we briefly
review the FKT method and the CPCA method. In Section 3, we
present our DSA method. The KDSA method is introduced in
Section 4. Then the experiments are presented in Section 5.
Finally, we conclude our paper in Section 6.
indicate larger values.
2. Brief review of FKT and CPCA

2.1. Fukunaga–Koontz Transform (FKT)

Let X1 and X2 be two data matrices, where each column is a
d-dimensional vector. Then the autocorrelation matrices of X1

and X2 can be expressed as R1 ¼ ð1=N1ÞX1XT
1 and R2 ¼ ð1=N2ÞX2XT

2,
respectively, where N1 and N2 represent the number of the
columns of X1 and X2, respectively. Let R¼R1þR2. Performing
the singular value decomposition (SVD) of R, we obtain

R¼ ðV V?Þ
K 0

0 0

� �
VT

V?
T

 !
, ð1Þ

where K is a diagonal matrix whose diagonal entries are positive
and 0 denotes zero matrices. Let P¼ VK�1=2. Then we obtain

PT RP¼ PT
ðR1þR2ÞP¼ R̂1þ R̂2 ¼ I,

where R̂1 ¼ PT R1P, R̂2 ¼ PT R2P and I is the identity matrix. Let

R̂1x¼ l1x ð2Þ

be the eigen-analysis of R̂1. Then we have

R̂2x¼ ðI�R̂1Þx¼ ð1�l1Þx: ð3Þ

Eqs. (2) and (3) show that R̂1 and R̂2 share the same eigenvector
x, but the corresponding eigenvalues are different (the eigenva-

lues of R̂2 is l2 ¼ 1�l1) and they are bounded between 0 and 1.
Therefore, the eigenvectors which best represent class 1 (i.e.,

l1 � 1) are the poorest ones for representing class 2 (i.e.,

l2 ¼ 1�l1 � 0). Suppose the SVD of R̂1 is R̂1 ¼Q 1K1Q T
1 and let

P̂ ¼ PQ 1, then we have that P̂
T
RP̂ ¼ I, P̂

T
R1P̂ ¼K1 and P̂

T
R2P̂ ¼

I�K1. So P̂ simultaneously diagonalizes R1 and R2.
It is notable that the above two-class FKT solution method

cannot be simply extended to the general multi-class problem.
This is because there may not exists a matrix that can exactly
diagonalize more than two autocorrelation matrices simulta-
neously. For multi-class problems, Li and Savvides [1] use a
one-against-all strategy to construct a sequence of two-class FKT.

2.2. Common principal component analysis (CPCA)

Suppose that we have c data matrices Xi (i¼ 1;2, . . . ,c) from
d-dimensional data space. Let ui denote the mean of the i-th data
matrix Xi and Ni denote the number of the columns of Xi (i.e., the
number of samples in the i-th class). Then the covariance matrix
of the i-th data matrix can be expressed as

Ri ¼
1

Ni
XiX

T
i �uiu

T
i , i¼ 1;2, . . . ,c: ð4Þ

The goal of CPCA is to find an orthogonal matrix Q ARd�d that
simultaneously diagonalizes the c class covariance matrices Ri,
i.e.,

Q TRiQ ¼Ki

s:t: Q T Q ¼ I, ð5Þ

where ideally Ki should be diagonal.
The optimal solution to (5) can be found by performing the JD

of all the class covariance matrices Ri. The concept of JD is
illustrated in Fig. 1, where usually Ki cannot be exactly diagonal
when c42. One of the most well-known JD algorithms to solve
the optimization problem in (5) was proposed by Flury [8], which
is based on maximum likelihood estimation. However, this algo-
rithm may not be applicable when the class covariance matrices
Ri are singular because the inverses of class covariance matrices
are involved. Moreover, it should be noted that the principal
components associated with different class covariance matrices
do not share the same metric and hence cannot guarantee that
the columns of Q that best represent one class will be the poor
ones for other classes.
3. Discriminant subspace analysis (DSA)

Suppose that P is the whitening matrix of the summation of Ri

(i¼ 1;2, . . . ,c), i.e.,

Xc

i ¼ 1

PTRiP¼
Xc

i ¼ 1

R̂ i ¼ I, ð6Þ

where R̂ i ¼ PTRiP (i¼ 1;2, . . . ,c).
Similar to the CPCA method, we perform JD on the c whitening

class covariance matrices R̂ i (i¼ 1;2, . . . ,c), i.e., seeking an ortho-
gonal matrix Q satisfying the following constraints:

Q T R̂ iQ ¼Ki

s:t: Q T Q ¼ I, ð7Þ

where ideally Ki should be diagonal. Compare (7) with (5), we can
see that Q is actually the orthogonal transform matrix of CPCA
defined on R̂ i, while CPCA performs on the original covariance
matrix Ri (i¼ 1;2, . . . ,c). Consequently, our DSA can be seen as a
generalization of CPCA.
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To solve the optimal solution Q, we formulate the optimization
problem (7) into the following form:

Q n
¼ arg min

Q T Q ¼ I
gðQ Þ, ð8Þ

where the objective function gðQ Þ is defined as

gðQ Þ ¼
1

4

Xc

i ¼ 1

JQ TR̂ iQ�diagðQ TR̂ iQ ÞJ
2
F , ð9Þ

in which each term in the right-hand side of (9) measures how
close Q T R̂ iQ is to be diagonal and diagðAÞ represents a diagonal
matrix whose diagonal entries are the same as those of A.

To solve the optimization problem in Eq. (8), we use the
conjugate gradient method on the Stiefel manifold [10]. The
pseudo-code is presented in Algorithm 1. To run Algorithm 1,
we have to solve two subproblems: first, to compute the deriva-
tive of gðQ Þ with respect to Q; second, to minimize gðQ kðtÞÞ

therein over t, where Q kðtÞ has the form of Q kðtÞ ¼Q ketAk and Ak

is a skew-symmetric matrix.

Algorithm 1. The conjugate gradient method for minimizing gðQ Þ
on the Stiefel manifold (adapted from [10]).

Input:

� Covariance matrices R̂1,R̂2, . . . ,R̂c and the threshold e40.
Initialization:

1. Choose an orthogonal matrix Q 0;

2. Compute G0 ¼ Z0�Q 0ZT
0Q 0, where Z0 ¼

dg
dQ 9Q 0

;

3. Set H0 ¼�G0, A0 ¼Q T
0H0 and k’0;

Do while JAkJF 4e
1. Minimize gðQ kðtÞÞ over t, where Q kðtÞ ¼Q kMðtÞ and

MðtÞ ¼ etAk ;
2. Set tk’tmin and Q kþ1’Q kðtkÞ, where

tmin ¼ arg mintgðQ kðtÞÞ;

3. Compute Gkþ1 ¼ Zkþ1�Q kþ1ZT
kþ1Q kþ1, where

Zkþ1 ¼
dg
dQ 9Q kþ 1

;

4. Parallel transport tangent vector Hk to the point Q kþ1:

tðHkÞ’HkMðtkÞ;
5. Compute the new search direction:

Hkþ1 ¼�Gkþ1þgktðHkÞ, where gk ¼
/Gkþ 1�Gk ,Gkþ 1S

/Gk ,GkS
and

/A,BS¼ TrðAT BÞ;
6. if kþ1� 0 mod dðd�1Þ=2, then reset Hkþ1 ¼�Gkþ1.

7. Set Akþ1’Q T
kþ1Hkþ1;

8. Set k’kþ1;
Output:
� Set Q’Q k and output Q.

For the first subproblem, the derivative of gðQ Þ can be found
to be1

dgðQ Þ

dQ
¼

1

2

Xc

i ¼ 1

R̂
2

i

 !
Q�

Xc

i ¼ 1

R̂ iQ diagðQ T R̂ iQ Þ: ð10Þ

For the second subproblem, we notice that gðQ kðtÞÞ is a smooth
function of t, hence its minimal point can be found by Newton’s
iteration method [13] as it must be a zero of f kðtÞ ¼ dgðQ kðtÞÞ=dt.
To find the zeros of fk(t) by Newton’s iteration method,2 we
have to know the derivative of fk(t). fk(t) and df kðtÞ=dt can be
1 The details of deducing Eqs. (10)–(12) are given in Appendix.
2 Some trivial tricks, e.g., by checking whether gðQ kðtÞÞ decreases, should be

adopted in order not to find the maximal points of gðQ kðtÞÞ as they are also the

zeros of fk(t).
found to be

f kðtÞ ¼ Tr Ak

Xc

i ¼ 1

Si,kðtÞdiagðSi,kðtÞÞ

 !
ð11Þ

and

df kðtÞ

dt
¼ Tr Ak

Xc

i ¼ 1

½ððSi,kðtÞAkÞ
T
þSi,kðtÞAkÞdiagðSi,kðtÞÞ

 

þSi,kðtÞdiagððSi,kðtÞAkÞ
T
þSi,kðtÞAkÞ�

�
, ð12Þ

respectively, where Si,kðtÞ ¼Q T
k ðtÞR̂ iQ kðtÞ.

Now denote the optimal solution to (7) by Q ¼ ½q1,q2, . . . ,qr�,
where r is the dimensionality of R̂ i. Then, by the philosophy of
CPCA, the columns of Q are the common eigenvectors of all R̂i. So,
to find the most representative vectors for each class, we compute
di,j ¼ qT

j R̂ iqj (j¼ 1;2, . . . ,r) to measure the representative power of
vector qj for class i. In this case, the vectors qi1

,qi2
, . . . ,qik

that
correspond to the top k largest values of di,j (j¼ 1;2, . . . ,r) are the
most representative vectors for class i. Let Q i ¼ ½qi1

,qi2
, . . . ,qik

�

(i¼ 1;2, . . . ,c) and x be a test sample. Then, if x is from the i-th class
data set, then the reconstruction error of PT

ðx�uiÞ by Q i should be
the least among those by Q j (ja i). Consequently, we can assign the
class label, denoted by cn, of x according to the following criterion:

cnðxÞ ¼ arg min
i
fJziJg, ð13Þ

where zi is given by

zi ¼ ðI�Q iQ
T
i ÞP

T
ðx�uiÞ: ð14Þ

We summarize our DSA algorithm in Algorithm 2.

Algorithm 2. Discriminant subspace analysis.

Input: Data matrices X¼ ½X1,X2, . . . ,Xc� and a test sample x.

1. Compute the covariance matrix of Xi: Ri ¼
1
Ni

XiX
T
i �uiu

T
i

(i¼ 1;2, . . . ,c), where Ni is the number of columns of Xi;

2. Compute R¼
Pc

i ¼ 1 Ri;

3. Perform the SVD of R: R¼VKVT , and let P¼VK�1=2;

4. Set R̂ i ¼ PTRiP;
5. Solve the orthogonal matrix Q that best simultaneously

diagonalizes R̂1, . . . ,R̂c using Algorithm 1;
6. Find the most discriminant vectors Q i for each class;
7. Find the class identifier cnðxÞ for x by Eq. (13).

Output:
� cnðxÞ.

4. Kernel discriminant subspace analysis (KDSA)

We now generalize the linear DSA to the nonlinear case. Let F
be a nonlinear mapping that maps the columns of the data
matrices Xi (i¼ 1;2, . . . ,c) from the d-dimensional data space Rd

to a high-dimensional feature space F , i.e.,

F : Rd-F : ð15Þ

Let XF
i denote the corresponding data matrices Xi in the feature

space F , then the covariance matrix of the i-th class data set in F
can be expressed as

RF
i ¼

1

Ni
XF

i ðX
F
i Þ

T
�uF

i ðu
F
i Þ

T
ði¼ 1;2, . . . ,cÞ, ð16Þ

where uF
i ¼ ð1=NiÞ

PNi

j ¼ 1 XF
ij denotes the mean vector of the i-th

data set and XF
ij denotes the j-th column of XF

i . Let

RF
¼
Xc

i ¼ 1

RF
i ¼

Xc

i ¼ 1

1

Ni
XF

i ðX
F
i Þ

T
�uF

i ðu
F
i Þ

T

� �
ð17Þ
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and let PF be the whitening matrix of RF, such that

PFT
RFPF

¼ PFT
ðRF

1 þRF
2 þ � � � þRF

c ÞP
F
¼
Xc

i ¼ 1

R̂ i ¼ I, ð18Þ

where

R̂ i ¼ PFT
RF

i PF
ði¼ 1;2, . . . ,cÞ: ð19Þ

In this case, solving the KDSA problem boils down to solving the
same optimization problem as (7).

To find the transformation matrix PF, we perform the singular
value decomposition (SVD) [2] on RF. More specifically, let oF

p

(p¼ 1;2, . . . ,m) denote the eigenvectors of RF corresponding to
the nonzero eigenvalue lp40, then we have

RFoF
p ¼ lpoF

p : ð20Þ

From the literature [11], we know that oF
p can be expressed as a

linear combination of the columns of XF
i (i¼ 1;2, . . . ,c). Let

XF
¼ ½XF

1 XF
2 � � � XF

c �. Then, for each oF
p , there exists ap such that

oF
p ¼XFap: ð21Þ

Combining (17), (20) and (21), we obtain that ap are the
eigenvectors of the following eigensystem:

Xc

i ¼ 1

1

Ni
K iK

T

i ap ¼ lpKap, ð22Þ

where K¼ ðKijÞc�c is a c� c block matrix, Kij ¼ ðX
F
j Þ

T XF
i whose

entries can be computed via the kernel trick (i.e., the product of
two vectors, xF and yF can be computed via the kernel function
ðyFÞT xF ¼ kernelðx,yÞ), Ki ¼Ki�KiNi, Ki ¼ ½Ki1 Ki2 � � � Kic�

T , Ni is
an Ni � Ni matrix with all entries being 1=Ni, and ap is divided byffiffiffiffiffi
lp

p
such that JoF

p J¼ 1.
Let VF

¼ ½oF
1 oF

2 � � � oF
m� ¼XFU and K¼ ½l1 l2 � � � lm�, where

U¼ ½a1 a2 � � � am�. Then from (20) we obtain the following SVD
expression of RF3:

RF
¼VFKVFT

: ð23Þ

From (23), we obtain that

PF
¼VFK�1=2

¼XFUK�1=2: ð24Þ

According to (16), (19) and (24), we have

R̂ i ¼ ðP
F
Þ
TRF

i PF

¼K�1=2UT
ðXF
Þ
T 1

Ni
XF

i ðX
F
i Þ

T
�uF

i ðu
F
i Þ

T

� �
XFUK�1=2

¼
1

Ni
K�1=2UT KiK

T

i UK�1=2: ð25Þ

Hence, the projection of the test sample xF�uF
i onto the matrix

PF can be expressed as

ðPF
Þ
T
ðxF�uF

i Þ ¼K�1=2UT
ðXF
Þ
T
ðxF�uF

i Þ ¼K�1=2UT
ðk�KiniÞ, ð26Þ

where ni is an Ni � 1 vector with all element being 1=Ni and
k¼ ðXF

Þ
T xF can be computed via the kernel trick.

Let Q be the optimal solution to (19) and let Q i be the matrices
whose columns are those of Q with the best representation power
for class i. Then the class label of xF can expressed as
cnðxÞ ¼ arg minifJziJg, where

zi ¼ ðI�Q iQ
T
i ÞðP

F
Þ
T
ðxF�uF

i Þ

¼ ðI�Q iQ
T
i ÞK

�1=2UT
ðk�KiniÞ: ð27Þ

We summarize our kernel discriminant subspace analysis (KDSA)
based algorithm in Algorithm 3.
3 Here we utilize the orthogonality among the eigenvectors oF
i .
Algorithm 3. Kernel discriminant subspace analysis.

Input: Data matrices X¼ ½X1,X2, . . . ,Xc�, kernel function

kernelð�,�Þ, and a test sample x.

1. Compute Kij ¼ ðX
F
j Þ

T XF
i , Ni, Ki ¼Ki�KiNi, and the

coefficient vector ni;
2. Solve the eigenvectors ai of K¼ ðKijÞc�c corresponding to

the nonzero eigenvalues li, and set ai’ai=
ffiffiffiffi
li

p
(i¼ 1;2, . . . ,m);

3. Set U¼ ½a1 a2 � � � am� and K¼ ½l1 l2 � � � lm�;

4. Compute R̂ i ¼
1
Ni

K�1=2UT KiK
T

i UK�1=2;

5. Solve the orthogonal matrix Q that best simultaneously

diagonalizes R̂1, . . . ,R̂c using Algorithm 1;
6. Find the most discriminant vectors Q i for each class;
7. Find the class identifier cnðxÞ for x by Eq. (13), where zi is

computed according to (27).
Output:
� cnðxÞ.

5. Experiments

In this section, we test the effectiveness of the proposed JD
algorithm as well as the recognition performance of the proposed
DSA and KDSA methods on four real data sets, i.e., the IRIS data set
[14], Ekman’s POFA (Picture of Facial Affect) database [15], the
ORL face database [16], and the texture database [17]. The brief
description of these data sets are given as follows:
1.
 The IRIS data set was originally used by Fisher [14] for the
study of taxonomic problems. It consists of 150 samples from
three classes, where each class contains 50 samples and each
sample is a four-dimensional feature vector.
2.
 The POFA database consists of 110 facial images covering six
basic emotions (i.e., happy, angry, sad, surprise, disgust, and
fear) plus the neutral emotion. There are 14 subjects in total
(six males and eight females).
3.
 The ORL face database consists of 40 subjects, and each one
contains 10 different images taken at different time and with
slightly varying lighting. The size of each original face image is
112�92 pixels, with a 256-level grayscale.
4.
 The texture image database used in this experiment comprises
the 13 textures from the Brodatz album [17]. Each texture has
the size of 512�512 pixels, digitized at six different rotation
angles (01, 301, 601, 901, 1201 and 1501). Similar to the method
in [18], all the images are divided into 16 disjoint 128�128
subimages. Hence, we obtain a texture image data set of 1248
samples in total, each of the 13 classes having 96 samples.

To evaluate the recognition performance of the proposed DSA
and KDSA methods, we also use the PCA method, the LDA method
[19], the LDA/GSVD method [20], the LDA/FKT method [7], the
KPCA method [11], the KLDA method [21] and the KFKT method
[1], respectively, to conduct the same experiments for compar-
ison. When using the methods of PCA, LDA, LDA/GSVD, LDA/FKT,
KPCA, and KLDA in the experiments, we choose the nearest
neighbor (NN) rule with the Euclidean distance as the classifier.
Moreover, throughout the experiments, we use the monomial
kernel function and the Gaussian kernel function, defined as

kernelðx,yÞ ¼ ðxT yÞker
ð28Þ

and

kernelðx,yÞ ¼ exp �
Jx�yJ2

s

( )
, ð29Þ



non−diag/diag = 0.39266

non−diag/diag = 0.029154

non−diag/diag = 0.02632

non−diag/diag = 0.11587

non−diag/diag = 0.015768

non−diag/diag = 0.018888

non−diag/diag = 0.083583

non−diag/diag = 0.0023457

non−diag/diag = 0.0017331

Fig. 2. Comparison of the effectiveness of simultaneously diagonalizing the class covariance matrices of two JD algorithms: the first row shows the three class covariance

matrices of the IRIS data samples, the second row shows the corresponding class covariance matrices after performing Ziehe et al.’s JD algorithm, and the third row shows

the corresponding class covariance matrices after performing our JD algorithm. Below each covariance matrix is the ratio of the sum of squared non-diagonal entries to that

of the diagonal ones.

Table 1
Class covariance matrices to be used for simultaneous diagonalization.

Class no. 4�4 Class covariance matrices

1 0.1570 �0.0356 0.1808 0.0490

�0.0356 0.1176 �0.1084 �0.0210

0.1808 �0.1084 0.3981 0.0411

0.0490 �0.0210 0.0411 0.2425

2 0.3820 �0.0026 �0.0618 �0.0852

�0.0026 0.1818 0.0235 �0.1029

�0.0618 0.0235 0.2504 �0.0079

�0.0852 �0.1029 �0.0079 0.3783
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respectively, to calculate the inner product of any two vectors
in the feature space F , where ker and s denote the degree
of monomial kernel and the Gaussian kernel parameter,
respectively.

5.1. Experiments on the IRIS data set

In this experiment, we aim to use the IRIS data set to demonstrate
the effectiveness of our JD algorithm. We also compare with the JD
algorithm proposed by Ziehe et al. [9]. We design our experiment
according to the following procedures:
3 0.4611 0.0381 �0.1189 0.0362

0.0381 0.7006 0.0849 0.1239

1.
 Calculate the class covariance matrices of the data samples xi.
�0.1189 0.0849 0.3515 �0.0332
2.
0.0362 0.1239 �0.0332 0.3792
Solve the transform matrix P that whitens the summation of
the three class covariance matrices.
3.
 Transform the data samples with the matrix P : yi ¼ PT xi:
4.
 Calculate the new class covariance matrices using the trans-
formed data samples, and then perform the JD algorithms on
the new class covariance matrices.

Fig. 2 depicts the class covariance matrices and the results
after performing Ziehe et al.’s JD algorithm and ours, where the
grayscale corresponds to the magnitude of the matrix entries and
the darker pixels indicate larger values. The first row of Fig. 2 lists
the three class covariance matrices of the data samples yi, the
second one lists the results after performing Ziehe et al.’s JD
algorithm, whereas the third one lists the results after performing
our JD algorithm. Below each covariance matrix, we present the
ratio of the sum of squared non-diagonal entries to that of the
diagonal ones, indicating the performance of the JD algorithms.
The smaller the ratio value, the better the JD algorithm. Moreover,
we also show the numerical results of the class covariance
matrices in Tables 1 and 2, where Table 1 shows the numerical
results of three class covariance matrices to be used for simulta-
neous diagonalization, and Table 2 shows the numerical results
after performing the JD algorithms of the Ziehe et al. and ours,
respectively.

From Fig. 2 and Tables 1 and 2, we can see that after
performing the JD operation, each class covariance matrix
becomes close to be diagonal. Moreover, we can see that our JD
algorithm achieves some improvement over Ziehe et al.’s JD
algorithm in diagonalizing the covariance matrices of classes
1 and 3.

5.2. Experiments on Ekman’s facial expression database

In this experiment, we use Ekman’s POFA database to evaluate
the recognition performance of the proposed DSA method and the
KDSA method. To evaluate the performance of Ziehe’s JD algo-
rithm with ours, we use both JD algorithms to realize the DSA and
the KDSA algorithms, respectively. Before the experiment, we
preprocess the facial images by manually cropping each facial
image such that the non-facial regions of each image are
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removed. Then we scale the cropped images to a size of 120�120
pixels. Fig. 3 shows examples of some cropped images. Finally, we
concatenate each cropped image into a 14 400�1 vector and
normalize it into a unit vector.

We adopt the leave-one-subject-out strategy to conduct the
experiment. That is, to select the facial images of one subject as
the testing data and use the rest as the training data. We repeat
this procedure until all the facial images have been used once as
the testing data. Table 3 shows the average test error rates of the
various linear feature extraction methods as well as the various
kernel based nonlinear feature extraction methods with different
choices of monomial kernel degrees and Gaussian kernel para-
meters, where the monomial kernel degrees are set from 1 to
5 and the Gaussian kernel parameters are empirically fixed at 0.5,
5, 50, and 500. It can be clearly seen from Table 3 that the
proposed KDSA method achieves a lowest error rate (¼21.82%)
among the various methods when Gaussian kernel is used. In this
example, we see that the KDSA methods implemented by Ziehe’s
JD algorithms and by our JD algorithm achieve the similar better
recognition results.
Table 2
Results of performing the Ziehe et al.’s JD algorithm and our JD algorithm,

respectively, on the three class covariance matrices in Table 1.

Class no. Covariance matrices calculated by Ziehe’s algorithm

1 0.0689 0.0322 �0.0018 0.0469

0.0322 0.1109 �0.0062 0.0420

�0.0018 �0.0062 0.5389 0.0033

0.0469 0.0420 0.0033 0.1965

2 0.3788 �0.0064 0.0106 �0.0488

�0.0064 0.1355 0.0109 �0.0243

0.0106 0.0109 0.2149 0.0092

�0.0488 �0.0243 0.0092 0.4633

3 0.5523 �0.0257 �0.0087 0.0019

�0.0257 0.7537 �0.0048 �0.0176

�0.0087 �0.0048 0.2462 �0.0125

0.0019 �0.0176 �0.0125 0.3402

Class no. Covariance matrices calculated by our algorithm

1 0.0671 0.0311 �0.0022 0.0434

0.0311 0.1081 �0.0064 0.0408

�0.0022 �0.0064 0.5389 0.0030

0.0434 0.0408 0.0030 0.2010

2 0.3822 �0.0112 0.0105 �0.0527

�0.0112 0.1366 0.0105 �0.0276

0.0105 0.0105 0.2149 0.0098

�0.0527 �0.0276 0.0098 0.4588

3 0.5507 �0.0199 �0.0083 0.0094

�0.0199 0.7553 �0.0041 �0.0133

�0.0083 �0.0041 0.2462 �0.0128

0.0094 �0.0133 �0.0128 0.3402

Fig. 3. Examples of cropped image
5.3. Experiments on the ORL face database

In this experiment, we aim to evaluate the representation
ability and the recognition performance of the DSA method and
the KDSA method. In the experiment, each face image is also
cropped such that the non-facial regions of image are removed,
and scale the cropped images to a size of 64�64 pixels. Then, we
concatenate each face image into a 4096�1 vector and normalize
it into a unit vector.

To show the performance on image representation, we ran-
domly choose 70 images of seven subjects from the database and
compute the representative vectors using the PCA method, the
FKT method (a special case of the KFKT method when the
monomial kernel with degree 1 is used) [1] and the DSA method,
respectively. Fig. 4 shows the principal eigenvectors correspond-
ing to the first seven largest eigenvalues of PCA (the first row) as
well as the most representative vector of FKT (the second row)
and DSA (the third row) corresponding to each subject, respec-
tively. The images shown in the last row of Fig. 4 are the average
image of each class. Moreover, to quantitatively evaluate the
representative ability of the eigenvectors of PCA, FKT and DSA, we
define the following average reconstruction error of the face
images:

e¼ 1

9I9
X
iAI

Jxi�x̂ iJ, ð30Þ

where

x̂ i ¼ooT ðxi�xÞþx
s of Ekman’s POFA database.

Table 3
Average test error rates of various methods (%) on Ekman’s POFA data set.

Methods Average test error rates

PCA 55.45

LDA 25.45

LDA/FKT 33.64

LDA/GSVD 23.64

DSA by Ziehe’s JD 29.09

DSA by proposed JD 28.18

Monomial kernel ker¼2 ker¼3 ker¼4 ker¼5

KPCA 55.45 55.45 55.45 55.45

KLDA 28.12 26.36 23.64 25.45

KFKT 32.73 34.55 32.73 32.73

KDSA by Ziehe’s JD 28.18 30.91 28.18 26.36

KDSA by proposed JD 30.91 30.00 28.18 27.27

Gaussian kernel s¼ 0:5 s¼ 5 s¼ 50 s¼ 500

KPCA 53.64 52.73 51.82 51.82

KLDA 26.36 27.27 26.36 25.45

KFKT 34.55 32.73 31.82 30.91

KDSA by Ziehe’s JD 33.64 30.91 23.64 21.82

KDSA by proposed JD 31.82 31.82 21.82 21.82



Fig. 4. Plot of the representative vectors obtained by PCA, FKT and DSA. The images in the first, second, and third rows denote the representative vectors of PCA, FKT [1],

and DSA, respectively. The fourth row shows the average image of each class.

Table 4
Average test error rates (%) and standard deviations (shown in the brackets) of

various methods on the ORL data set.

Methods Average test error rates

PCA 18.85 (2.86)

LDA 6.10 (1.81)

LDA/FKT 6.55 (1.88)

LDA/GSVD 6.50 (1.83)

DSA by Ziehe’s JD 5.35 (2.19)

DSA by proposed JD 4.35 (1.78)

Monomial kernel ker¼2 ker¼3 ker¼4

KPCA 13.95 (2.91) 14.00 (2.73) 14.30 (2.46)

KLDA 5.55 (2.20) 5.55 (2.25) 5.95 (2.24)

KFKT 6.75 (2.44) 6.65 (2.80) 7.20 (2.94)

KDSA by Ziehe’s JD 5.30 (2.61) 5.95 (2.47) 6.40 (2.66)

KDSA by proposed JD 4.55 (2.30) 5.25 (2.29) 5.15 (2.11)

Gaussian kernel s¼ 0:5 s¼ 5 s¼ 50

KPCA 14.25 (2.53) 13.95 (2.71) 13.85 (2.86)

KLDA 6.10 (2.54) 5.90 (1.76) 6.05 (1.80)

KFKT 7.75 (3.29) 6.45 (2.63) 6.25 (2.81)

KDSA by Ziehe’s JD 7.35 (2.65) 5.95 (2.27) 5.45 (1.79)

KDSA by proposed JD 6.45 (2.33) 4.95 (1.66) 5.05 (1.71)
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is the reconstruction of xi, I ¼ fxig denotes the whole face image
set, 9I9 denotes the number of images in I , x ¼ ð1=9I9Þ

P
iAIxi,

and o denotes a representative vector which can be computed by
PCA, FKT, or DSA.

According to Eq. (30), we obtain that the average reconstruc-
tion errors of PCA, FKT and DSA are ePCA ¼ 0:1781, eFKT ¼ 0:1480
and eDSA ¼ 0:1477, respectively, where all 70 face images are used
in the evaluation. For PCA, the first principal eigenvector is chosen
as the representative vector, whereas, for both FKT and DSA, the
principal eigenvector specific to each class is used as the repre-
sentative error for calculating the average reconstruction error of
the face images belonging to that class. From the average
reconstruction error results and Fig. 4, we can see that, compared
with the average images, both FKT and DSA achieve lower average
reconstruction error than PCA and hence are more powerful than
PCA in representing the subjects.

To evaluate the recognition performance of both DSA and
KDSA, we randomly select five face images per subject as the
training data and use the other five images as the testing data.
Then, we use the training data set to train the various feature
extraction algorithms and use the test data set to evaluate the
recognition performance of the various methods. We totally
conduct 10 trials of the experiments. The final test error rate is
obtained by averaging the test error rates of all the trials. In the
experiments, all the face images are concatenated into a vector
and normalized into unit vectors. Table 4 shows the average test
error rates and the standard deviations of the various methods,
including the DSA method and the KDSA method implemented by
Ziehe’s JD algorithm. From Table 4, we see that the lower error
rates are achieved when our DSA and KDSA methods are used.
Especially, the lowest error rate (¼ 4:35%) is achieved when the
DSA method via the proposed JD algorithm is used. In addition,
the experimental results in this example show that the proposed
JD algorithm achieves a slight better performance than Ziehe’s JD
algorithm when they are used in the DSA and the KDSA methods.
5.4. Experiments on texture classification

In this experiment, we aim to evaluate the classification
performance of the KDSA method on texture database under
different kernel functions and different sizes of the training data
set. The uniform local binary pattern, denoted by LBPu2

8;2 [18], is
used to describe each texture image in the experiment. In this
case, we totally obtain a 59-dimensional LBP vector to describe a
texture image, resulting in a set of 59-dimensional feature vectors
with 1248 samples.

To evaluate the recognition performance of various kernel
based methods, we randomly select l (¼16, 24, 32, 40) LBP
vectors from each class as the training data and use the rest as
the test data. We totally conduct 10 trials of the experiments and
average the results as the final results. Figs. 5 and 6 show the
average test error rates (%) of these methods with different
choices of the monomial kernel degrees and the Gaussian kernel
parameters, respectively. From both Figs. 5 and 6, we can see that
our DSA/KDSA method achieves better results than the other
methods.
6. Conclusions and discussions

In this paper, we have proposed a new DSA approach for
multi-class feature extraction and classification problems. By
adopting the kernel trick, we also extend the DSA method to deal
with the nonlinear feature extraction problems. Moreover, to
solve the related JD problem, we also propose a new algorithm
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Fig. 5. Plots of the average test error rates of four methods with different choices of the monomial kernel degree.
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Fig. 6. Plots of the average test error rates of four methods with different choices of the Gaussian kernel parameters.
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by using the conjugate gradient method on the Stiefel manifold.
To evaluate the effectiveness of the new JD algorithm as well as
the performance of the DSA method and the KDSA method, we
conducted experiments on four real data sets, and the experi-
mental results confirm the better performance of our methods.
Additionally, in the experiments of facial expression recognition
and face recognition, we see that the KDSA method may not
achieve higher recognition rates than the linear DSA method.
This problem may be due to the inappropriate choices of the
kernel mappings or the kernel function parameters. To achieve a
better performance of the KDSA method, we may use the kernel
optimization approach [22], and that will be our further work.
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Appendix A. Proof of Eq. (10)
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where ej is the j-th column of the identity matrix and we have
used the following identity:

diagðQ T R̂iQ Þ ¼
X
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The entry-wise differentiation of g w.r.t. the (p,q)-th entry Q pq of
Q is

dg

dQ pq

¼
1

4

X
i

Tr

2
4ððepeT

q Þ
T R̂

2

i QþQ TR̂
2

i epeT
qÞ

�2ððepeT
q Þ

T R̂iQþQ TR̂ iepeT
qÞ

X
j

ðeT
j Q T R̂ iQejÞeje

T
j

0
@

1
A

�2Q TR̂ iQ
X

j

ðeT
j ððepeT

qÞ
TR̂ iQþQ T R̂ iepeT

qÞejÞeje
T
j

0
@

1
A

þ2
X

j

ðeT
j Q T R̂ iQejÞðe

T
j ððepeT

qÞ
TR̂ iQþQ T R̂ iepeT

q ÞejÞeje
T
j

3
5

¼
1

4

X
i

Tr

"
2Q T R̂

2

i epeT
q�2eqeT

pR̂ iQ diagðQ TR̂ iQ Þ

�2 diagðQ T R̂iQ ÞQ
TR̂ iepeT

q

�2Q TR̂ iQ
X

j

ðeT
j ðeqeT

pÞR̂ iQejÞeje
T
j

0
@

1
A

�2Q TR̂ iQ
X

j

ðeT
j Q R̂jðepeT

q ÞejÞeje
T
j

0
@

1
A

þ2
X

j

ðeT
j Q T R̂ iQejÞðe

T
j ððeqeT

pÞR̂ iQejÞeje
T
j

þ2
X

j

ðeT
j Q TR̂ iQejÞðe

T
j Q T R̂ iðepeT

q ÞejÞeje
T
j

3
5

¼
1

4

X
i

Tr½2Q TR̂
2

i epeT
q�2eqeT

pR̂ iQ diagðQ T R̂ iQ Þ

�2 diagðQ TR̂ iQejÞQ
T R̂iepeT

q

�2Q TR̂ iQ ððe
T
pR̂ iQeqÞeqeT

q Þ�2Q TR̂ iQ ððe
T
qQ TR̂ iepÞeqeT

q Þ

þ2ðeT
qQ T R̂iQeqÞðe

T
pR̂iQeqÞeqeT

q

þ2ðeT
qQ T R̂iQeqÞðe

T
qQ T R̂iepÞeqeT

q �

¼
1

2

X
i

½eT
qQ TR̂

2

i ep�eT
pR̂ iQ diagðQ T R̂ iQ Þeq

�eT
qdiagðQ TR̂ iQ ÞQ

T R̂ iep�eT
qQ TR̂ iQ ðe

T
pR̂ iQeqÞeq

�eT
qQ T R̂iQ ðe

T
qQ T R̂ iepÞeqþeT

qðe
T
qQ TR̂ iQeqÞðe

T
pR̂ iQeqÞeq

þeT
q ðe

T
qQ TR̂ iQeqÞðe

T
qQ TR̂ iepÞeq�

¼
1

2

X
i

½eT
qQ TR̂

2

i ep�eT
pR̂ iQ diagðQ T R̂ iQ Þeq

�eT
qdiagðQ TR̂ iQ ÞQ

T R̂ iep�ðe
T
qQ T R̂ iQeqÞðe

T
pR̂ iQeqÞ

�ðeT
qQ TR̂ iQeqÞðe

T
qQ TR̂ iepÞþðe

T
qQ TR̂ iQeqÞðe

T
pR̂ iQeqÞ

þðeT
qQ TR̂ iQeqÞðe

T
qQ TR̂ iepÞ�

¼
1

2
eT

qQ T
X

i

R̂
2

i

 !
ep�eT

q

X
i

diagðQ T R̂iQ ÞQ
TR̂ i

 !
ep: ð34Þ

So rearranging the above entry-wise differentiation in a matrix
form, we have
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Appendix B. Proof of Eq. (11)

Denote gkðtÞ ¼ gðQ kðtÞÞ, then f kðtÞ ¼ dgkðtÞ=dt. Note that
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Consider that Ak is a skew-symmetric matrix, i.e., AT
k ¼�Ak, we

obtain that Eq. (36) can be rewritten as
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From the fact that AT
k ¼�Ak and Sð2Þk is a symmetric matrix, we

have

f kðtÞ ¼ Tr Ak
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Appendix C. Proof of Eq. (12)

First we write
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On the other hand, we have that
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X
i

½ððSi,kðtÞAkÞ
T
þSi,kðtÞAkÞdiagðSi,kðtÞÞ

 

þSi,kðtÞdiagððSi,kðtÞAkÞ
T
þSi,kðtÞAkÞ�

!
: ð43Þ
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