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1. Introduction

Please note that the number of equations, propositions and theorems in supplemental mate-
rials are different from that in the manuscript.
The problem we are interested in is as follows:

n

 min, S filxi), st Y Aix)=b, (1)
o i=1

i=1
where x; and b could be either vectors or matrices, f; is a closed proper convex function,
and A; : R% — R™ is a linear mapping. Without loss of generality, we may assume that

n
none of the 4;’s is a zero mapping, the solution to ) A;(x;) = b is non-unique, and the
i=1

mapping A(X1,- -+ ,X,) = Y. A;i(x;) is ontol.
i=1
We propose LADMPSAP to solve (1), which consists of the following steps:
1. Update x;’s in parallel:

(k) )
k+1 . gy k .
x; 1 = argmin fi(x;) + ZQ Xp—u| o, i=1m, (2)
X;
2. Update A:

n
XL =0+ By (Z A1) — b) , 3)

=1
1. The latter two assumptions are equivalent to that the matrix A = (A1 --- A,) is not full column rank

but full row rank, where A; is the matrix representation of A;.
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3. Update g:
ﬁk-i—l = min(ﬁmaxa pﬁk)a (4)
where O'Z-(k) = 1; Bk,
uf = xt — A (V) /o, (5)
in which A} is the adjoint operator of A; and
N = XF 4 By (ZAi(X?)—b)7 (6)
i=1
and
i .<’€>’ Bl _ zc‘ =1,
J_ L itma ({0l [ == ) bl <

1, otherwise,

with pg > 1 being a constant and 0 < g5 < 1 being a threshold.
The iteration terminates when the following two conditions are met:

/bl < e1, (8)

> AT —b
=1

max ({m) =1 ,n})/HbH < )

For more details, please refer to Lin et al. (2011).

k+1 k
x, =X

2. Some Lemmas

Lemma 1 The Kuhn-Karush-Tucker (KKT) condition of problem (1) is that there exists
(x3,---, x5, A%), such that

)

> Ai(xt) = b, (10)
i=1
—AX(X\Y) e 0fi(x}), i=1,---,n, (11)

where Of; is the subgradient of f;. The first is the feasibility condition and the second is
the duality condition. Such (x7,---,x;,A*) is called a KKT point of problem (1).

Lemma 2
— a(k)(forl —uf) €0fi(xft), i=1, (12)

(2 7
This can be easily proved by checking the optimality conditions of (2).
Lemma 3

<—a(’“>(x’.€+1 —ub) + AT(), xF L x;> >0, i=1,-,n. (13)

[ ) ?
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Proof We first cite a classic result on the monotonicity of subgradient mapping Rockafellar
(1970): for any convex function f,

(p1 — P2, X1 —X2) >0, Vp; € 0f(x;),i=1,2.

By choosing x; = x¥*! and xy = x* and utilizing (12) and (11), we have (13).

Lemma 4
" 2 2
ﬁkZaZ( ) ’ xi.“'l —-x7|| + H)\kﬂ — A"
= 0B Z o; ) X; — X A*
—zﬁk§j< oM )+ A1)
=1
) ||kt k+1 _ k|
gl ]
i=1
—20y, Z a§k> <forl X;, xf — uk>
i=1
19 <)\k+1 2k )\k+1> .
Proof This can be easily checked. First, we add (17) and (19) to have

—2ﬁk2< Bt o ) AT

(k) [ k+1 k_ ok
fQBkZai X, X, X, -
=1

n
- _25kz<x§+l X7, AN *>+25kza (bt =g b x)

= —25k2< k—H x}), >+2ﬂkza < k+1 _ X, f;+1 xf>
= -2 <BkZ’Al(Xf+l —x7),A > -|-2ﬁkzo- < f+1 :7X§+1 _Xi‘g
i=1
= 2 <ﬂk’ <i Ai(xf ™) - b) »>\*> + 2By Zafk) <Xf+1 — X}, % -
=1 i=1

n
= -2 <)\k+1 — Ak, /\*> +26, > ot <x§+1 — X}, X x§> ,
=1

(14)

(22)

(23)

(24)
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where we have used (10) in (26). Then we apply the identity

2(ap1 —a*, app1 —ag) = llagyr —a’[]® — [lag — a*||* + flap1 — ag?

to see that (15)-(20) holds.

3. Proofs of Propositions and Theorems

Proposition 5 (Proposition 1 in the manuscript)

n
k
B> o |2 AR A2
=1

IN

n
* k
2330 (o
=1
n

n
k * *
B> oM sk — x|+ IAF - )2
=1

(xE =) + A (\) )

By (o8 — Bl A2 [+ — b

i=1
— A = AR,

Proof We continue from (19)-(20). As O'Z(k) (xk —

n
—20y, Z JZ@ <Xf+1 - X, Xf — uf> +2 <)\k+1 — Nk, )\k+1>
i=1

k
u;

) = Af(\F), we have

- - (kL oy 3K k+1 _ yk yk+1
_ 2Bk;<AZ(xZ+ xl),/\>+2<>\+ A,A+>

— 2B, <2 Ai(xhthy - X;Ai(x;*),ﬂ’“> +2 <)\k“ - Ak,wl>

— 9 <)\k+1 _ Ak)j\k> 19 <)\k+1 A, )\k+1>

- 9 <>\k+1 Ak AR 5\k>

_ H)\k—l—l o )\k:HQ + H)\k—l—l o 5\k:H2 o H)\k - j\kHQ

= A=A

i=1
n
< AR F2 4 2 (Z A ] —
i=1
n
<N R £ nE Y ARl — 2 (A - AE 2

i=1

AT —xF)

2
— [IAF = Ak

2
Xfll) — A" = A
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Plugging the above into (19)-(20), we have (29)-(33). [ |

Proposition 6 (Proposition 3 in the manuscript) Let ng) =nifr, i =1, ,n. If {Bk}

is non-decreasing, n; > n|| A%, i = 1,--- ,n, and (x5, , x5, \*) is any KKT point of
problem (1), then:
1) {i:lmef —xt||2+ B 2| Ak - )\*HZ} is nonnegative and non-increasing.
i=
2) |IxE —xF|| =0, i=1,--,n, B I\ = N[ — 0.
1) 7

400
3) ,;1 B! <Xf+1 —xt, —oF) (xIH1 — uk) +A;*()\*)> <doo,i=1,---,n.

Proof We divide both sides of (29)-(33) by 37 to have

Sl [P 4 B2 X (43)
=1

< Sl — x| 4 BRI AP (44)
=1
—2ﬁk12< =t o e ) £ AT (45)
—Z ;= nllAR) [ - bR (46)
621N = )

Then by (13), n; > n|A;||? and the non-decrement of {f3;}, we can easily obtain 1). Second,
we sum both sides of (43)-(47) over k to have

22@ 1 Z< =, oD (e — ) + A7) (48)

+Z(m —nHAiHQ)ZHXfH - x[|? (49)
i=1 k=0
+oo R

+ B I = A7 (50)
k=0

Y omillxd = x|7 + B2 A% = NP (51)

=1

Then 2) and 3) can be easily deduced. [ |



Liv LiN Su

Theorem 7 (Theorem 4 in the manuscript) If {Br} is non-decreasing and upper bound-
ed, ni > n||Ai||?, i = 1,--- ,n, then the sequence {({x¥},\¥)} generated by LADMPSAP
converges to a KKT point of problem (1).

The proof resembles that in Lin et al. (2011).
Proof By Proposition 6-1) and the boundedness of {8}, {(x¥,---
hence has an accumulation point, say (lej Lo x,li AR (x99,
plish the proof in two steps.

1. We first prove that (x3°,---

By Proposition 6-2),

x® A)1 is bounded,

) 7’[,7
, X0, A%°). We accom-

o0, A%) is a KKT point of problem (1).

y Xp s

DA —b=8"A ) =0
=1

So any accumulation point of {(x¥,---,x)} is a feasible solution.
Since —Ui(kj*l)(x’.ﬂj - u]-g’vfl) € 8fi(xfj), we have

K3 (2

S A < 3 A+ 3 (3 - x, ol -l )

i=1 ile ) ’L?Ll " . " - s
= 3 F0) + 30 (K xt —mBy a  — ) — ()
i=1 =1

Let j — +o00. By observing Proposition 6-2) and the boundedness of {3}, we have

8

IA
M=
=
+
M=
e

éﬂ@) 2 x, — A (X))

(2

~
Il
—
<.
Il
—

I
M=
=

|
M=

<A(XC'>O - X;‘k)v )‘OO>

(3

~
I
—_
.
Il

Il
M=
e
2
%

|
="

~
I
-
<
I
—_

Il
M=
e
=7

%
N

.
Il
—

So we conclude that (x3°,---,

Again by —ai(kj_l)(xl.cj —u

)

= A

o) is an optlmal solution to (1).
-1

) € 0fi(x j) we have

<o
<

Fixing x and letting j — +o00, we see that
fix) = filx®) + (x = x7°, A7 (A7), vx

o —AX(A*) € 0fi(x¢°),i=1,--- ,n. Thus (x7°,--- ,x
(1)

2. We next prove that the whole sequence {(x%,--- ,x* A\¥)} converges to (x5, - -+, x°, A>).

o0, A®) is a KKT point of problem

y Xn s
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By choosing (x7,--- ,x},\") = (x3°,- -+ ,x2°,A*°) in Proposition 6, we have
= k
D omillx” = X2+ BN = A% = 0.
i=1
By Proposition 6-1), we readily have

n
D millxE = x| + B2 A =A%) = 0.

i=1
So (xb, - xE ) = (x50, xS0, ).
As (x5°,--- ,x5°,A>®) can be an arbitrary accumulation point of {(x¥,--- x5 A\F)}, we
conclude that {(x},---,x% A¥)} converges to a KKT point of problem (1). |

Proposition 8 (Proposition 5 in the manuscript) If {5y} is non-decreasing and unbounded,
ni > n||Ail|?, 0fi(x) is bounded, i = 1,--- ,n, then Proposition 6 holds and

B AR = 0. (52)

Proof As the conditions here are stricter than those in Proposition 6, Proposition 6 holds.
Then we have that {8 '||\* — A\*||} is bounded due to Proposition 6-1). So {8, '\*} is
bounded due to B; ' AF|| < B tIAF — X[ + B A {Bk_ljxk} is also bounded thanks to
Proposition 6-2).
We rewrite Lemma 2 as
—m(x T =) = ANBA) € Blofi ), i=1 (53)
Then by the boundedness of Jf;(z), the unboundedness of {3} and Proposition 6-2), letting
k — +oo, we have that
AIA®) =0, i=1,---,n. (54)

where A is any accumulation points of {3, '\F}, which is the same as that of {8, 'AF} due
to Proposition 6-2).

Recall that we have assumed that the mapping A(x1, - ,Xpn) = Y Ai(x;) is onto. So
i=1
NP null(A?) = 0. Therefore by (54), A> = 0. |

+oo

Theorem 9 (Theorem 6 in the manuscript) If {Sx} is non-decreasing and Bk_l = +o0,
k=1

ni > nllAil|2, 0fi(x) is bounded, i = 1,--- ,n, then the sequence {x¥} generated by LADMP-

SAP converges to an optimal solution to (1).

Proof When {fx} is bounded, the convergence has been proven in Theorem 1. In the
following, we only focus on the case that {fj} is unbounded.
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By Proposition 6-1), {(x¥,---,x¥)} is bounded, hence has at least one accumulation
point (x3°,---,x5°). By Proposition 6-2), (x3°,--- ,x5°) is a feasible solution.
+oo . .
Since 3" B, ' = 400 and Proposition 6-3), there exists a subsequence {(x]fj yoe ,xﬁj)}
k=1
such that
<xff —xt —o P gy A;“(A*)> 0, i=1--,n. (55)
As pfj = —agkjfl)(xfj — ufjfl) € 8fi(xfj) and 0f; is bounded, we may assume that

k.
xF — x° and p;’ — pi.

It can be easily proven that
p;° € 0fi(x7°).
Then letting j — oo in (55), we have
(x7° — x5, p;° +A(N) =0, i=1,---,n. (56)

i —

Then by pfj € 8fi(xfj),

PINICOED DIACIED SICHETTN P (57)
=1 =1 i=1

Letting j — oo and making use of (56), we have

;fz‘(xé-”) < Z:lfz‘(xf)Jr ;<X?°—Xfapfo>
= 3 R — 356 — g AT ()
Z?Ll ’Lfll (58)
= Z:lfi(xf) - ; (Ai(x7® = x}), A")
= ; fi(x7)-
So together with the feasibility of {(x°,---,x2°)} we have that {(x]fj L+, x0)} converges
to an optimal solution {(x3°, -+ ,x>°)} to (1).

Finally, we set x; = x7° and A* be the corresponding Lagrange multiplier A>° in Propo-
sition 6. By Proposition 8, we have that

n
Sl = U + B2l — xF|2 0.
i=1
By Proposition 6-1), we readily have
n
D omillxE = x°|17 + B2 A = A% = 0.

=1

So (Xllca"’axﬁ)_)(x(l)of"vxgo)' u
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Theorem 10 (Theorem 7 in the manuscript) If {8y} is non-decreasing, nm; > n|lA;||?,

+oo

Jfi(x) is bounded, i =1,--- ,n, then Bk_l = +0o0 is also the necessary condition for the
k=1

global convergence of {x¥} generated by LADMPSAP to an optimal solution to (1).

Proof We first prove that there exist linear mappings B;, i = 1,--- ,n, such that B;’s are
n n
not all zeros and ) B;Af = 0. Indeed, ) B;A} =0 is equivalent to
i=1 i=1
n
> BiAT =0, (59)
i=1

where B; is the matrix representation of B;. (59) can be further written as

BY
(Ap - Ap) | ¢ | =0 (60)
B}
n
Recall that we have assumed that the solution to > A;(x;) = b is non-unique. So
i=1
(A; -+ A,) is not full column rank hence (60) has nonzero solutions. Thus there exist
n
B;’s such that they are not all zeros and ) B; A = 0.
i=1
By Lemma 2,
k .
—al-( )(xfﬂ—uf) €afi(xMh), i=1,---,n. (61)
As 0f; is bounded, i =1,--- ,n, so is
n
D BiloV (xH —uf) = A - vE), (62)
i=1
where v¥ = ¢(x},--- ,x¥) and
n
Gx1,- -+ xn) = Y mibBi(xy). (63)
i=1

n ~
In (62) we have utilized > B;AF = 0 to cancel A\*, whose boundedness is uncertain.
i=1
Then we have that there exists a constant C' > 0 such that

||karl — ka < C’ﬁk_l. (64)
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+00
If > B, 1 < 400, then {v¥} is a Cauchy sequence, hence has a limit v>. Define
k=1
v* = ¢(x7,- -+ ,x%), where (x7,---,x}) is any optimal solution. Then
o
”voo o V*” — V0 + Z(Vk:+1 - Vk) _v* (65)
k=0
oo
> V0= =D v =V (66)
k=0
(o]
> V0=V -C) Bt (67)
k=0
So if (x§,- -+ ,xY) is initialized badly such that
o
VO = v >C> B, (68)
k=0
then ||v®® —v*|| > 0, which implies that (x¥,--- x¥) cannot converge to (x},--- ,x%). Note
that (68) is possible because ¢ is not a zero mapping given the conditions on B;. |

Proposition 11 (Proposition 8 in the manuscript) X is an optimal solution to (1) if and
only if there exists a > 0, such that

F(3) = f(x") + Z (AN, % - X)) + ﬁ;Az«xz) o —o (69)
Proof If % is optimal, it is easy to check that
f(x) — f(x")+ il (AT (N, % —x)) + « iAi(ii) -b 2 =0. (70)
holds. _ _
Since —A(X*) € Of;(x*), we have
F(®) = () + Z (A (X, %~ x0) 2 0
So if (70) holds, we have
F5) = £ + £ (AT, % — ) =0, (71)
S Ay(%;) —b =0 (72)

10
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With (72), we have
DA X = X)) =) (N Ak - X)) = <)\*,Z~Ai(§(i - Xf)> = 0. (73)
i=1

=1 i=1

So (71) reduces to f(x) = f(x*). As x satisfies the feasibility condition, it is an optimal
solution to (1). [}

+1

K
Theorem 12 (Theorem 10 in the manuscript) Define X5 = S ypxFTl where v, =

K
B/ > Byt Then
Jj=0
FEE) = F) + D (AT ), % = %))
=1

2 K
< Co/ (225,.}) : (74)

k=0

0450

ZA*

12 n
where o' = (n + 1)max | 1, —'"H— JAJL" 5,0 =1,---,n and Co = > 1 |2 —x,’Lf‘H2
mi — nl Al i=1

657 A0 = 2.

Proof We first deduce

2
> Ai(x ) = b
i=1
n n 2
= X AGE) —b+ > AxT —xF)
=1 =1
n n 2
< < ZAi(xf)—b’ ) )A,(xfﬂ xk)H
i=1 =1
n 2 n 2
< (n+1)< > Ai(xf) = b Xt — xf
=1 1
oy s 1P A () 12 skt — x|
< (n-|-1) <Bk H)\k )\kH —|—max{ —nHA1||2 Z; (771 nHAzH ) X, X;

IN

(n+ 1)max{1, {%}} (ﬁ,ﬁ [ _X’“HQﬂi (s~ 4?)
= a! <5k2 HAk — M ’ +g:l (m —n”Ai||2) HX;{H —x] i

11

2
xf“ ok



Liv LiN Su

By Proposition 5, we have

Bt o (e = oD - A )
n 2 .
£33 (m—m AP) =t =k i - e
o (76)
w112
< (Gl oml e e )
n . -~ 12
3 (St x| e - ).
So by Lemma 2 and combining the above inequalities, we have
n 2
Bt (£ = fi) + 3 (R =g, ATO0)) + 40 |0 A — b )
=1 =1
< ﬁ,;l > <forl —x7, —az(k)(fo - uf)> +> <Xf+1 - xf,Aj()\*)>>
1= 1 9 =1
+7 J(xE) b
s <xf“ =, =0 (e — )+ A (1)) (77)
=1
~ 112 n 2
Ao e 35 ) e |
n o112 _ 2
< 3 (Sl -l 2 - 3P

k+1 % 2
i X;

1 n
-9 <Z i ||X
i=1

F BRI - X)),

K
Summing the above inequalities from k = 0 to & = K, and dividing both sides with } 3, L

we have F=0
K
DRTTAC ) )+ Z <wa’““ - xz‘,A;*(A*)> (78)
= K n 2
+%B°Z% DA™ = b (79)
k=0 =1

< (Sl ) )

2y 8"

12
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Next, by the convexity of f and the squared F-norm || - ||?, we have
ZA
K
< Y0 - s+ 3 <z»y ki X;,A;m> 52)
R3S
2

Combining (78)-(80) and (81)-(83), we have

2

f(f(K) o f(X*) + Z<)—( XZ,A* A* OJﬁU

2

2
04/30

ZAz

1 n
< L <ZmHx?—xz‘szo‘ZHAO—A*HQ>- )
225;;1 i=1
k=0

—

FEEY = F(x) +Z<5<. — x5, AT(N)) 84)

In real applications, we are often faced with convex programs with convex set constraints:

Xm}g Zn:fi(xz')y ZA x;) = b,

XZ'EXi,Z—l,“-,n, (86)

where X; C R% is a closed convex set. In this section, we assume that the projections onto
X;’s are all easily computable. For many convex sets used in machine learning, such an
assumption is valid, e.g., X;’s are nonnegative cones or positive semi-definite cones. In the
following, we discuss how to solve (86) efficiently. For simplicity, we assume that X; # R%,
Vi.

We introduce auxiliary variables x,4; to convert x; € X; into x; = x4 and x,4; € X,

i=1,---,n. Then (86) can be reformulated as an equivalent one:
2n
min Zf’ X;), s.t. Z.Ai(xi) = b, (87)
X1, X2n
i=1 i=1

0, ifxeX;,

. is the characteristic function of X; and
400, otherwise ,

where fn1i(x) = xx,(x) = {

~

O Ax) = (
Anti(Xnti) = (
(

b =

13
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The adjoint operator A* is

Az(y) = A1) + i,

* :1,"',7’1,, (89)
A (YY) = —Yir1,

where y; is the i-th sub-vector of y, partitioned according to the sizes of b and x;, i =
1, ,n.

Theorem 13 (Theorem 11 in the manuscript) For problem (87), if {Bk} is non-decreasing
and upper bounded and 1;’s are chosen as n; > n||Ai||>+2 and npys > 2,i=1,--- ,n, then
the sequence {({xF}, \F)} generated by LADMPSAP converges to a KKT point of problem

(87).

We only need to prove the following proposition. Then by the same technique for proving
Theorem 7, we can prove Theorem 13.

Proposition 14

2n
Bie D7 o [T = 2 (AR 2 (90)
=1
< By ol — x| 4 AF - a2 (91)
=1
—2ﬁkz< B, o = )+ A () (92)
—ﬁkz( = Bl A +2)) [xE = 2 (93)
2n
By 3 (o = 28,) Ik x| (94)
i=n-+1
—[|XF = A (95)

14
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Proof We continue from (40):

2n
—28s Z agk) <xf+1 —x},xF - uf> +2 <)\k+1 — Ak, )\k+1> (96)
=1
2n 2
= AR 7S A - x| — X - A2 (97)
=1
n 2
= AR X2 B2 S A - xh) (98)
=1
n 2 R
B2 D0 || el = ) — ek k)| = 14— A2 (99)
=1
<IN N2 D A — ek (100)
=1
262> (It = 2 4 skt = xh ) [2) = INF = AR (101
=1
Then we can have (90)-(95). [ |

4. Solving Latent LRR via APG

When using APG Beck and Teboulle (2009), the latent LRR problem has to be reformulated
into an unconstrained optimization problem as follows:

: 1
gin y([|Z]l + 1Ll + plEl) + 51X - XZ - LX - E|?, (102)

where v > 0 is a parameter that controls the closeness between (102) and the original latent
LRR problem.
The updating schemes of APG are as follows:

_ tp1—1
EF = BF 4+ %(Ek — EFD, (103a)
k
_ ey —1
7k =7k 4+ k;i(z’f —zk ), (103b)
k
_ teeg — 1
LF =Lk 4+ %(Lk — Lk, (103c)
k
2
EF! = arg min 1y|[E|y + - ||E — | BF - iiux ~XZ-LX -E|? , _
E 2 27 OE EF '
Zk
Lk

15
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2
7 — argminn|Z)4 - |Z2 - | 70— L0 x—xz—LX—E|, (103e)
Z 2 21 07 EF ’
Zk
I_Jk
2
LF! = argmin~y|[L + - L — [ ¥ - iiHX ~XZ-1LX - E|?|, . (103f)
L 2 27 OL EF ’
Zk
Lk
1+ 4/4t2 + 1
lht1 = 5 (103g)
where 7 is a Lipschitz constant such that
) 21X - XZ - LX - E|)? . 21X - XZ - LX - E|?
3 2|X — XZ - LX — E|? _— Z|X - XZ - LX - E|? .
1 2
4|X - XZ - LX — E|? z 2|X — XZ - LX — E|2 2
Ll L2
Eq E, E, E,
§ T Zl — ZQ y W Zl and ZQ (104)
Iy Lo Ly Lo
By the inequality ||AB| < ||A]|2||B||, we can prove that 7 > /3 max(1, | X|2)(1 + 2[|X]3)
ensures the correctness of (104), where ||All2 = omax(A) is the largest singular value of A.
The pseudo code of the APG approach for latent LRR, with the continuation technique
(step 8 in Algorithm 1, which reduces 7 gradually), is provided in Algorithm 1.
For the parameters of APG, we follow the suggestions in Lin et al. (2009) to set vy =
0.99(|X||2, Ymin = 1071°, and § = 0.9.
5. Solving Latent LRR via Naive ADM
Naive ADM is to introduce auxiliary variables to the original latent LRR model, such that
each subproblem can have a closed form solution. The equivalent problem to solve is:
min _||J[[« + [|S]|« + p||E|1, st. X=XZ+LX+E,Z=J L=S. (105)
J,S,E,ZL
Naive ADM operates on the augmented Lagrangian function of problem (105):
1]+ + ISl 4l Bl (106)
+(Y,X-XZ-LX-E)+(Y2,Z—-J)+ (Y3, L-S) (107)
+2(IX - X2 - LX - B + 2~ 3 + L - S|?). (108)
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Algorithm 1 APG for Latent LRR
Input: Observation matrix X and parameter p > 0.
Set Parameter Values: ¢ > 0, e¢2 > 0, %0 > Ymin > 0, § € (0,1), and
7= /3max(1, [ X]5)(1 + 2] X]3)
Initialize: Set EO =E1=0,Z2°=Z"1=0,t)=t_1 =1, and k < 0.
while not converged do
Step 1: Update Ef = EF  “=L=L(EF — EF 1),
Step 2: Update ZF = ZF + %= - 1(Zk — ZF 1),
Step 3: Update L* = L* 4 %= 1_I(Lk — Lk,
Step 4: Update EFf! = Suy, (Ek +1(X—-XZF-L*X —E")), where S is the shrinkage
operator. ! -
Step 5: Update ZF+! = U8+ (32) V%, where Uz X, V7 is the SVD of ZF4+1 X7 (X~
XZF - LFX — EF). )
Step 6: Update LF! = ULSL;@(EL)V? where ULELV% is the SVD of L* + %(X —
XZF - LFX — EF)XT,
/A+2
Step 7: Update {11 = %.
Step 8: Update vyx11 = max(Vmin, 07k)-

Step 9: Check the convergence conditions:

|XZAH T LE Xy BF LX) |ZF 1 -ZF| LA L BB
TX] <epand max (o x0T ) S €2

If they are satisfied, break.
Step 10: £+ k+ 1.
end while

where Y1, Yo, and Y3 are Lagrange multipliers.
The updating schemes of naive ADM are as follows:

34 = argain 9], + 224 — 3+ YE /8P, (1099)
J
Sk — argmin ||S||. + %HLk —S+Y5/8:%, (109b)
S
EF! = argéninuHEHl + %HX —XZF —L*X —E+YY/8:)% (109¢)

2" = argmin % (IX = XZ — L*X = B /8412 + (12— 3+ Y5 /Bl

(109d)
LA = argmin % <||X — XZM - LX — EM 4+ YT /BfP + L — SM 4+ Y’g/ﬂk]]Q) :
(109e)
YI = YF 4 Br(X — XZFT - LAIX — EFL) (109f)
Y12€+1 — Yg + Bk(zk+1 . Jk""l)’ (109g)
Y = YR 4 g (LA — sk, (109h)
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6k+1 = min(ﬁmaxy p/Bk)7 (1091)

where p > 1 and Bpax > 0 are constants.
The pseudo code of the naive ADM approach for latent LRR is provided in Algorithm 2.

Algorithm 2 Naive ADM for Latent LRR

Input: Observation matrix X and parameter p > 0.

Set Parameter Values: 51 > O 52 >0,0< By €1<K Pmax, and p > 1.

Initialize: Set JO = S° = =8S%=0and k < 0.

while not converged do
Step 1: Update JFt! = UzSé(Ez)Vg, where UzX VL is the SVD of Z* + Y% /B
and S is the shrinkage operator.
Step 2: Update SF*! = ULS%(ZL)VCE, where U, X, VT is the SVD of L* + Y% /4.

Step 3: Update B! = 8 (X — XZF — L*X + Y{/5).
Step 4: Update ZFt1 = (I+XTX) UXT(X —LFX —EF Y /B) + IFHL — Y5 /By

Step 5: Update LF*! = [(X - XZFF1 —E*1 4+ YF /3 ) XT+ 8k —YE /3 ) (T+XXT) !

Step 6: Update Yi™! = Y§ 4 (X — XZFH! — LF+HIX — EFHD),
Step 7: Update Y5 = Y& + By (ZF! — Jk+1).

Step 8: Update Y51 = Y& + g, (LF+! — Sk+1),

Step 9: Update Bi+1 = min(Bmax, pOk)-

Step 10: Check the convergence conditions:

IXZH LA X 4 BEHLX | |ZFF1-ZF| LAY L BB
TX] < €1 and max { gy Xr o xT ) S €2

If they are satisfied, break.
Step 11: k+ k+ 1.
end while

Naive ADM has been described in Liu and Yan (2011) and was called inexact ALM
therein. The parameters of naive ADM are the same as those in Liu and Yan (2011):
Bo = 1075, Brax = 10°, and p = 1.1.

6. Solving Latent LRR via LADMGB and Naive LADM

LADMGB He and Yuan (2013) consists of two steps. The first step is update the variables
by LADM (prediction step). The second step is to update the variables by Gaussian back
substitution (correction step), which updates the variables in reverse order.

The updating schemes of LADMGB are as follows:
LADM step:

B”ZHZ ZF + XTOF 4+ 8(XZF + LEX + EF — X)/(Bn2)|%, (110a)

Z* = argmin ||Z||, +
Z

£ = argmin L. + 222 ”L IL — L+ (\* + B(XZ" + L*X + EF — X)X/ (Bn1)|1?, (110b)
L
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EF = arg];ninuHEHl + §||E ~Ef + O\F 4+ B(XZF + L*X + EF - X)/8))1%, (110c)
A= \F 4 B(XZF + L*X + EF - X). (110d)

GB step:
ML — 2R o (WF — AR, (111a)
Ef! = EF + o(EF — EF), (111D)
L = L~ (BF - ER)XT /g + a(LF — LY, (111c)
ZM =78 - XTI - L9)X /ng — XT(E — EY) /ng + (28 - ZF). (111d)

The pseudo code of the LADMGB approach for latent LRR is provided in Algorithm 3.

Algorithm 3 LADMGRB for Latent LRR
Input: Observation matrix X and parameter g > 0.
Set Parameter Values: €1 > 0, &2 > 0, a € (0,1), nz = || X]|3, and 3 > 0.
Initialize: Set L’ =S = E* = 0 and k « 0.
while not converged do
Step 1: Update Z*F = UzS 1 (2 2)VY%, where U2 V7 is the SVD of ZF — X (\F 4
kNZ
B(XZF +LFX + EF — X)/(Bnz) and S is the shrinkage operator.
Step 2: Update LF = UrS_1 (2;)V?, where U E, VT is the SVD of LF — (\F +

~ BrnL
B(XZF + L*X + EF — X)XT/(Bny). o
Step 3: Update EF = S (B — (A" + B(XZ* + LFX + EF - X)/5)).
k

Step 4: Update \F = \F 4 B(XZF + LFX + EF — X).

Step 5: Update Mt = \F 4 a(AF — AF).

Step 6: Update EFt! = EF 4 o(EF — EF).

Step 7: Update L* = LF — (E*! — EF)XT /i, + a(LF — L¥).

Step 8: Update ZF! = ZF — XT(LF! —LF)X /1y — XT(EF1 —EF) /1y + (ZF — ZF).

Step 9: Check the convergence conditions:
[XZFH LA X ER X (HZ'““—Z’“II LA LK IIE"'“—Ekll)
IX] < v and max (S TRy 0 Ry ) S o
If they are satisfied, break.
Step 11: k+ k+ 1.

end while

The naive LADM for latent LRR is just the LADM part of LADMGB. So we omit the
details.

For LADM, we follow the suggestions in Yang and Yuan (2013) to fix its penalty pa-
rameter 5 at 2.5/ min(d, sp), where d x sp is the size of X. For LADMGB, He et al. He and
Yuan (2013) suggested o = 0.8 but did not suggest how to choose a fixed 3. So we follow
the suggestions in Yang and Yuan (2013) to fix 8 at 2.5/ min(d, sp).
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