
JMLR: Workshop and Conference Proceedings 29:1–16, 2013 ACML 2013

Linearized Alternating Direction Method with Parallel
Splitting and Adaptive Penalty for Separable Convex

Programs in Machine Learning

Risheng Liu rsliu@dlut.edu.cn
Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology

Zhouchen Lin∗ zlin@pku.edu.cn
Key Lab. of Machine Perception (MOE), School of EECS, Peking University

Zhixun Su zxsu@dlut.edu.cn

School of Mathematical Sciences, Dalian University of Technology

Editor: Cheng Soon Ong and Tu Bao Ho

Abstract

Many problems in statistics and machine learning (e.g., probabilistic graphical model, fea-
ture extraction, clustering and classification, etc) can be (re)formulated as linearly con-
strained separable convex programs. The traditional alternating direction method (ADM)
or its linearized version (LADM) is for the two-variable case and cannot be naively gen-
eralized to solve the multi-variable case. In this paper, we propose LADM with parallel
splitting and adaptive penalty (LADMPSAP) to solve multi-variable separable convex pro-
grams efficiently. When all the component objective functions have bounded subgradients,
we obtain convergence results that are stronger than those of ADM and LADM, e.g., al-
lowing the penalty parameter to be unbounded and proving the sufficient and necessary
conditions for global convergence. We further propose a simple optimality measure and
reveal the convergence rate of LADMPSAP in an ergodic sense. For programs with extra
convex set constraints, we devise a practical version of LADMPSAP for faster convergence.
LADMPSAP is particularly suitable for sparse representation and low-rank recovery prob-
lems because its subproblems have closed form solutions and the sparsity and low-rankness
of the iterates can be preserved during the iteration. It is also highly parallelizable and hence
fits for parallel or distributed computing. Numerical experiments testify to the speed and
accuracy advantages of LADMPSAP.

Keywords: Convex Programs, Linearized Alternating Direction Method, Parallel Split-
ting, Adaptive Penalty, Subspace Clustering, Matrix Completion.

1. Introduction

Recently, convex programs have become increasingly popular for solving a variety of statis-
tics and machine learning problems, ranging from theoretical modeling, e.g., latent variable
graphical model selection (Chandrasekaran et al., 2012), low-rank feature extraction (i.e.,
matrix decomposition (Candès et al., 2011) and matrix completion (Candès and Recht,
2009)), subspace clustering (Liu et al., 2012) and kernel discriminant analysis (Ye et al.,
2008), to real-world applications, e.g., face recognition (Wright et al., 2009), saliency detec-

∗ Corresponding author

c© 2013 R. Liu, Z. Lin & Z. Su.

Liu Lin Su

tion (Shen and Wu, 2012) and video denoising (Ji et al., 2010). Specifically, these problems
can all be (re)formulated as the following linearly constrained separable convex program1:

min
x1,··· ,xn

n∑
i=1

fi(xi), s.t.
n∑
i=1

Ai(xi) = b, (1)

where xi and b could be either vectors or matrices2, fi is a closed proper convex function
(e.g., nuclear norm ‖ · ‖∗ (Fazel, 2002), defined as the sum of singular values; `1 norm ‖ · ‖1
(Candès et al., 2011), defined as the sum of absolute values of all entries; and Frobenius
norm ‖ · ‖, etc), and Ai : Rdi → Rm is a linear mapping (e.g., the subsampling operator in
matrix completion (Candès and Recht, 2009)). Without loss of generality, we may assume

that none of the Ai’s is a zero mapping, the solution to
n∑
i=1
Ai(xi) = b is non-unique, and

the mapping A(x1, · · · ,xn) ≡
n∑
i=1
Ai(xi) is onto3.

Although general theories on convex programs are fairly complete nowadays, e.g., most
of them can be solved by the interior point method (Boyd and Vandenberghe, 2004), when
facing with large scale problems, which are typical in machine learning, the general theory
may not lead to efficient enough algorithms. For example, when using CVX4, an interior
point based toolbox, to solve nuclear norm minimization problems (i.e., one of the fi’s is
the nuclear norm of a matrix), such as matrix completion (Candès and Recht, 2009), robust
principal component analysis (Candès et al., 2011), and low-rank representation (Liu et al.,
2010, 2012), the complexity of each iteration is O(q6), where q × q is the matrix size. Such
a complexity is unbearable for large scale problems.

To address the scalability issue, first order methods are often preferred. The accelerat-
ed proximal gradient (APG) algorithm (Beck and Teboulle, 2009; Toh and Yun, 2010) is
popular due to its guaranteed O(K−2) convergence rate, where K is the iteration number.
However, APG is basically for unconstrained optimization. For constrained optimization,
the constraints have to be added to the objective function as penalties, resulting in approx-
imated solutions only. The alternating direction method (ADM) (Fortin and Glowinski,
1983; Boyd et al., 2010; Lin et al., 2009a) has regained a lot of attention recently and is
also widely used. It is especially suitable for separable convex programs like (1) because
it fully utilizes the separable structure of the objective function. Unlike APG, ADM can
solve (1) exactly. Another first order method is the split Bregman method (Goldstein and
Osher, 2008), which is closely related to ADM (Esser, 2009) and is very influential in image
processing.

1. If the objective function is not separable or there are extra convex set constraints, xi ∈ Xi, i = 1, · · · , n,
the program can be transformed into (1) by introducing auxiliary variables, c.f. (28)-(30).

2. Here we call xi a “vector variable” or a “matrix variable” because each xi may consist of multiple
scalar variables. However, in the following for simplicity we still call each xi as one variable because all
scalar variables therein are processed simultaneously in the same manner. Such a convention has been
implicitly used in the literature (He and Yuan, 2013; Tao, 2011; Lin et al., 2011). We will also use bold
capital letters if a variable is known to be a matrix.

3. These two assumptions are equivalent to that the matrix A ≡ (A1 · · · An) is not full column rank but
full row rank, where Ai is the matrix representation of Ai.

4. Available at http://stanford.edu/∼boyd/cvx

2

LADMPSAP for Convex Programs in Machine Learning

An important reason that first order methods are popular for solving large scale convex
programs in machine learning is that the convex functions fi’s are often matrix or vector
norms or characteristic functions of convex sets, which enables the following subproblems

min
xi

fi(xi) +
σ

2
‖xi −w‖2 (2)

to have closed form solutions. For example, when fi is the `1 norm, the optimal solu-
tion is x∗i = Tσ−1(w), where Tε(x) = sgn(x) max(|x| − ε, 0) is the soft-thresholding oper-
ator (Goldstein and Osher, 2008); when fi is the nuclear norm, the optimal solution is:
X∗i = UTσ−1(Σ)VT , where UΣVT is the singular value decomposition (SVD) of W (Cai
et al., 2010); and when fi is the characteristic function of the nonnegative cone, the optimal
solution is x∗i = max(w, 0). Since subproblems like (2) have to be solved in each iteration
when using first order methods to solve separable convex programs, that they have closed
form solutions greatly facilitates the optimization.

However, when applying ADM to solve (1) with generic linear mappings (i.e., Ai is
not the identity mapping), the resulting subproblems may not have closed form solutions
(because ‖xi−w‖2 in (2) becomes ‖Ai(xi)−w‖2), hence need to be solved iteratively, making
the optimization process awkward. Some work (Yang and Yuan, 2013; Lin et al., 2011) has
considered this issue by linearizing the quadratic term in the subproblems, hence such a
variant of ADM is called the linearized ADM (LADM). Nonetheless, most of the existing
theories on ADM and LADM are for the two-variable case, i.e., n = 2 in (1) (Fortin and
Glowinski, 1983; Boyd et al., 2010; Lin et al., 2011). The number of variables is restricted
to two because the proofs of convergence for the two-variable case are not applicable for
the multi-variable case, i.e., n > 2 in (1). Actually, a naive generalization of ADM or
LADM to the multi-variable case may diverge (see (11)). Unfortunately, in practice multi-
variable convex programs often occur, e.g., robust principal component analysis with dense
noise (Candès et al., 2011), latent low-rank representation (Liu and Yan, 2011), and when
there are extra convex set constraints (see (28)-(29) and (37)). So it is desirable to design
practical algorithms for the multi-variable case.

Only very recently He and Yuan (2013) and Tao (2011) considered the multi-variable
LADM and ADM, respectively. To safeguard convergence, He and Yuan (2013) proposed
LADM with Gaussian back substitution (LADMGB), which destroys the sparsity or low-
rankness of the iterates during iterations when dealing with sparse representation and low-
rank recovery problems, while Tao (2011) proposed ADM with parallel splitting, whose
subproblems may not be easily solvable. Moreover, they all developed their theories with
the penalty parameter being fixed, resulting in slow convergence and difficulty in tuning an
optimal penalty parameter that fits for different data and data sizes.

To propose an algorithm that is more suitable for convex programs in machine learning,
in this paper we aim at combining the advantages of He and Yuan (2013), Tao (2011) and
Lin et al. (2011), i.e., combining LADM, parallel splitting, and adaptive penalty. Hence we
call our method LADM with parallel splitting and adaptive penalty (LADMPSAP). With
LADM, the subproblems will have forms like (2) and hence can have closed form solutions.
With parallel splitting, the sparsity and low-rankness of iterates can be preserved during
iteration when dealing with sparse representation and low-rank recovery problems, saving
both the storage and the computation load. With adaptive penalty, the convergence can

3

Liu Lin Su

be faster and it is unnecessary to tune an optimal penalty parameter. Parallel splitting
also make the algorithm highly parallelizable, making LADMPSAP suitable for parallel or
distributed computing, which is important for large scale machine learning. When all the
component objective functions have bounded subgradients, we prove convergence results
that are stronger than the existing theories on ADM and LADM. For example, the penalty
parameter can be unbounded and the sufficient and necessary conditions of the global
convergence of LADMPSAP can be obtained as well. We also propose a simple optimality
measure and prove the convergence rate of LADMPSAP in an ergodic sense under this
measure. Our proof is much simpler than those in (He and Yuan, 2011) and (Tao, 2011)
which relied on a complex optimality measure. When a convex program has extra convex
set constraints, we further devise a practical version of LADMPSAP that converges faster
thanks to better parameter analysis. Experiments testify to the advantage of LADMPSAP
in speed and accuracy.

Note that Goldfarb and Ma (2012) also proposed a multiple splitting algorithm for con-
vex optimization. However, they only considered a very special case of our model problem
(1), i.e., all the linear mappings Ai’s are identity mappings5. With their simpler model prob-
lem, linearization is unnecessary and a faster convergence rate, O(K−2), can be achieved.
In contrast, in this paper we aim at proposing a practical algorithm for efficiently solving
much more general problems like (1).

2. Review of LADMAP for the Two-Variable Case

We first review LADM with adaptive penalty (LADMAP) (Lin et al., 2011) for the two-
variable case of (1). Specifically, this algorithm consists of four steps:

1. Update x1:

xk+1
1 = argmin

x1

f1(x1) +
σ

(k)
1

2

∥∥∥x1 − uk1

∥∥∥2
, (3)

2. Update x2:

xk+1
2 = argmin

x2

f2(x2) +
σ

(k)
2

2

∥∥∥x2 − uk2

∥∥∥2
, (4)

3. Update λ:

λk+1 = λk + βk

(
2∑
i=1

Ai(xk+1
i)− b

)
, (5)

4. Update β:
βk+1 = min(βmax, ρβk), (6)

where λ is the Lagrange multiplier, βk is the penalty parameter, σ
(k)
i = ηiβk with ηi > ‖Ai‖2,

uki = xki −A∗i (λ̃ki)/σ
(k)
i , i = 1, 2, (7)

5. The multi-variable problems introduced in (Boyd et al., 2010) also fall within this category.

4

LADMPSAP for Convex Programs in Machine Learning

in which A∗i is the adjoint operator of Ai,

λ̃k1 = λk + βk(A1(xk1) +A2(xk2)− b), (8)

λ̃k2 = λk + βk(A1(xk+1
1) +A2(xk2)− b), (9)

and ρ is an adaptively updated parameter. Please refer to (Lin et al., 2011) for details.

3. LADMPSAP for Multi-Variable Case

In this section, we provide a new LADM-based algorithm for the general multi-variable sep-
arable convex program (1). The sufficient and necessary conditions for global convergence
and the convergence rate of this algorithm are discussed.

3.1. LADM with Parallel Splitting and Adaptive Penalty

Contrary to our intuition, the multi-variable case is actually fundamentally different from
the two-variable one. For the multi-variable case, it is very natural to generalize LADMAP
for the two-variable case in a straightforward way, with

λ̃ki = λk + βk

 i−1∑
j=1

Aj(xk+1
j) +

n∑
j=i

Aj(xkj)− b

 , i = 1, · · · , n. (10)

Unfortunately, we were unable to prove the convergence of such a naive LADMAP using
the same proof for the two-variable case. This is because their Fejér monotone inequalities
(see Remark 2) cannot be the same. That is why He et al. has to introduce an extra
Gaussian back substitution (He et al., 2012; He and Yuan, 2013). Actually, the above naive
generalization of LADMAP may be divergent (which is even worse than converging to a
wrong solution), e.g., when applied to the following problem with n ≥ 5:

min
x1,··· ,xn

n∑
i=1

‖xi‖1, s.t.
n∑
i=1

Aixi = b. (11)

Fortunately, by modifying λ̃ki slightly we are able to prove the convergence of the corre-
sponding algorithm. More specifically, our algorithm for solving (1) consists of the following
steps:

1. Update xi’s in parallel:

xk+1
i = argmin

xi

fi(xi) +
σ

(k)
i

2

∥∥∥xi − uki

∥∥∥2
, i = 1, · · · , n, (12)

2. Update λ:

λk+1 = λk + βk

(
n∑
i=1

Ai(xk+1
i)− b

)
, (13)

5

Liu Lin Su

3. Update β:

βk+1 = min(βmax, ρβk), (14)

where σ
(k)
i = ηiβk,

uki = xki −A∗i (λ̂k)/σ
(k)
i , (15)

in which A∗i is the adjoint operator of Ai,

λ̂k = λk + βk

(
n∑
i=1

Ai(xki)− b

)
, (16)

and

ρ =

 ρ0, if max

({√
βkσ

(k)
i

∥∥∥xk+1
i − xki

∥∥∥ , i = 1, · · · , n
})

/ ‖b‖ < ε2,

1, otherwise,
(17)

with ρ0 > 1 being a constant and 0 < ε2 � 1 being a threshold. Indeed, we replace λ̃ki
with λ̂k as (16), which is independent of i, and the rest procedures of the algorithm are all
inherited, except that ηi’s have to be made larger. As now xi’s are updated in parallel and
βk changes adaptively, we call the new algorithm LADM with parallel splitting and adaptive
penalty (LADMPSAP).

3.2. Stopping Criteria

Some existing work (e.g., (Liu et al., 2010; Favaro et al., 2011)) proposed stopping criteria
out of intuition only, which may not guarantee that the correct solution is approached.
Recently, Lin et al. (2009a) and Boyd et al. (2010) suggested that the stopping criteria can
be derived from the KKT conditions of a problem. Here we also adopt such a strategy.
Specifically, the iteration terminates when the following two conditions are met:∥∥∥∥∥

n∑
i=1

Ai(xk+1
i)− b

∥∥∥∥∥ /‖b‖ < ε1, (18)

max

({√
βkσ

(k)
i

∥∥∥xk+1
i − xki

∥∥∥ , i = 1, · · · , n
})

/‖b‖ < ε2. (19)

The above stopping criteria (18) and (19) are deduced from the KKT condition (i.e., the
criteria (18) and (19) are for the feasibility and duality conditions, respectively). Indeed,
the update rules (14) and (17) for β are hinted by the stopping criteria (18) and (19) such
that the two errors are well balanced.

For better reference, we summarize the proposed LADMPSAP algorithm in Algorithm 1.

3.3. Global Convergence

To prove the global convergence of LADMPSAP, we first have the following propositions6.

6. Due to space limitations, all proofs in this paper are omitted. For these details, please consult our
Supplementary Materials.

6

LADMPSAP for Convex Programs in Machine Learning

Algorithm 1 LADMPSAP for Solving Problem (1)

Initialize: Set ε1 > 0, ε2 > 0, βmax � 1� β0 > 0, ηi > n‖Ai‖2, x0
i , i = 1, · · · , n, λ0.

while (18) or (19) is not satisfied do
Step 1: Compute λ̂k as (16).
Step 2: Update xi’s in parallel by solving

xk+1
i = argmin

xi

fi(xi) +
ηiβk

2
‖xi − xki +A∗i (λ̂k)/(ηiβk)‖2, i = 1, · · · , n. (20)

Step 3: Update λ by (13), β by (14) and (17).
end while

Proposition 1 Let {(x∗1, · · · ,x∗n, λ∗)} be the Kuhn-Karush-Tucker (KKT) point of problem
(1) and 〈·, ·〉 be the inner product. Then we have

βk

n∑
i=1

σ
(k)
i ‖x

k+1
i − x∗i ‖2 + ‖λk+1 − λ∗‖2 (21)

≤ βk

n∑
i=1

σ
(k)
i ‖x

k
i − x∗i ‖2 + ‖λk − λ∗‖2 (22)

−2βk

n∑
i=1

〈
xk+1
i − x∗i ,−σ

(k)
i (xk+1

i − uki) +A∗i (λ∗)
〉

(23)

−βk
n∑
i=1

(
σ

(k)
i − nβk‖Ai‖

2
)
‖xk+1

i − xki ‖2 − ‖λk − λ̂k‖2. (24)

Remark 2 Proposition 1 shows that the sequence {(xk1, · · · ,xkn, λk)} is Fejér monotone.
Proposition 1 is different from Lemma 1 in Supplementary Material of Lin et al. (2011)
because for n > 2 we cannot obtain an (in)equality that is similar to Lemma 1 in Supple-
mentary Material of Lin et al. (2011) such that each term with minus sign could be made
non-positive. Such Fejér monotone (in)equalities are the corner stones for proving the con-
vergence of Lagrange multiplier based optimization algorithms. As a result, we cannot prove
the convergence of the naively generalized LADM for the multi-variable case.

Then we have the following proposition.

Proposition 3 Let σ
(k)
i = ηiβk, i = 1, · · · , n. If {βk} is non-decreasing, ηi > n‖Ai‖2,

i = 1, · · · , n, and (x∗1, · · · ,x∗n, λ∗) is any KKT point of problem (1), then:

1)

{
n∑
i=1

ηi‖xki − x∗i ‖2 + β−2
k ‖λ

k − λ∗‖2
}

is nonnegative and non-increasing.

2) ‖xk+1
i − xki ‖ → 0, i = 1, · · · , n, β−1

k ‖λ
k − λ̂k‖ → 0.

3)
+∞∑
k=1

β−1
k

〈
xk+1
i − x∗i ,−σ

(k)
i (xk+1

i − uki) +A∗i (λ∗)
〉
< +∞, i = 1, · · · , n.

7

Liu Lin Su

Now we can prove the global convergence of Algorithm 1, as stated in the following
theorem, where we denote {xki } = {xk1, · · · ,xkn} for simplicity.

Theorem 4 If {βk} is non-decreasing and upper bounded, ηi > n‖Ai‖2, i = 1, · · · , n, then
{({xki }, λk)} generated by LADMPSAP converges to a KKT point of problem (1).

3.4. Enhanced Convergence Results

Theorem 4 is a convergence result for general convex programs (1), where fi’s are general
convex functions and hence {βk} need to be bounded. Actually, almost all the existing
theories on ADM and LADM even assumed a fixed β. For adaptive βk, it will be more
convenient if a user need not specify an upper bound on {βk} because imposing a large upper
bound essentially equals to allowing {βk} to be unbounded. Since many machine learning
problems choose fi’s as matrix/vector norms, which result in bounded subgradients, we
find that the boundedness assumption can be removed. Moreover, we can further prove the
sufficient and necessary condition for global convergence.

We first have the following proposition.

Proposition 5 If {βk} is non-decreasing and unbounded, ηi > n‖Ai‖2, ∂fi(x) is bounded,
i = 1, · · · , n, then Proposition 3 holds and

β−1
k λk → 0. (25)

Based on Proposition 5, we have the following enhanced theorems.

Theorem 6 If {βk} is non-decreasing and
+∞∑
k=1

β−1
k = +∞, ηi > n‖Ai‖2, ∂fi(x) is bounded,

i = 1, · · · , n, then the sequence {xki } generated by LADMPSAP converges to an optimal
solution to (1).

Theorem 7 If {βk} is non-decreasing, ηi > n‖Ai‖2, ∂fi(x) is bounded, i = 1, · · · , n, then
+∞∑
k=1

β−1
k = +∞ is also the necessary condition for the global convergence of {xki } generated

by LADMPSAP to an optimal solution to (1).

With the above analysis, when all the subgradients of the component objective functions
are bounded we can remove βmax in Algorithm 1.

3.5. Convergence Rate

The convergence rate of ADM and LADM in the traditional sense is an open problem (Gold-
farb and Ma, 2012). Recently, He et al. (He and Yuan, 2011) and Tao (Tao, 2011) proved
an O(1/K) convergence rate of ADM and ADM with parallel splitting in an ergodic sense,

respectively. Namely 1
K

K∑
k=1

xi violates an optimality measure in O(1/K). Their proof is

rather lengthy and is for fixed penalty parameter only. In this subsection, based on a simple
optimality measure we give a simple proof for the convergence rate of LADMPSAP. For

simplicity, we define x = (xT1 , · · · ,xTn)T , x∗ = ((x∗1)T , · · · , (x∗2)T)T and f(x) =
n∑
i=1

fi(xi),

where (x∗1, · · · ,x∗2, λ∗) is a KKT point of (1). We first have the following proposition.

8

LADMPSAP for Convex Programs in Machine Learning

Proposition 8 x̃ is an optimal solution to (1) if and only if there exists α > 0, such that

f(x̃)− f(x∗) +

n∑
i=1

〈A∗i (λ∗), x̃i − x∗i 〉+ α

∥∥∥∥∥
n∑
i=1

Ai(x̃i)− b

∥∥∥∥∥
2

= 0. (26)

By the above proposition, we may use the magnitude of the left hand side of (26), which is
nonnegative, to measure the optimality of a point x̃. Note that in the unconstrained case,
as in APG, one may simply use f(x̃)− f(x∗) to measure the optimality. But here we have
to deal with the constraints.

Remark 9 Our criterion for checking the optimality of a solution only requires comparing
with the optimal solution. It is much simpler than that in (He and Yuan, 2011; Tao, 2011),
which has to compare with all (x1, · · · ,xn, λ) ∈ Rd1 × · · · × Rdn × Rm.

Then we have the following convergence rate theorem for LADMPSAP in an ergodic sense.

Theorem 10 Define x̄K =
K∑
k=0

γkx
k+1, where γk = β−1

k /
K∑
j=0

β−1
j . Then

f(x̄K)−f(x∗)+
n∑
i=1

〈
A∗i (λ∗), x̄Ki − x∗i

〉
+
αβ0

2

∥∥∥∥∥
n∑
i=1

Ai(x̄Ki)− b

∥∥∥∥∥
2

≤ C0/

(
2

K∑
k=0

β−1
k

)
, (27)

where α−1 = (n + 1) max

(
1,

{
‖Ai‖2

ηi − n‖Ai‖2
, i = 1, · · · , n

})
and C0 =

n∑
i=1

ηi
∥∥x0

i − x∗i
∥∥2

+β−2
0

∥∥λ0 − λ∗
∥∥2

.

Theorem 10 means that x̄K is by O

(
1/

K∑
k=0

β−1
k

)
from being an optimal solution. This

theorem holds for both bounded and unbounded {βk}. In the bounded case, O

(
1/

K∑
k=0

β−1
k

)
is simply O(1/K).

4. Practical LADMPSAP for Even More General Convex Programs

In real applications, we are often faced with convex programs with convex set constraints:

min
x1,··· ,xn

n∑
i=1

fi(xi), s.t.
n∑
i=1

Ai(xi) = b, xi ∈ Xi, i = 1, · · · , n, (28)

where Xi ⊆ Rdi is a closed convex set. In this section, we assume that the projections onto
Xi’s are all easily computable. For many convex sets used in machine learning, such an
assumption is valid, e.g., Xi’s are nonnegative cones or positive semi-definite cones. In the
following, we discuss how to solve (28) efficiently. For simplicity, we assume Xi 6= Rdi , ∀i.

9

Liu Lin Su

We introduce auxiliary variables xn+i to convert xi ∈ Xi into xi = xn+i and xn+i ∈ Xi,
i = 1, · · · , n. Then (28) can be reformulated as:

min
x1,··· ,x2n

2n∑
i=1

fi(xi), s.t.
2n∑
i=1

Âi(xi) = b̂, (29)

where fn+i(x) ≡ χXi(x) =

{
0, if x ∈ Xi,
+∞, otherwise ,

is the characteristic function of Xi and

Âi(xi) = (Ai(xi), 0, · · · ,xi, · · · , 0)T , Ân+i(xn+i) = (0, 0, · · · ,−xn+i, · · · , 0)T , i = 1, · · · , n,
b̂ = (b, 0, · · · , 0, · · · , 0)T .

(30)
The adjoint operator Â∗i is

Â∗i (y) = A∗i (y1) + yi+1, Â∗n+i(y) = −yi+1, i = 1, · · · , n, (31)

where yi is the i-th sub-vector of y, partitioned according to the sizes of b and xi, i =
1, · · · , n.

Then LADMPSAP can be applied to solve problem (29). The Lagrange multiplier λ
and the auxiliary multiplier λ̂ are updated as

λk+1
1 = λk1 + βk

(
n∑
i=1
Ai(xk+1

i)− b

)
, λk+1

i+1 = λki+1 + βk(x
k+1
i − xk+1

n+i), i = 1, · · · , n,(32)

λ̂k1 = λk1 + βk

(
n∑
i=1
Ai(xki)− b

)
, λ̂ki+1 = λki+1 + βk(x

k
i − xkn+i), i = 1, · · · , n, (33)

respectively, and xi is updated as (see (12))

xk+1
i = argmin

x
fi(x) +

ηiβk
2

∥∥x− xki + [A∗i (λ̂k1) + λ̂ki+1]/(ηiβk)
∥∥2
, i = 1, · · · , n, (34)

xk+1
n+i = argmin

x∈Xi

ηn+iβk
2
‖x− xkn+i − λ̂ki+1/(ηn+iβk)‖2

= πXi(x
k
n+i + λ̂ki+1/(ηn+iβk)), i = 1, · · · , n, (35)

where πXi is the projection onto Xi.
Finally, we summarize LADMPSAP for problem (29) in Algorithm 2, which is indeed

the practical algorithm to solve (28).
As for the choice of ηi’s, although we can simply apply Theorem 4 to assign their values

ηi > 2n(‖Ai‖2 +1) and ηn+i > 2n, i = 1, · · · , n, such choices are too pessimistic. As ηi’s are
related to the magnitudes of the differences in xk+1

i from xki , we had better provide tighter
estimate on ηi’s in order to achieve faster convergence. Actually, we have the following
better result.

Theorem 11 For problem (29), if {βk} is non-decreasing and upper bounded and ηi’s are
chosen as ηi > n‖Ai‖2 + 2 and ηn+i > 2, i = 1, · · · , n, then the sequence {({xki }, λk)}
generated by LADMPSAP converges to a KKT point of problem (29).

Remark 12 Analogs of Theorems 6 and 7 are also true for Algorithm 2 although ∂fn+i’s
are unbounded. Consequently, βmax can also be removed if all ∂fi, i = 1, · · · , n, are bounded.

10

LADMPSAP for Convex Programs in Machine Learning

Algorithm 2 LADMPSAP for Problem (29), also the Practical Algorithm for (28).

Initialize: Set ε1 > 0, ε2 > 0, βmax � 1 � β0 > 0, ηi > n‖Ai‖2 + 2, ηn+i > 2, x0
i ,

x0
n+i = x0

i , i = 1, · · · , n, λ0 = ((λ0
1)T , · · · , (λ0

n+1)T)T .
while (18) or (19) is not satisfied do

Step 1: Compute λ̂k as (33).
Step 2: Update xi, i = 1, · · · , 2n, in parallel as (34)-(35).
Step 3: Update λ by (33) and β by (14) and (17).

end while
(Note that in (17), (18), and (19), n andAi should be replaced by 2n and Âi, respectively.)

5. Numerical Results

In this section, we test the performance of LADMPSAP on two examples of problem (1) in
machine learning7.

5.1. Solving Latent LRR

LRR (Liu et al., 2010, 2012) is a recently proposed technique for robust subspace clustering
and has been applied to many machine learning and computer vision problems. However,
LRR works well only when the number of samples is more than the dimension of the samples,
which may not be satisfied when the data dimension is high. So Liu et al. proposed latent
LRR (Liu and Yan, 2011) to overcome this difficulty. The mathematical model of latent
LRR is as follows:

min
Z,L,E

‖Z‖∗ + ‖L‖∗ + µ‖E‖1, s.t. X = XZ + LX + E. (36)

In order to test LADMPSAP and related algorithms with data whose characteristics are
controllable, we follow (Liu et al., 2010) to generate synthetic data, which are parameterized
as (s, p, d, r̃), where s, p, d, and r̃ are the number of independent subspaces, points in each
subspace, and ambient and intrinsic dimensions, respectively. The number of scale variables
and constraints is (sp)× d.

As first order algorithms have been proved more efficient than standard solvers for
convex programs in modern machine learning society (Boyd et al., 2010), here we compare
LADMPSAP with several conceivable first order algorithms, including APG, naive ADM,
naive LADM, LADMGB, and LADMPS. Naive ADM and naive LADM are generalizations
of ADM and LADM, respectively, which are straightforwardly generalized from two variables
to multiple variables. Naive ADM is applied to solve (36) after rewriting the constraint of
(36) as X = XP + QX + E,P = Z,Q = L. For LADMPS, βk is fixed in order to show
the effectiveness of adaptive penalty. The parameters of APG and ADM are the same as
those in (Lin et al., 2009b) and (Liu and Yan, 2011), respectively. For LADM, we follow the
suggestions in (Yang and Yuan, 2013) to fix its penalty parameter β at 2.5/min(d, sp), where
d×sp is the size of X. For LADMGB, as there is no suggestion in He and Yuan (2013) on how

7. To perform fair comparison for these algorithms, we utilize PROPACK (Larsen, 1998) to solve SVD in
each iterations for all the compared algorithms. More details on the experiments, including experimental
settings and descriptions of other algorithms for comparison, can be found in Supplementary Materials.

11

Liu Lin Su

to choose a fixed β, we simply set it the same as that in LADM. The rest of the parameters
are the same as suggested in (He et al., 2012). We fix β = σmax(X) min(d, sp)ε2 in LADMPS
and set β0 = σmax(X) min(d, sp)ε2 and ρ0 = 10 in LADMPSAP. For LADMPSAP, we also
set ηZ = ηL = 1.02 × 3σ2

max(X), where ηZ and ηL are the parameters ηi’s in Algorithm 1
for Z and L, respectively. For the stopping criteria, ‖XZk + LkX + Ek−X‖/‖X‖ ≤ ε1 and
max(‖Zk−Zk−1‖, ‖Lk−Lk−1‖, ‖Ek−Ek−1‖)/‖X‖ ≤ ε2, with ε1 = 10−3 and ε2 = 10−4 are
used for all the algorithms. For the parameter µ in (36), we empirically set it as µ = 0.01.
To measure the relative errors in the solutions we run LADMPSAP 2000 iterations with
ρ0 = 1.01 to obtain the estimated ground truth solution (Z∗,L∗,E∗). The experiments are
run and timed on a notebook computer with an Intel Core i7 2.00 GHz CPU and 6GB
memory, running Windows 7 and Matlab 7.13.

Table 1 shows the results of related algorithms. We can see that LADMPS and LADMP-
SAP is much faster and much more accurate than LADMGB, and LADMPSAP is even faster
than LADMPS thanks to the adaptive penalty. Moreover, naive ADM and naive LADM
have relatively poorer numerical accuracy, possibly due to converging to wrong solutions.
The numerical accuracy of APG is also worse than those of LADMPS and LADMPSAP
because it only solves an approximate problem by adding the constraint to the objective
function as penalty. Note that although we do not require {βk} to be bounded, this does not
imply that βk will grow infinitely. As a matter of fact, when LADMPSAP terminates the
final values of βk are 21.1567, 42.2655, and 81.4227 for the three data settings, respectively.

5.2. Solving Nonnegative Matrix Completion

This subsection evaluates the performance of the practical LADMPSAP proposed in Sec-
tion 4 for solving nonnegative matrix completion (NMC) (Xu et al., 2011), which is a specific
case of problem (28). Specifically, NMC problem can be formulated as:

min
X,e
‖X‖∗ +

1

2µ
‖e‖2, s.t. b = PΩ(X) + e, X ≥ 0, (37)

where Ω is an index set and PΩ is a linear mapping that selects those elements whose indices
are in Ω.

We first evaluate numerical performance on synthetic data to demonstrate the superior-
ity of practical LADMPSAP with conventional LADM. The nonnegative low-rank matrix
X0 is generated by truncating the singular values of a randomly generated matrix. As
LADM cannot handle the nonnegativity constraint, it actually solve the standard matrix
completion problem, i.e., (37) without the nonnegativity constraint. For LADMPSAP, we
follow the conditions in Theorem 11 to set ηi’s and set the rest of the parameters the same
as those in Section 5.1. The stopping tolerances are set as ε1 = ε2 = 10−5. The numerical
comparison is shown in Table 2, where the relative nonnegative feasibility (FA) is defined
as (Xu et al., 2011):

FA := ‖min(X̂, 0)‖/‖X0‖,

in which X0 is the ground truth image and X̂ is the recovered image. It can be seen that
the numerical performance of LADMPSAP is much better than that of LADM, thus again
verify the efficiency of our proposed parallel splitting and adaptive penalty for enhancing
ADM/LADM type algorithms.

12

LADMPSAP for Convex Programs in Machine Learning

Table 1: Comparison of APG, naive ADM (nADM), naive LADM (nLADM), LADMGB,
LADMPS and LADMPSAP on the latent LRR problem (36). The quantities
include computing time (in seconds), number of iterations, relative errors, and
clustering accuracy (in percentage). They are averaged over 10 runs.

(s, p, d, r̃) Method Time(s) #Iter. ‖Ẑ−Z∗‖
‖Z∗‖

‖L̂−L∗‖
‖L∗‖

‖Ê−E∗‖
‖E∗‖ Acc.

(5, 50, 250, 5)

APG 18.20 236 0.3389 0.3167 0.4500 95.6
nADM 16.32 172 0.3993 0.3928 0.5592 95.6

nLADM 21.34 288 0.4553 0.4408 0.5607 95.6
LADMGB 24.10 290 0.4520 0.4355 0.5610 95.6
LADMPS 17.15 232 0.0163 0.0139 0.0446 95.6

LADMPSAP 8.04 109 0.0089 0.0083 0.0464 95.6

(10, 50, 500, 5)

APG 85.03 234 0.1020 0.0844 0.7161 95.8
nADM 78.27 170 0.0928 0.1026 0.6636 95.8

nLADM 181.42 550 0.2077 0.2056 0.6623 95.8
LADMGB 214.94 550 0.1877 0.1848 0.6621 95.8
LADMPS 64.65 200 0.0167 0.0089 0.1059 95.8

LADMPSAP 37.85 117 0.0122 0.0055 0.0780 95.8

(20, 50, 1000, 5)

APG 544.13 233 0.0319 0.0152 0.2126 95.2
nADM 466.78 166 0.0501 0.0433 0.2676 95.2

nLADM 1888.44 897 0.1783 0.1746 0.2433 95.2
LADMGB 2201.37 897 0.1774 0.1736 0.2434 95.2
LADMPS 367.68 177 0.0151 0.0105 0.0872 95.2

LADMPSAP 260.22 125 0.0106 0.0041 0.0671 95.2

Table 2: Numerical comparison on the NMC problem (37) with synthetic data, average of 10
runs. q, t and dr denote, respectively, sample ratio, the number of measurements
t = q(mn) and the “degree of freedom” defined by dr = r(m+ n− r) for a matrix
with rank r and q. Here we set m = n and fix r = 10 in all the tests.

X LADM LADMPSAP

n q t/dr Iter. Time(s) RelErr FA Iter. Time(s) RelErr FA

1000
20% 10.05 375 177.92 1.35E-5 6.21E-4 58 24.94 9.67E-6 0
10% 5.03 1000 459.70 4.60E-5 6.50E-4 109 42.68 1.72E-5 0

5000
20% 50.05 229 1613.68 1.08E-5 1.93E-4 49 369.96 9.05E-6 0
10% 25.03 539 2028.14 1.20E-5 7.70E-5 89 365.26 9.76E-6 0

10000 10% 50.03 463 6679.59 1.11E-5 4.18E-5 89 1584.39 1.03E-5 0

We then consider the image inpainting problem, which is to fill in the missing pixel values
of a corrupted image. As the pixel values are nonnegative, the image inpainting problem

13

Liu Lin Su

Table 3: Numerical comparison on the image inpainting problem.

Method #Iter. Time(s) PSNR FA

FPCA 179 228.99 27.77dB 9.41E-4
LADM 228 207.95 26.98dB 2.92E-3

LADMPSAP 143 134.89 31.39dB 0

can be formulated as NMC problem. To prepare a low-rank image, we also truncate the
singular values of the 1024 × 1024 grayscale image “man”8 to obtain an image of rank 40,
shown in Fig. 1 (a)-(b). The corrupted image is generated from original image by sampling
20% of the pixels uniformly at random and adding Gaussian noise with mean zero and
standard deviation 0.1.

Besides LADM, here we also consider another recently proposed fixed point continuation
with approximate SVD (FPCA) on this problem. Similar to LADM, the code of FPCA can
only solve the standard matrix completion problem without the nonnegativity constraint.
This time we set ε1 = 10−3 and ε2 = 10−1 as the stopping criteria. The recovered images
are shown in Fig. 1 (c)-(e) and the quantitative results are in Table 3. One can see that on
our test image both the qualitative and the quantitative results of LADMPSAP are better
than those of FPCA and LADM. Note that LADMPSAP is much faster than FPCA and
LADM even though they do not handle the nonnegativity constraint.

(a) Original (b) Corrupted (c) FPCA (d) LADM (e) LADMPSAP

Figure 1: Image inpainting by FPCA, LADM and LADMPSAP.

6. Conclusions

In this paper, we propose linearized alternating direction method with parallel splitting and
adaptive penalty for efficiently solving linearly constrained multi-variable separable convex
programs, which are abundant in machine learning. LADMPSAP fully utilizes the proper-
ties that the prox-function of the component objective functions and the projections onto
convex sets are easily solvable, which are usually satisfied by machine learning problems,
making each of its iterations cheap. It is also highly parallel, making it appealing for parallel
or distributed computing. Numerical experiments testify to the advantages of LADMPSAP
over other possible first order methods.

8. Available at http://sipi.usc.edu/database/.

14

LADMPSAP for Convex Programs in Machine Learning

Acknowledgments

R. Liu is supported by NSFC (No. 61300086), the China Postdoctoral Science Foundation
(No. 2013M530917) and the Fundamental Research Funds for the Central Universities (No.
DUT12RC(3)67). Z. Lin is supported by NSFC (Nos. 61272341, 61231002, 61121002). Z.
Su is supported by NSFC (Nos. 61173103 and U0935004).

References

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sciences, 2(1):183–202, 2009.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. In M. Jordan,
editor, Foundations and Trends in Machine Learning, 2010.

J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix com-
pletion. SIAM J. Optimization, 20(4):1956–1982, 2010.

E. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations
of Computational Mathematics, 9(6):717–772, 2009.

E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? J. ACM,
58(3):No.11, 2011.

V. Chandrasekaran, P. Parrilo, and A. Willsky. Latent variable graphical model selection
via convex optimization. The Annals of Statistics, 40(4):1935–1967, 2012.

E. Esser. Applications of Lagrangian-based alternating direction methods and connections
to split Bregman. CAM Report 09-31, UCLA, 2009.

P. Favaro, R. Vidal, and A. Ravichandran. A closed form solution to robust subspace
estimation and clustering. In CVPR, 2011.

M. Fazel. Matrix rank minimization with applications. PhD thesis, 2002.

M. Fortin and R. Glowinski. Augmented Lagrangian methods. North-Holland, 1983.

D. Goldfarb and S. Ma. Fast multiple splitting algorithms for convex optimization. SIAM
J. Optimization, 22(2):533–556, 2012.

T. Goldstein and S. Osher. The split Bregman method for l1 regularized problems. SIAM
J. Imaging Sciences, 2(2):323–343, 2008.

B. S. He and X. Yuan. On the O(1/t) convergence rate of alternating direction method.
Preprint, 2011.

15

Liu Lin Su

B. S. He and X. Yuan. Linearized alternating direction method with Gaussian back substi-
tution for separable convex programming. Numerical Algebra, Control and Optimization,
3(2):247–260, 2013.

B. S. He, M. Tao, and X. Yuan. Alternating direction method with Gaussian back substi-
tution for separable convex programming. SIAM J. Optimization, 22(2):313–340, 2012.

H. Ji, C. Liu, Z. Shen, and Y. Xu. Robust video denoising using low rank matrix completion.
In CVPR, 2010.

R. Larsen. Lanczos bidiagonalization with partial reorthogonalization. Department of Com-
puter Science, Aarhus University, Technical report, DAIMI PB-357, 1998.

Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier method for exact recovery
of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215, 2009a.

Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma. Fast convex optimization
algorithms for exact recovery of a corrupted low-rank matrix. UIUC Technical Report
UILU-ENG-09-2214, 2009b.

Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with adaptive penalty
for low-rank representation. In NIPS, 2011.

G. Liu and S. Yan. Latent low-rank representation for subspace segmentation and feature
extraction. In ICCV, 2011.

G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In
ICML, 2010.

G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures
by low-rank representation. IEEE Trans. on PAMI, 35(1):171–184, 2012.

X. Shen and Y. Wu. A unified approach to salient object detection via low rank matrix
recovery. In CVPR, 2012.

M. Tao. Some parallel splitting methods for separable convex programming with O(1/t)
convergence rate. Preprint, 2011.

K. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized
least squares problems. Pacific J. Optimization, 6(15):615–640, 2010.

J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse
representation. IEEE Trans. on PAMI, 31(2):210–227, 2009.

Y. Xu, W. Yin, and Z. Wen. An alternating direction algorithm for matrix completion with
nonnegative factors. CAAM Technical Report TR11-03, 2011.

J. Yang and X. Yuan. Linearized augmented Lagrangian and alternating direction methods
for nuclear norm minimization. Mathematics of Computation, 82(281):301–329, 2013.

J. Ye, S. Ji, and J. Chen. Multi-class discriminant kernel learning via convex programming.
JMLR, 9:719–758, 2008.

16

	Introduction
	Review of LADMAP for the Two-Variable Case
	LADMPSAP for Multi-Variable Case
	LADM with Parallel Splitting and Adaptive Penalty
	Stopping Criteria
	Global Convergence
	Enhanced Convergence Results
	Convergence Rate

	Practical LADMPSAP for Even More General Convex Programs
	Numerical Results
	Solving Latent LRR
	Solving Nonnegative Matrix Completion

	Conclusions

