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Abstract

This paper studies the subspace segmentation problem.
Given a set of data points drawn from a union of subspaces,
the goal is to partition them into their underlying subspaces
they were drawn from. The spectral clustering method is
used as the framework. It requires to find an affinity ma-
trix which is close to block diagonal, with nonzero entries
corresponding to the data point pairs from the same sub-
space. In this work, we argue that both sparsity and the
grouping effect are important for subspace segmentation.
A sparse affinity matrix tends to be block diagonal, with
less connections between data points from different sub-
spaces. The grouping effect ensures that the highly cor-
rected data which are usually from the same subspace can
be grouped together. Sparse Subspace Clustering (SSC),
by using �1-minimization, encourages sparsity for data se-
lection, but it lacks of the grouping effect. On the contrary,
Low-Rank Representation (LRR), by rank minimization, and
Least Squares Regression (LSR), by �2-regularization, ex-
hibit strong grouping effect, but they are short in subset s-
election. Thus the obtained affinity matrix is usually very
sparse by SSC, yet very dense by LRR and LSR.

In this work, we propose the Correlation Adaptive Sub-
space Segmentation (CASS) method by using trace Lasso.
CASS is a data correlation dependent method which simul-
taneously performs automatic data selection and groups
correlated data together. It can be regarded as a method
which adaptively balances SSC and LSR. Both theoretical
and experimental results show the effectiveness of CASS.

1. Introduction

This paper focuses on subspace segmentation, the goal

of which is to segment a given data set into clusters, ideal-

ly with each cluster corresponding to a subspace. Subspace

segmentation is an important problem in both computer vi-

sion and machine learning literature. It has numerous appli-
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Figure 1. Example on a subset with 10 subjects of the Extended
Yale B database. For a given data point y and a data set X , y
can be approximately expressed as a liner representation of all the

columns of X by different methods. This figure shows the abso-

lute values of the representation coefficients (normalized to [0 1]

for ease of display) derived by SSC, LRR, LSR and the proposed

CASS. Here different columns in each subfigure indicate different

subjects. The red color coefficients correspond to the face images

which are from the same subject as y. One can see that the coef-

ficients derived by SSC are very sparse, and only limited samples

within cluster are selected to represent y. Both LRR and LSR lead

to dense representations. They not only group data within clus-

ter together, but also between clusters. For CASS, most of large

coefficients concentrate on the data points within cluster. Thus it

approximately reveals the true segmentation of data. Images in
this paper are best viewed on screen!

cations, such as motion segmentation [19], face clustering

[12], and image segmentation [9], owing to the fact that the

real-world data often approximately lie in a mixture of sub-

spaces. The problem is formally defined as follows [13]:

Definition 1 (Subspace Segmentation) Given a set of suffi-
ciently sampled data vectors X = [x1, · · · , xn] ∈ R

d×n,
where d is the feature dimension, and n is the number of
data vectors. Assume that the data are drawn from a union
of k subspaces {Si}ki=1 of unknown dimensions {ri}ki=1, re-
spectively. The task is to segment the data according to the
underlying subspaces they are drawn from.

1.1. Summary of notations

Some notations are used in this work. We use capital

and lowercase symbols to represent matrices and vectors,

respectively. In particular, 1d ∈ R
d denotes the vector of all

1’s, ei is a vector whose i-th entry is 1 and 0 for others, and
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I is used to denote the identity matrix. Diag(v) converts the

vector v into a diagonal matrix in which the i-th diagonal

entry is vi. diag(A) is a vector whose i-th entry is Aii of

a square matrix A. tr(A) is the trace of a square matrix A.

Ai denotes the i-th column of a matrix A. sign(x) is the

sign function defined as sign(x) = x/|x| if x �= 0 and 0 for

otherwise. v → v0 denotes that v converges to v0.

Some vector and matrix norms will be used. ||v||0,

||v||1, ||v||2 and ||v||∞ denote the �0-norm (number of

nonzero entries), �1-norm (sum of the absolute vale of

each entry), �2-norm and �∞-norm of a vector v. ||A||1,

||A||F , ||A||2,1, ||A||∞, and ||A||∗ denote the �1-norm

(
∑

i,j |Aij |), Frobenius norm, �2,1-norm (
∑

j ||Aj ||2), �∞-

norm (maxi,j |Aij |), and nuclear norm (the sum of all the

singular values) of a matrix A, respectively.

1.2. Related work

There has been a large body of research on subspace

segmentation [23, 3, 13, 24, 17, 5, 8]. Most recently, the

Sparse Subspace Clustering (SSC) [3, 4], Low-Rank Rep-

resentation (LRR) [13, 12, 2], and Least Squares Regres-

sion (LSR) [16] techniques have been proposed for sub-

space segmentation and attracted much attention. These

methods learn an affinity matrix whose entries measure the

similarities among the data points and then perform spec-

tral clustering on the affinity matrix to segment data. Ideal-

ly, the affinity matrix should be block diagonal (or block

sparse in vector form), with nonzero entries correspond-

ing to data point pairs from the same subspace. A typical

choice for the measure of similarity between xi and xj is

Wij = exp (−||xi − xj ||/σ), where σ > 0. However, such

method is unable to utilize the underlying linear subspace

structure of data. The constructed affinity matrix is usually

not block diagonal even under certain strong assumptions,

e.g. independent subspaces 1. For a new point y ∈ R
d in

the subspaces, SSC pursues a sparse representation:

min
w
||w||1 s.t. y = Xw. (1)

Problem (1) can be extended for handling the data with

noise, which leads to the popular Lasso [22] formulation:

min
w
||y −Xw||22 + λ||w||1, (2)

where λ > 0 is a parameter. SSC solves problem (1) or (2)

for each data point y in the dataset with all the other data

points as the dictionary. Then it uses the derived represen-

tation coefficients to measure the similarities between data

points and constructs the affinity matrix. It is shown that, if

the subspaces are independent, the sparse representation is

block sparse. However, if the data from the same subspace

1A collection of k linear subspaces {Si}ki=1 are independent if and

only if Si ∩
∑

j �=i Sj = {0} for all i (or
∑k

i=1 Si = ⊕k
i=1Si).

are highly correlated or clustered, the �1-minimization will

generally select a single representative at random, and ig-

nore other correlated data. This leads to a sparse solution

but misses data correlation information. Thus SSC may re-

sult in a sparse affinity matrix but lead to unsatisfactory per-

formance.

Low-Rank Representation (LRR) is a method which

aims to group the correlated data together. It solves the fol-

lowing convex optimization problem:

min
W

||W ||∗ s.t. X = XW. (3)

The above problem can be extended for the noisy case:

min
W,E

||W ||∗ + λ||E||2,1
s.t. X = XW + E,

(4)

where λ > 0 is a parameter. Although LRR guarantees to

produce a block diagonal solution when the data are noise

free and drawn from independent subspaces, the real da-

ta are usually contaminated with noises or outliers. So the

solution to problem (4) is usually very dense and far from

block diagonal. The reason is that the nuclear norm min-

imization lacks the ability of subset selection. Thus, LRR

generally groups correlated data together, but sparsity can-

not be achieved.

In the context of statistics, Ridge regression (�2-

regularization) [10] may have the similar behavior as LR-

R. Below is the most recent work by using Least Squares

Regression (LSR) [16] for subspace segmentation:

min
W

||X −XW ||2F + λ||W ||2F . (5)

Both LRR and LSR encourage grouping effect but lack of

sparsity. In fact, for subspace segmentation, both sparsity

and grouping effect are very important. Ideally, the affin-

ity matrix should be sparse, with no connection between

clusters. On the other hand, the affinity matrix should not

be too sparse, i.e., the nonzero connections within cluster

should be sufficient enough for grouping correlated data in

the same subspaces. Thus, it is expected that the model can

automatically group the correlated data within cluster (like

LRR and LSR) and eliminate the connections between clus-

ters (like SSC). Trace Lasso [7], defined as ||XDiag(w)||∗,
is such a newly established regularizer which interpolates

between the �1-norm and �2-norm of w. It is adaptive and

depends on the correlation among the samples in X , which

can be encoded by XTX . In particular, when the data are

highly correlated (XTX is close to 11T ), it will be close to

the �2-norm, while when the data are almost uncorrelated

(XTX is close to I), it will behave like the �1-norm. We

take the adaptive advantage of trace Lasso to regularize the

representation coefficient matrix, and define an affinity ma-

trix by applying spectral clustering to the normalized Lapla-

cian. Such a model is called Correlation Adaptive Subspace

1346



Segmentation (CASS) in this work. CASS can be regarded

as a method which adaptively interpolates SSC and LSR.

An intuitive comparison of the coefficient matrices derived

by these four methods can be found in Figure 1. For CASS,

we can see that most large representation coefficients clus-

ter on the data points from the same subspace as y. In com-

parison, the connections within cluster are very sparse by

SSC, and the connections between clusters are very dense

by LRR and LSR.

1.3. Contributions

We summarize the contributions of this paper as follows:

• We propose a new subspace segmentation method,

called the Correlation Adaptive Subspace Segmenta-

tion (CASS), by using trace Lasso [7]. CASS is the

first method that takes the data correlation into accoun-

t for subspace segmentation. So it is self-adaptive for

different types of data.

• In theory, we show that if the data are from inde-

pendent subspaces, and the objective function satisfies

the proposed Enforced Block Sparse (EBS) conditions,

then the obtained solution is block sparse. Trace Lasso

is a special case which satisfies the EBS conditions.

• We theoretically prove that trace Lasso has the group-

ing effect, i.e., the coefficients of a group of correlated

data are approximately equal.

2. Correlation Adaptive Subspace Segmenta-
tion by Trace Lasso

Trace Lasso [7] is a recently proposed norm which bal-

ances the �1-norm and �2-norm. It is formally defined as

Ω(w) = ||XDiag(w)||∗.
A main difference between trace Lasso and the existing

norms is that trace Lasso involves the data matrix X , which

makes it adaptive to the correlation of data. Actually, it

only depends on the matrix XTX of data, which encodes

the correlation information among data. In particular, if the

norm of each column of X is normalized to one, we have

the following decomposition of XDiag(w):

XDiag(w) =

n∑

i=1

|wi|(sign(wi)xi)e
T
i .

If the data are uncorrelated (the data points are orthogonal,

XTX = I), the above equation gives the singular value

decomposition of XDiag(w). In this case, trace Lasso is

equal to the �1-norm:

||XDiag(w)||∗ = ||Diag(w)||∗ =
n∑

i=1

|wi| = ||w||1.

If the data are highly correlated (the data points are all the

same, X = x11
T , XTX = 11T ), trace Lasso is equal to

the �2-norm:

||XDiag(w)||∗ = ||x1w
T ||∗ = ||x1||2||w||2 = ||w||2.

For other cases, trace Lasso interpolates between the �2-

norm and �1-norm [7]:

||w||2 ≤ ||XDiag(w)||∗ ≤ ||w||1.

We use trace Lasso for subset selection from all the data

adaptively, which leads to the Correlation Adaptive Sub-

space Segmentation (CASS) method. We first consider the

subspace segmentation problem with clean data by CASS

and then extend it to the noisy case.

2.1. CASS with clean data

Let X = [x1, · · · , xn] = [X1, · · · , Xk]Γ be a set of

data drawn from k subspaces {Si}ki=1, where Xi denotes

a collection of ni data points from the i-th subspace Si,
n =

∑k
i=1 ni, and Γ is a hypothesized permutation ma-

trix which rearranges the data to the true segmentation of

data. For a given data point y ∈ Si, it can be represented

as a linear combination of all the data points X . Different

from the previous methods in SSC, LRR and LSR, CASS

uses the trace Lasso as the objective function and solves the

following problem:

min
w∈Rn

||XDiag(w)||∗ s.t. y = Xw. (6)

The methods, SSC, LRR and LSR, show that if the da-

ta are sufficiently sampled from independent subspaces, a

block diagonal solution can be achieved. The work [16]

further shows that it is easy to get a block diagonal solu-

tion if the objective function satisfies the Enforced Block

Diagonal (EBD) conditions. But the EBD conditions can-

not be applied to trace Lasso directly, since trace Lasso is a

function involving both the data X and w. Here we extend

the EBD conditions [16] to the Enforced Block Sparse (EB-

S) conditions and show that the obtained solution is block

sparse when the objective function satisfies the EBS condi-

tions. Trace Lasso is a special case which satisfies the EBS

conditions and thus leads to a block sparse solution.

Enforced Block Sparse (EBS) Conditions. Assume f
is a function with regard to a matrix X ∈ R

d×n and a vector

w = [wa;wb;wc] ∈ R
n, w �= 0. Let wB = [0;wb; 0] ∈ R

n.

The EBS conditions are:

(1) f(X,w) = f(XP,P−1w), for any permutation ma-

trix P ∈ R
n×n;

(2) f(X,w) ≥ f(X,wB), and the equality holds if and

only if w = wB .
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For some cases, the EBS conditions can be regarded as ex-

tensions of the EBD conditions 2. The EBS conditions will

enforce the solution to the following problem

min
w

f(X,w) s.t. y = Xw, (7)

to be block sparse when the subspace are independent.

Theorem 1 Let X = [x1, · · · , xn] = [X1, · · · , Xk]Γ ∈
R

d×n be a data matrix whose column vectors are suffi-
ciently 3 drawn from a union of k independent subspaces
{Si}ki=1, xj �= 0, j = 1, · · · , n. For each i, Xi ∈ R

d×ni

and n =
∑k

i=1 ni. Let y ∈ R
d be a new point in Si. Then

the solution to problem (7) w∗ = Γ−1[z∗1 ; · · · ; z∗k] ∈ R
n is

block sparse, i.e., z∗i �= 0 and z∗j = 0 for all j �= i.

Proof. For y ∈ Si, let w∗ = Γ−1[z∗1 ; · · · ; z∗k] be the optimal

solution to problem (7), where z∗i ∈ R
ni corresponds to Xi

for each i = 1, · · · , k. We decompose w∗ into two parts

w∗ = u∗ + v∗, where u∗ = Γ−1[0; · · · ; z∗i ; · · · ; 0] and

v∗ = Γ−1[z∗1 ; · · · ; 0; · · · ; z∗k]. We have

y = Xw∗ = Xu∗ +Xv∗

= Xiz
∗
i +

∑

j �=i

Xjz
∗
j .

Since y ∈ Si and Xiz
∗
i ∈ Si, y − Xiz

∗
i ∈ Si. Thus∑

j �=i Xjz
∗
j = y −Xiz

∗
i ∈ Si ∩ ⊕j �=iSj . Considering that

the subspaces {Si}ki=1 are independent, Si∩⊕j �=iSj = {0},
we have y = Xiz

∗
i = Xu∗ and Xjz

∗
j = 0, j �= i. So u∗ is

feasible to problem (7). On the other hand, by the definition

of u∗ and the EBS conditions (2), we have

f(X,w∗) ≥ f(X,u∗).

Noticing that w∗ is optimal to problem (7), f(X,w∗) ≤
f(X,u∗). Thus the equality holds. By the EBS conditions

(2), we get w∗ = u∗. Therefore, z∗i �= 0, and z∗j = 0 for all

j �= i. �
The EBS conditions greatly extend the family of the ob-

jective function which involves the block sparse property.

It is easy to check that trace Lasso satisfies the EBS condi-

tions. Let f(X,w) = ||XDiag(w)||∗, for any permutation

matrix P ∈ R
n×n,

f(XP,P−1w) =||XPDiag(P−1w)||∗
=||XPP−1Diag(w)||∗
=||XDiag(w)||∗ = f(X,w).

Trace Lasso also satisfies the EBS conditions (2) by the fol-

lowing lemma:

2For example, f(X,w) = ||w||p + 0 × ||X||F = ||w||p = g(w),
where p ≥ 0. It is easy to see that f(X,w) satisfies the EBS conditions

and g(w) satisfies the EBD conditions.
3That the data sampling is sufficient makes sure that problem (7) has a

feasible solution.

(b) LRR(a) SSC (c) LSR (d) CASS

Figure 2. The affinity matrices derived by (a) SSC, (b) LRR, (c) L-

SR, and (d) CASS on the Extended Yale B Database (10 subjects).

Lemma 1 [18, Lemma 11] Let A ∈ R
d×n be partitioned

in the form A = [A1, A2]. Then ||A||∗ ≥ ||A1||∗ and the
equality holds if and only if A2 = 0.

In a similar way, CASS owns the block sparse property:

Theorem 2 Let X = [x1, · · · , xn] = [X1, · · · , Xk]Γ ∈
R

d×n be a data matrix whose column vectors are sufficient-
ly drawn from a union of k independent subspaces {Si}ki=1,
xj �= 0, j = 1, · · · , n. For each i, Xi ∈ R

d×ni and
n =

∑k
i=1 ni. Let y be a new point in Si. It holds that

the solution to problem (6) w∗ = Γ−1[z∗1 ; · · · ; z∗k] ∈ R
n

is block sparse, i.e., z∗i �= 0 and z∗j = 0 for all j �= i.
Furthermore, z∗i is also optimal to the following problem:

min
zi∈Rni

||XiDiag(zi)||∗ s.t. y = Xizi. (8)

The block sparse property of CASS is the same as those

of SSC, LRR and LSR when the data are from independent

subspaces. This is also the motivation for using trace Las-

so for subspace segmentation. For the noisy case, different

from the previous methods, CASS may also lead to a so-

lution which is close to block sparse, and it also has the

grouping effect (see Section 2.3).

2.2. CASS with noisy data

The noise free and independent subspaces assumption

may be violated in real applications. Problem (6) can be ex-

tended to handle noises of different types. For small magni-

tude and dense noises (e.g. Gaussian), a reasonable strategy

is to use the �2-norm to model the noises:

min
w

1

2
||y −Xw||22 + λ||XDiag(w)||∗. (9)

Here λ > 0 is a parameter balancing the effects of the two

terms. For data with a small fraction of gross corruptions,

the �1-norm is a better choice:

min
w

||y −Xw||1 + λ||XDiag(w)||∗. (10)

Namely, the choice of the norm depends on the noises. It is

important for subspace segmentation but not the main focus

of this paper.
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In the case of data contaminated with noises, it is difficult

to obtain a block sparse solution. Though the representation

coefficient derived by SSC tends to be sparse, it is unable to

group correlated data together. On the other hand, LRR and

LSR lead to dense representations which lack the ability of

subset selection. CASS by using trace Lasso takes the corre-

lation of data into account which places a tradeoff between

sparsity and grouping effect. Thus it can be regarded as a

method which balances SSC and LSR.

For SSC, LRR, LSR and CASS, each data point is ex-

pressed as a linear combination of all the data with a co-

efficient vector. These coefficient vectors can be arranged

as a matrix measuring the similarities between data points.

Figure 2 illustrates the coefficient matrices derived by these

four methods on the Extended Yale B database (see Sec-

tion 3.1 for detailed experimental setting). We can see that

the coefficient matrix derived by SSC is so sparse that it is

even difficult to identify how many groups there are. This

phenomenon confirms that SSC loses the data correlation

information. Thus SSC does not perform well for data with

strong correlation. On the contrary, the coefficient matri-

ces derived by LRR and LSR are very dense. They group

many data points together, but do not do subset selection.

There are many nonzero connections between clusters, and

some are very large. Thus LRR and LSR may contain much

erroneous information. Our proposed method CASS by us-

ing trace Lasso, achieves a more accurate coefficient matrix,

which is close to be block diagonal, and it also groups da-

ta within cluster. Such intuition shows that CASS is more

accurate to reveal the true data structure for subspace seg-

mentation.

2.3. The grouping effect

It has been shown in [16] that the effectiveness of LSR by

�2-regularization comes from the grouping effect, i.e., the

coefficients of a group of correlated data are approximately

equal. In this work, we show that trace Lasso also has the

grouping effect for correlated data.

Theorem 3 Given a data vector y ∈ R
d, data points X =

[x1, · · · , xn] ∈ R
d×n and parameter λ > 0. Let w∗ =

[w∗1 , · · · , w∗n]T ∈ R
n be the optimal solution to problem

(9). If xi → xj , then w∗i → w∗j .

The proof of the Theorem 3 can be found in the supple-

mentary materials.

If each column of X is normalized, xi = xj implies that

the sample correlation r = xT
i xj = 1. Namely xi and

xj are highly correlated. Then these two data points will

be grouped together by CASS due to the grouping effect.

Illustrations of the grouping effect are shown in Figures 1

and 2. One can see that the connections within cluster by

CASS are dense, similar to LRR and LSR. The grouping

effect of CASS may be weaker than LRR and LSR, since it

Algorithm 1 Solving Problem (9) by ADM

Input: data matrix X , parameter λ.

Initialize: w0, Y 0, μ0, ρ, μmax, ε, t = 0.

Output: coefficient w∗.
while not converge do

1. fix the others and update J by

J t+1 = argmin λ
μt ||J ||∗ + 1

2 ||J − (XDiag(wt) −
1
μtY

t)||2F .

2. fix the others and update w by

wt+1 = A(XT y + diag(XT (Y t + μtJ t+1))),
where A = (XTX + μtDiag(diag(XTX)))−1.

3. update the multiplier

Y t+1 = Y t + μt(J t+1 −XDiag(wt+1)).

4. update the parameter by μt+1 = min(ρμt, μmax).

5. check the convergence conditions

||J t+1 − J t||∞ ≤ ε,

||wt+1 − wt||∞ ≤ ε,

||J t+1 −XDiag(wt+1)||∞ ≤ ε.

6. t = t+ 1.

end while

also encourages sparsity between clusters, but it is sufficient

enough for grouping correlated data together.

2.4. Optimization

Performing CASS needs to solve the convex optimiza-

tion problem (9), which can be optimized by off-the-shelf

solvers. The work in [7] introduces an iteratively reweight-

ed least squares method for solving problem (9), but the

solution is not necessarily globally optimal due to a trick by

adding a term to avoid the non-invertible issue. Motivated

by the optimization method used in low-rank minimization

[1, 15], we adopt the Alternating Direction Method (ADM)

to solve problem (9). We first convert it to the following

equivalent problem:

min
J,w

1

2
||y −Xw||22 + λ||J ||∗

s.t. J = XDiag(w).

(11)

This problem can be solved by the ADM method, which

operates on the following augmented Lagrangian function:

L(J,w) = 1
2 ||y −Xw||22 + λ||J ||∗

+tr(Y T (J −XDiag(w))) + μ
2 ||J −XDiag(w)||2F ,

(12)

where Y ∈ R
d×n is the Lagrange multiplier and μ > 0 is

the penalty parameter for violation of the linear constraint.

1349



Algorithm 2 Correlation Adaptive Subspace Segmentation

Input: data matrix X , number of subspaces k

1. Solve problem (9) for each data point in X to obtain

the coefficient matrix W ∗, where X in (9) should be

replaces by Xî = [x1, · · · , xi−1, xi+1, · · · , xn].

2. Construct the affinity matrix by (|W ∗|+ |W ∗T |)/2.

3. Segment the data into k groups by Normalized Cuts.

We can see that L(J,w) is separable, thus it can be decom-

posed into two subproblems and minimized with regard to

J and w, respectively. The whole procedure for solving

problem (9) is outlined in the Algorithm 1. It iteratively

solves two subproblems which have closed form solutions.

By the theory of ADM and the convexity of problem (9),

Algorithm 1 converges globally.

2.5. The segmentation algorithm

For solving the subspace segmentation problem by trace

Lasso, we first solve problem (9) for each data point xi with

Xî = [x1, · · · , xi−1, xi+1, · · · , xn] which excludes xi it-

self, and obtain the corresponding coefficients. Then these

coefficients can be arranged as a matrix W ∗. The affinity

matrix is defined as (|W ∗| + |W ∗T |)/2. Finally, we use

the Normalized Cuts (NCuts) [20] to segment the data in-

to k groups. The whole procedure of CASS algorithm is

outlined in the Algorithm 2.

3. Experiments
In this section, we apply CASS for subspace segmenta-

tion on three databases: the Hopkins 155 4 motion database,

Extended Yale B database [6] and MNIST database 5 of

handwritten digits. CASS is compared with SSC, LRR and

LSR which are the representative and state-of-the-art meth-

ods for subspace segmentation. The derived affinity ma-

trices from all algorithms are also evaluated for the semi-

supervised learning task on the Extended Yale B database.

For fair comparison with previous works, we follow the

experimental settings as in [16]. The parameters for each

method are tuned to achieve the best performance. The seg-

mentation accuracy/error is used to evaluate the subspace

segmentation performance. The accuracy is calculated by

the best matching rate of the predicted label and the ground

truth of data [3].

3.1. Data sets and experimental settings

Hopkins 155 motion database contains 156 sequences,

each of which has 39∼550 data points drawn from two or

4http://www.vision.jhu.edu/data/hopkins155/
5http://yann.lecun.com/exdb/mnist/

Table 1. The segmentation errors (%) on the Hopkins 155

database.
Comparison under the same setting

kNN SSC LRR LSR CASS

MAX 45.59 39.53 36.36 36.36 32.85
MEAN 13.44 4.02 3.23 2.50 2.42
STD 12.90 10.04 6.60 5.62 5.84

Comparison to state-of-the-art methods

SSC LRR LatLRR CASS

MEAN 2.18 1.71 0.85 1.47

Table 2. The segmentation accuracies (%) on the Extended Yale B

database.
kNN SSC LRR LSR CASS

5 subjects 56.88 80.31 86.56 92.19 94.03
8 subjects 52.34 62.90 78.91 80.66 91.41
10 subjects 50.94 52.19 65.00 73.59 81.88

three motions (a motion corresponds to a subspace). Each

sequence is a sole data set and so there are 156 subspace

segmentation problems in total. We first use PCA to project

the data into a 12-dimensional subspace. All the algorithms

are performed on each sequence, and the maximum, mean

and standard deviation of the error rates are reported.

Extended Yale B is challenging for subspace segmenta-

tion due to large noises. It consists of 2,414 frontal face im-

ages of 38 subjects under various lighting, poses and illumi-

nation conditions. Each subject has 64 faces. We construct

three subspace segmentation tasks based on the first 5, 8 and

10 subjects face images of this database. The data are first

projected into a 5×6, 8×6, and 10×6-dimensional subspace

by PCA, respectively. Then the algorithms are employed on

these three tasks and the accuracies are reported.

To further evaluate the effectiveness of CASS for other

learning problems, we also use the derived affinity matrix

for semi-supervised learning. The Markov random walks

algorithm [21] is employed in this experiment. It performs

a t-step Markov random walk on the graph or affinity ma-

trix. The influence of one example to another example is

proportional to the affinity between them. We test on the

10 subjects face classification problem. For each subject,

4, 8, 16 and 32 face images are randomly selected to for-

m the training data set, and the remaining for testing. Our

goal is to predict the labels of the test data by Markov ran-

dom walks [21] on the affinity matrices learnt by kNN, SS-

C, LRR, LSR and CASS. We experimentally select k = 6
neighbors. The experiment is repeated for 20 times, and the

accuracy and standard deviation are reported for evaluation.

MNIST database of handwritten digits is also widely

used in subspace learning and clustering [11]. It has 10

subjects, corresponding to 10 handwritten digits, 0∼9. We

select a subset with a similar size as in the above face clus-

tersing problem for this experiment, which consists of the
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Figure 3. Comparison of classification accuracy (%) and standard

deviation of different semi-supervised learning based on different

affinity matrices on the Extended Yale B (10 subjects) database.

first 50 samples of each subject. The accuracies of SSC,

LRR, LSR and CASS are reported.

3.2. Experimental results

Table 1 tabulates the motion segmentation errors of four

methods on the Hopkins 155 database. It shows that CASS

gets a misclassification error of 2.42% for all 156 se-

quences, while the best previously reported result is 2.50%
by LSR. The improvement of CASS on this database is lim-

ited due to many reasons. First, previous methods have per-

formed very well on the data with only slight corruptions,

and thus the room for improvement is limited. Second, the

reported error is the mean of 156 segmentation errors, most

of which are zeros. So even if there are some high improve-

ments on some challenging sequences, the improvement of

the mean error is also limited. Third, the correlation of da-

ta is strong as the dimension of each affine subspace is no

more than three [3] [16], thus CASS tends to be close to

LSR in this case. Due to the dimensionality reduction by P-

CA and sufficient data sampling in each motion, CASS may

behave like LSR with a strong grouping effect. Further-

more, in order to compare with the state-of-the-art methods,

we follow the post-processing in [12], which may not be op-

timal for CASS, and the error of CASS is reduced to 1.47%.

But the best performance by Latent LRR [14] is 0.85%. It is

much better than other methods. That is because Latent LR-

R further employs unobserved hidden data as the dictionary

and has complex pre-processing and post-processing with
several parameters. The idea of incorporating unobserved

hidden data may also be considered in CASS. This will be

our future work.

(a) SSC (b) LRR (c) LSR (d) CASS

Figure 4. The affinity matrices derived by (a) SSC, (b) LRR, (c)

LSR, and (d) CASS on the MNIST database.

Table 3. The segmentation accuracies (%) on the MNIST database.

kNN SSC LRR LSR CASS

ACC. 61.00 62.60 66.80 68.00 73.80

Table 2 shows the clustering result on the Extended Yale

B database. We can see that CASS outperforms SSC, LR-

R and LSR on all these three clustering tasks. In particu-

lar, CASS gets accuracies of 94.03%, 91.41%, and 81.88%
for face clustering with 5, 8, and 10 subjects, respectively,

which outperforms the state-of-the-art method LSR. For the

5 subjects face clustering problem, all these four methods

perform well, and no big improvement is made by CASS.

But for the 8 subjects and 10 subjects face clustering prob-

lems, CASS achieves significant improvements. For these

two clustering tasks, both LRR and LSR perform much bet-

ter than SSC, which can be attributed to the strong grouping

effect of the two methods. However, both the two meth-

ods lack the ability of subset selection, and therefore may

group some data points between clusters together. CASS

not only preserves the grouping effect within cluster but

also enhances the sparsity between clusters. The intuitive

comparison of these four methods can be found in Figure

2. It confirms that CASS usually leads to an approximately

block diagonal affinity matrix which results in a more accu-

rate segmentation result. This phenomenon is also consis-

tent with the analysis in Theorems 2 and 3.

For semi-supervised learning, the comparison of the

classification accuracies is shown in Figure 3 with differ-

ent numbers of training data. CASS achieves the best per-

formance and the accuracies on these settings are all above

90%. Notice that they are much higher than the clustering

accuracies in Table 2. This is mainly due to the mecha-

nism of semi-supervised learning which makes use of both

labeled and unlabeled data for training. The accurate graph

construction is the key step for semi-supervised learning.

This example shows that the affinity matrix by trace Lasso

is also effective for semi-supervised learning.

Table 3 shows the clustering accuracies by SSC, LRR, L-

SR, and CASS on the MNIST database. The comparison of

the derived affinity matrices by these four methods is illus-

trated in Figure 4. We can see that CASS obtains an affinity

matrix which is close to block diagonal by preserving the
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grouping effect. None of these four methods performs per-

fectly on this database. Nonetheless, our proposed CASS

method achieves the best accuracy 73.80%. The main rea-

son may lie in the fact that the handwritten digit data do not

fit the subspace structure well. This is also the main chal-

lenge for real-world applications by subspace segmentation.

4. Conclusions and Future Work
In this work, we propose the Correlation Adaptive Sub-

space Segmentation (CASS) method by using the trace Las-

so. Compared with the existing SSC, LRR, and LSR,

CASS simultaneously encourages grouping effect and s-

parsity. The adaptive advantage of CASS comes from the

mechanism of trace Lasso which balances between �1-norm

and �2-norm. In theory, we show that CASS is able to reveal

the true segmentation result when the subspaces are inde-

pendent. The grouping effect of trace Lasso is firstly estab-

lished in this work. At last, the experimental results on the

Hopkins 155, Extended Yale B, and MNIST databases show

the effectiveness of CASS. Similar improvement can also

be observed in semi-supervised learning setting on the Ex-

tended Yaled B database. However, there still remain many

problems for future exploration. First, the data itself, which

may be noisy, are used as the dictionary for linear construc-

tion. It may be better to learn a compact and discriminative

dictionary for trace Lasso. Second, trace Lasso may have

many other applications, i.e. classification, dimensionality

reduction, and semi-supervised learning. Third, more scal-

able optimization algorithms should be developed for large

scale subspace segmentation.
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