Supplementary Material of Correlation Adaptive Subspace Segmentation by Trace Lasso

Canyi Lu¹, Jiashi Feng¹, Zhouchen Lin², Shuicheng Yan¹

¹ Department of Electrical and Computer Engineering, National University of Singapore;

² Key Laboratory of Machine Perception (MOE), School of EECS, Peking University

canyilu@gmail.com, a0066331@nus.edu.sg, zlin@pku.edu.cn, eleyans@nus.edu.sg

In this supplementary material, we prove the Theorem 1 which shows the grouping effect of CASS.

Theorem 1 Given a data vector $y \in \mathbb{R}^d$, data points $X = [x_1, \dots, x_n] \in \mathbb{R}^{d \times n}$ and parameter $\lambda > 0$. Let $w^* = [w_1^*, \dots, w_n^*]^T \in \mathbb{R}^n$ be the optimal solution to the following problem

$$\min_{w} f(w) = \frac{1}{2} ||y - Xw||_{2}^{2} + \lambda ||XDiag(w)||_{*}.$$
(1)

If $x_i \to x_j$, then $w_i^* \to w_i^*$.

Theorem 1 says that if there are two columns x_i and x_j of X which are sufficiently close to each other, then the corresponding coefficients w_i^* and w_j^* are also sufficiently close to each other.

Suppose $X = [\hat{X} \ \tilde{X}]$, where $\tilde{X} \in \mathbb{R}^{d \times q}$ consists of q columns that are close to each other:

$$\max\{||\tilde{X} - \bar{x}_0 \mathbf{1}^T||_*, ||\tilde{X} - \bar{x}_0 \mathbf{1}^T||_2\} \le \varepsilon, \tag{2}$$

where $\varepsilon > 0$, $\mathbf{1} \in \mathbb{R}^q$ is the all 1's vector, \bar{x}_0 is the mean of \tilde{X} , i.e. $\bar{x}_0 = \tilde{X}\mathbf{1}/q$, and $\hat{X} \in \mathbb{R}^{d \times (n-q)}$ consists of the rest columns of X. Accordingly $w^* = [\hat{w}; \tilde{w}]$.

To prove Theorem 1, we only need to prove that if $||\tilde{w} - \bar{w}\mathbf{1}||_2$ is not small enough, then $f([\hat{w}; \tilde{w}]) > f([\hat{w}; \bar{w}\mathbf{1}])$, where $\bar{w} = \mathbf{1}^T \tilde{w}/q$ is the average of \tilde{w} .

We first prove two lemmas:

Lemma 1 $||ADiag(v)||_* \le ||A||_F ||v||_2$, where $v \in \mathbb{R}^N$, and $A \in \mathbb{R}^{D \times N}$.

Proof.

$$||A \operatorname{Diag}(v)||_{*} = ||[A_{1}v_{1} A_{2}v_{2} \cdots A_{N}v_{N}]||_{*}$$

$$\leq \sum_{i=1}^{N} ||A_{i}v_{i}||_{*}$$

$$= \sum_{i=1}^{N} ||A_{i}||_{*}|v_{i}|$$

$$= \sum_{i=1}^{N} ||A_{i}||_{2}|v_{i}|$$

$$\leq \sqrt{\sum_{i=1}^{N} ||A_{i}||_{2}^{2} \sum_{i=1}^{N} |v_{i}|^{2}}$$

$$= \sqrt{||A||_{F}^{2} ||v||_{2}^{2}}$$

$$= ||A||_{F} ||v||_{2}.$$
(3)

^{*}Corresponding author.

Lemma 2 If $\lambda_i \ge \mu_i \ge 0$, $i = 1, \dots, N$, and $C = \sum_{i=1}^{N} (\lambda_i - \mu_i)$, then $\sum_{i=1}^{N} \sqrt{\lambda_i} \ge \sum_{i=1}^{N} \sqrt{\mu_i} + \frac{C}{2\sqrt{\max\{\lambda_i\}}}$.

Proof.

$$\sum_{i=1}^{N} \sqrt{\lambda_i} - \sum_{i=1}^{N} \sqrt{\mu_i} = \sum_{i=1}^{N} (\sqrt{\lambda_i} - \sqrt{\mu_i})$$

$$= \sum_{i=1}^{N} \frac{\lambda_i - \mu_i}{\sqrt{\lambda_i} + \sqrt{\mu_i}}$$

$$\geq \sum_{i=1}^{N} \frac{\lambda_i - \mu_i}{2\sqrt{\max\{\lambda_i\}}}$$

$$= \frac{1}{2\sqrt{\max\{\lambda_i\}}} \sum_{i=1}^{N} (\lambda_i - \mu_i)$$

$$= \frac{C}{2\sqrt{\max\{\lambda_i\}}}.$$
(4)

Next we prove the following theorem which is equivalent to the Theorem 1:

Theorem 2 For any $\varepsilon > 0$, if $||\tilde{w} - \bar{w}\mathbf{1}||_2 > \delta$, where

$$\delta = \left(\frac{2((\lambda + ||y - \hat{X}\hat{w} - (\mathbf{1}^T\tilde{w})\bar{x}_0||_2)||\tilde{w}||_2 + \lambda|\bar{w}|)||[\hat{X}_{\hat{w}} \ \bar{w}\bar{x}_0\mathbf{1}^T]||_2}{\lambda||\bar{x}_0||_2^2} + 1\right)\varepsilon,\tag{5}$$

then $f([\hat{w}; \ \tilde{w}]) > f([\hat{w}; \ \bar{w}\mathbf{1}]).$

Proof.

$$\begin{split} f([\hat{w};\ \tilde{w}]) &= \frac{1}{2} ||y - \hat{X}\hat{w} - \tilde{X}\tilde{w}||_{2}^{2} + \lambda ||[\hat{X}_{\hat{w}}\ \tilde{X} \text{Diag}(\tilde{w})]||_{*} \\ &= \frac{1}{2} ||(y - \hat{X}\hat{w} - \bar{x}_{0}\mathbf{1}^{T}\tilde{w}) + (\bar{x}_{0}\mathbf{1}^{T} - \tilde{X})\tilde{w}||_{2}^{2} + \lambda ||[\hat{X}_{\hat{w}}\ \bar{x}_{0}\mathbf{1}^{T} \text{Diag}(\tilde{w})] + [0\ (\tilde{X} - \bar{x}_{0}\mathbf{1}^{T}) \text{Diag}(\tilde{w})]||_{*} \\ &\geq \frac{1}{2} ||y - \hat{X}\hat{w} - (\mathbf{1}^{T}\tilde{w})\bar{x}_{0}||_{2}^{2} + \frac{1}{2} ||(\bar{x}_{0}\mathbf{1}^{T} - \tilde{X})\tilde{w}||_{2}^{2} - ||y - \hat{X}\hat{w} - (\mathbf{1}^{T}\tilde{w})\bar{x}_{0}||_{2} ||(\bar{x}_{0}\mathbf{1}^{T} - \tilde{X})\tilde{w}||_{2} \\ &+ \lambda ||[\hat{X}_{\hat{w}}\ \bar{x}_{0}\mathbf{1}^{T} \text{Diag}(\tilde{w})]||_{*} - \lambda ||(\tilde{X} - \bar{x}_{0}\mathbf{1}^{T}) \text{Diag}(\tilde{w})||_{*} \\ &\geq \frac{1}{2} ||y - \hat{X}\hat{w} - (\mathbf{1}^{T}\tilde{w})\bar{x}_{0}||_{2}^{2} - ||(y - \hat{X}\hat{w} - (\mathbf{1}^{T}\tilde{w})\bar{x}_{0}||_{2} ||\tilde{w}||_{2} ||\bar{x}_{0}\mathbf{1}^{T} - \tilde{X}||_{2} \\ &+ \lambda ||[\hat{X}_{\hat{w}}\ \bar{x}_{0}\tilde{w}^{T}]||_{*} - \lambda ||\tilde{w}||_{2} ||\tilde{X} - \bar{x}_{0}\mathbf{1}^{T}||_{F} \\ &\geq \frac{1}{2} ||y - \hat{X}\hat{w} - q\bar{w}\bar{x}_{0}||_{2}^{2} + \lambda ||[\hat{X}_{\hat{w}}\ \bar{x}_{0}\tilde{w}^{T}]||_{*} - (\lambda + ||y - \hat{X}\hat{w} - (\mathbf{1}^{T}\tilde{w})\bar{x}_{0}||_{2}) ||\tilde{w}||_{2}\varepsilon \\ &= \frac{1}{2} ||y - \hat{X}\hat{w} - \tilde{X}(\bar{w}\mathbf{1})||_{2}^{2} + \lambda ||[\hat{X}_{\hat{w}}\ \bar{x}_{0}\tilde{w}^{T}]||_{*} - (\lambda + ||y - \hat{X}\hat{w} - (\mathbf{1}^{T}\tilde{w})\bar{x}_{0}||_{2}) ||\tilde{w}||_{2}\varepsilon, \end{split}$$

where $\hat{X}_{\hat{w}} = \hat{X} \mathrm{Diag}(\hat{w}).$ The last equation uses the fact that $q \bar{x}_0 = \tilde{X} \mathbf{1}.$

Denote $Y = \hat{X}_{\hat{w}}\hat{X}_{\hat{w}}^T$, and $\lambda_i(M)$, $i = 1, \dots, d$, are the ordered eigenvalues of a matrix $M \in \mathbb{R}^{d \times d}$, i.e. $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d$. We show that if $||\tilde{w} - \bar{w}\mathbf{1}||_2 > \delta$, then

$$||[\hat{X}_{\hat{w}} \ \bar{x}_0 \tilde{w}^T]||_* > ||[\hat{X}_{\hat{w}} \ \bar{w} \bar{x}_0 \mathbf{1}^T]||_* + \eta, \text{ with } \eta > 0.$$
 (7)

Indeed, since

$$\sum_{i=1}^{d} \lambda_{i}(Y + ||\tilde{w}||_{2}^{2}\bar{x}_{0}\bar{x}_{0}^{T}) = \operatorname{tr}(Y + ||\tilde{w}||_{2}^{2}\bar{x}_{0}\bar{x}_{0}^{T})
= \operatorname{tr}[(Y + ||\bar{w}\mathbf{1}||_{2}^{2}\bar{x}_{0}\bar{x}_{0}^{T}) + (||\tilde{w}||_{2}^{2} - ||\bar{w}\mathbf{1}||_{2}^{2})\bar{x}_{0}\bar{x}_{0}^{T}]
= \operatorname{tr}(Y + ||\bar{w}\mathbf{1}||_{2}^{2}\bar{x}_{0}\bar{x}_{0}^{T}) + \operatorname{tr}((||\tilde{w}||_{2}^{2} - ||\bar{w}\mathbf{1}||_{2}^{2})\bar{x}_{0}\bar{x}_{0}^{T})
= \operatorname{tr}(Y + ||\bar{w}\mathbf{1}||_{2}^{2}\bar{x}_{0}\bar{x}_{0}^{T}) + (||\tilde{w}||_{2}^{2} - ||\bar{w}\mathbf{1}||_{2}^{2})||\bar{x}_{0}||_{2}^{2}
= \sum_{i=1}^{d} \lambda_{i}(Y + ||\bar{w}\mathbf{1}||_{2}^{2}\bar{x}_{0}\bar{x}_{0}^{T}) + (||\tilde{w}||_{2}^{2} - ||\bar{w}\mathbf{1}||_{2}^{2})||\bar{x}_{0}||_{2}^{2}.$$
(8)

Note that $||\bar{w}\mathbf{1}||_2^2$ is the minimum value of $||\tilde{w}||_2^2$ under the constraint $\mathbf{1}^T\tilde{w}=q\bar{w}$. So $\lambda_i(Y+||\tilde{w}||_2^2\bar{x}_0\bar{x}_0^T)\geq \lambda_i(Y+||\bar{w}\mathbf{1}||_2^2\bar{x}_0\bar{x}_0^T)\geq 0$. Moreover, since $\mathbf{1}^T\tilde{w}=q\bar{w}$, we have $||\tilde{w}||_2^2-||\bar{w}\mathbf{1}||_2^2=||\tilde{w}-\bar{w}\mathbf{1}||_2^2$. So by Lemma 2, we have

$$||[\hat{X}_{\hat{w}} \, \bar{x}_0 \tilde{w}^T]||_* = \sum_{i=1}^d \sqrt{\lambda_i (Y + ||\tilde{w}||_2^2 \bar{x}_0 \bar{x}_0^T)}$$

$$\geq \sum_{i=1}^d \sqrt{\lambda_i (Y + ||\bar{w}\mathbf{1}||_2^2 \bar{x}_0 \bar{x}_0^T)} + \frac{||\tilde{w} - \bar{w}\mathbf{1}||_2^2 ||\bar{x}_0||_2^2}{2\sqrt{\lambda_1 (Y + ||\bar{w}\mathbf{1}||_2^2 \bar{x}_0 \bar{x}_0^T)}}$$

$$= ||[\hat{X}_{\hat{w}} \, \bar{w} \bar{x}_0 \mathbf{1}^T]||_* + \frac{||\tilde{w} - \bar{w}\mathbf{1}||_2^2 ||\bar{x}_0||_2^2}{2||[\hat{X}_{\hat{w}} \, \bar{w} \bar{x}_0 \mathbf{1}^T]||_2}$$

$$> ||[\hat{X}_{\hat{w}} \, \bar{w} \bar{x}_0 \mathbf{1}^T]||_* + \frac{||\bar{x}_0||_2^2}{2||[\hat{X}_{\hat{w}} \, \bar{w} \bar{x}_0 \mathbf{1}^T]||_2} \delta.$$
(9)

Furthermore,

$$||[\hat{X}_{\hat{w}} \ \bar{w}\bar{x}_{0}\mathbf{1}^{T}]||_{*} = ||[\hat{X}_{\hat{w}} \ \tilde{X}\mathrm{Diag}(\bar{w}\mathbf{1})] + [0 \ \bar{w}\bar{x}_{0}\mathbf{1}^{T} - \tilde{X}\mathrm{Diag}(\bar{w}\mathbf{1})]||_{*}$$

$$\geq ||[\hat{X}_{\hat{w}} \ \tilde{X}\mathrm{Diag}(\bar{w}\mathbf{1})]||_{*} - ||\bar{w}\bar{x}_{0}\mathbf{1}^{T} - \tilde{X}\mathrm{Diag}(\bar{w}\mathbf{1})||_{*}$$

$$= ||[\hat{X}_{\hat{w}} \ \tilde{X}\mathrm{Diag}(\bar{w}\mathbf{1})]||_{*} - |\bar{w}||\bar{x}_{0}\mathbf{1}^{T} - \tilde{X}||_{*}$$

$$\geq ||[\hat{X}_{\hat{w}} \ \tilde{X}\mathrm{Diag}(\bar{w}\mathbf{1})]||_{*} - |\bar{w}|\varepsilon.$$

$$(10)$$

Combining Eqn (6)(9) and (10) together, we have

$$f([\hat{w}; \, \tilde{w}]) \geq \frac{1}{2} ||y - \hat{X}\hat{w} - \tilde{X}(\bar{w}\mathbf{1})||_{2}^{2} + \lambda ||[\hat{X}_{\hat{w}} \, \tilde{X} \text{Diag}(\bar{w}\mathbf{1})]||_{*} - \lambda |\bar{w}|\varepsilon + \frac{\lambda ||\bar{x}_{0}||_{2}^{2}}{2||[\hat{X}_{\hat{w}} \, \bar{w}\bar{x}_{0}\mathbf{1}^{T}]||_{2}} \delta - (\lambda + ||y - \hat{X}\hat{w} - \mathbf{1}^{T} \tilde{w}\bar{x}_{0}||_{2})||\tilde{w}||_{2}\varepsilon$$

$$= f([\hat{w}; \, \bar{w}\mathbf{1}]) + \frac{\lambda ||\bar{x}_{0}||_{2}^{2}}{2||[\hat{X}_{\hat{w}} \, \bar{w}\bar{x}_{0}\mathbf{1}^{T}]||_{2}} \delta - ((\lambda + ||y - \hat{X}\hat{w} - (\mathbf{1}^{T}\tilde{w})\bar{x}_{0}||_{2})||\tilde{w}||_{2} + \lambda |\bar{w}|)\varepsilon.$$

$$(11)$$

Then by the choice of δ in Eqn (5), it is easy to see that

$$f([\hat{w}; \ \tilde{w}]) > f([\hat{w}; \ \bar{w}\mathbf{1}]). \tag{12}$$

Thus the Theorem 2 is proved.