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In this supplementary material, we prove the Theorem 1 which shows the grouping effect of CASS.

Theorem 1 Given a data vector y € R?, data points X = [z1,--- ,1,] € R>™ and parameter X\ > 0. Let w* =
[wi, -+ ,wi]T € R™ be the optimal solution to the following problem
. 1 .
min f(w) = 3[ly — Xwl[[3 + A[| X Diag(w)|]. ()

If x; — xj, then w} — w}.

Theorem 1 says that if there are two columns x; and x; of X which are sufficiently close to each other, then the corre-
sponding coefficients w; and w} are also sufficiently close to each other.

Suppose X = [X X ], where X € R4 consists of ¢ columns that are close to each other:
max{[|X — Zo1 ™|, |X — 2017[]2} <, 2

where ¢ > 0, 1 € RY is the all 1’s vector, Z( is the mean of X, i.e. To = Xl/q, and X € R4 (=9 consists of the rest
columns of X. Accordingly w* = [i; w].

To prove Theorem 1, we only need to prove that if || — @w1]||2 is not small enough, then f([w; @]) > f([w; wl]), where
w = 174 /q is the average of 1.

We first prove two lemmas:

Lemma 1 ||ADiag(v)||. < ||A||r|v]|2, where v € RN, and A € RP*N,
Proof.
|| ADiag(v)[|« = [[[A1v1 Agva -+ Anvn]]]«
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Lemma2 If\; > p; >0,i=1,--- ,N,and C = ZZ 1 — 1), thenz_l\ﬁ>zz 1m+2m

Proof.
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Next we prove the following theorem which is equivalent to the Theorem 1:
Theorem 2 For any e > 0, if |0 — wl||y > §, where
i <2<<A+ ly = %0 = WD)zl s + Alw)[Xa w21 s 1) § o
Allzoll3
then f([w; w]) > f([w; w1]).
Proof.
({i; 1)) =3 ly — X — X3 + N[ X XDiag(an)]l.
Z%Il(y — X — 21" @) + (201" — X)i|[3 + A|[[Xs Zo1"Diag(@)] +[0 (X — 21" Diag()]||.
>y — X — (1 Tz 3 + %HWT = X)allg Iy — Xio — (AT @)zo el (7017 — X}l
+All[Xs o1 Diag(@)]|] — M|(X — 2o1")Diag(a)]|. ©
Zélly = X — (1T@)zo|[3 — |l(y — X — (1Td)Zoll2][@][]| 201" — X]|
+ AXe 0@ ]||x — All@l|2]| X — 2017||
> 2y — X — quol3 + Al Ko 20d Y, — O+ 1ly — Xob — AT 0)zolla)l il e
Z%Ily = X = X(@1)]I3 + N[Xe 20" ][« = (A +[ly = X — (170)o]|2) | |2¢,
where X; = X Diag(w). The last equation uses the fact that ¢z = X1.
Denote Y = Xﬁ,Xg;, and \;(M),i=1,--- ,d, are the ordered eigenvalues of a matrix M € RI¥d je Ay > Aoy > - >

Ad. We show that if || — w1]|2 > d, then

X 200" ]Il > (X w261"]||. +n, withn > 0. )



Indeed, since

d

D MY +[[@]3z0zg ) =u(Y + [@][32075)

i=1
=tr[(Y + [[w1|3z0zF) + ([@][3 - ||@1]13)z0]
=tr(Y + [[@1|[32075) + te((||]3 — [[@01][3)T0g ) ®)
=tr(Y + [[wl|3zozd) + (||@][5 — [Jw1][3)]|zo] 3

d
=2 XY + [[w13z0zd) + ([@]]3 — [lw1]3)]|ZolI3.

=1

Note that ||@w1]||3 is the minimum value of ||@w||3 under the constraint 17% = qw. So A\;(Y + ||0|[3Z0zd) > Ni(Y +
||[w1|[320zL") > 0. Moreover, since 1710 = qw, we have ||@||3 — ||w1][3 = ||& — w1]]3.
So by Lemma 2] we have

d
X 20Tl =3 (/MY + [l 3202])

=1

d
>SN + (w1 3zead) +
1=1

|| — w1 [3]|zo]|3
2V (Y + [[w1][32077) )
||@ — @1|[3]|Zo]|3
2||[X s @To17][[5
||Zo] I3
2/|[ Xy wTol ]|

=[|[Xo 0Zo1T]||. +

>[|[Xo @2o17][]: +

Furthermore,
||[Xw u’)a’:olT}H* =||[Xs )N(Diag(wl)] +10 wzgl? — XDiag(wl)]||«
>||[X XDiag(w1)]||. — [[wZo1" — XDiag(w1)]|. (10)
=||[X:y XDiag(w1)]||. — [@|[|zo1" — X[
>|[ % XDiag(@1)]], — [ae.
Combining Eqn (6)(©) and (T0) together, we have
(15 @) > ly - Ko — X (@1)| + A|[Xa XDiag(@D)]]. - Aale + ——woll
2 2[|[Xp w2o17T]||2
— A+ lly = X — 1T @zo|[2)[d] o (1)
- Allzol[3 o T - .
=f([0; w1]) + — 6= ((A+ly = X — (17 @)ol[2)||@]|2 + Alw])e.
2[|[ X wZo17T]||2
Then by the choice of § in Eqn (@), it is easy to see that
f([w; @) > f([w; wi]). (12)

Thus the Theorem J2]is proved. |



